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Abstract
In this paper we address the problem of inferring A c
the topology, or inter-node navigability, of a sen- AL B
sor network given non-discriminating observations
of activity in the environment. By exploiting mo- D E
tion present in the environment, our approach is (a) ’

able to recover a probabilistic model of the sen-
sor network connectivity graph and the underlying
traffic trends. We employ a reasoning system made
up of a stochastic Expectation Maximization algo-
rithm and a higher level search strategy employing

the principle of Occam’s Razor to look for the sim- to find a alobal solution that optimi bstract obi
plest solution explaining the data. The technique is 0 find a global solution that oplimizes a more abstract ebjec

assessed through numerical simulations and exper- tive func_t|0n based on the principle qf Occam's Rngor.
iments conducted on a real sensor network. The final output of our apprpach is a probabilistic moqel
of the sensor network connectivity graph and the underlying
traffic trends. The simplest application of this work would a
1 Introduction low a set of sensors to be “dropped” into an environment and
to automatically learn the topology of their layout. This au
In this paper, we are interested in recovering a topologitonomous calibration ability can be considered a step tsvar
cal representation of a sensor network embedded region théie larger goal of self-configuring intelligent systems.eTh
identifies physical inter-sensor connectivity from thema@if  information could be used in the self-calibration of a moni-
view of an agent navigating the environment (figure 1); as optoring application or for route-planning purposes in a lybr
posed to a description of the network’s wireless communicasystem employing a mobile robot. Additionally, applicato
tion connectivity (the conventional use of the word topgiog that log data for offline analysis should be able to benefitifro
in wireless networks). our technique. For example, a vehicle monitoring network
We assume that we have no prior knowledge of the reladistributed about a city could help make decisions about roa
tive locations of the sensors and that we have only unlatelleimprovements which might best alleviate congestion.
observations of activity in the environmemng( we make the The topology of a sensor network, as we define it, must
pessimistic assumption that the objects being observed cagake into account the spatial constraints of the enviroriragn
not be distinguished from one another). We must use obthey determine the inter-node connectivity parameterse Th
servational data returned from our sensors to understand thopological mapping problem has been well explored in mo-
motion of agents present in the environment. By inferringbile robotics[Shatkay and Kaelbling, 1997Choset and Na-
underlying patterns in their motions we can then recover thejatani, 200]. [Remolina and Kuipers, 2004Ranganathan
relationships between the sensors of our network. and Dellaert, 2006 Most sensor network related inves-
Our approach employs a reasoning system that is built otigations, however, have been more rechvakris et al.,
a fundamental topology inference algorithm that takes the€004 [Marinakis and Dudek, 2096the outcome is gener-
sensor observations and environmental assumptions as ially a graph where vertices represent embedded sensors in
puts and returns the network parameters. This algorithnthe region and edges indicate navigability. By combinirg th
is formulated using Monte Carlo Expectation Maximization topological description with any additional metric infomm
(MCEM), but it depends on fixed values for certain numericaltion obtainable from the surrounding environment, further
parameters that represexyriori knowledge regarding traffic
patterns in the environment. The reasoning system searches *Occam’s Razor is the principle enunciated by William of Occam
over the input parameter space of the fundamental algorithrthat the simplest explanation is the best.

Figure 1. Example of a sensor network layout (a) and corre-
sponding topology (b).



formation regarding obstructions and motion corridorsidou sors is described as a directed gra@phk= (V, E), where the
be inferred. For example, two spatially proximal nodes thatverticesV' = v; represent the locations where sensors are de-
were not topologically adjacent would suggest a barrier oployed, and the edgeE = e; ; represent the connectivity
some sort. between them; an edgeg ; denotes a path from the position
While much of the research conducted on sensor networksf sensomw; to the position of sensar;. The motion of each
is based on developing distributed and efficient algorithmf the N agents in this graph can be described in terms of their
appropriate for networks of low-powered sensor platformsfransition probability across each of the edges = {a;;},
recently there has been a shift towards more complex aps well as a temporal distribution indicating the duratién o
proaches incorporating advanced probabilistic techisigmel ~ each transitiorD,,. The observation® = {o,} are a list of
graphical modeldlhler et al., 2009 [Paskinet al., 2009.  events detected at arbitrary times from the various veride
The traditional sensor network assumption of homogenouthe graph, which indicate the likely presence of one of the
systems of impoverished nodes is making way for tieredV agents at that position at that time. In other words, each
architectures that incorporate network components of somebservation is identifiably generated by one of the sensors.
computational sophisticatiofDantu and Sukhatme, 2006 The goal of our work is to estimate the parameters de-
Note that a hierarchical arrangement based on computétionacribing this semi-Markov process based on a number of as-
power holds true for several real world sensor networks, essumptions. We assume that the behavior of the agents can
pecially in data collection systenii#/anget al., 2003. be approximated as being homogeneadtes; the motion of
One problem in sensor networks that occasionally requiresll agents are described by the sarhend D. In addition,
above average computational effort is the processing ef disve must make some assumptions about the distribution of the
tributed and information-poor observations. For examiple, inter-vertex transition times. Generally, we make the agsu
[Songhwai Oh and Sastry, 200@vent detections alone were tion that the delays are normally distributed and bounded
used for the tracking of multiple targets using Markov Chainwithin a fixed range. We will show later, however, that we
Monte Carlo (MCMC). Similarily,[Pasulaet al., 1999 ap-  relax this assumption in some situations.
proached a traffic monitoring problem using limited sensor Given the observation® and the vertice$’, the problem
data observations through a stochastic sampling technique is to estimate the network connectivity parametérand D,
A related problem domain that generally employs a com-Subsequently referred to és
plex probabilistic framework and computationally intesmsi
techniques is the simultaneous localization and mappind Fundamental Topology Inference Algorithm

(SLAM) problem in mobile robotics. Recently hybrid robot t, fndamental topology inference algorithm used by our

/ sensor network systems have been employed to addreﬁ_;,; : ; P :
X ; . ; chnigue infers the connectivity of a sensor network given
SLAM issues. Examples includ&ekleitiset al., 200§ in non-discriminating observations. It assumes knowledge of

tzhoecl)reusi of an extended Kalman filter, aﬁizj(ljjgas?et al., JeNe number of agents in the environment and additionally, re
who incorporate inter-sensor range data from a deq,ires some prior information regarding motion patterns in
ployed Sensor netwo'rk in their approac.h. . the system. The inference algorithm is based on the staisti

In remainder of this paper we describe a computationallyecnpique of Expectation Maximization (EM). It constructs
heavy but powerful approach for constructing a topologi-p|aysible trajectories of agent motions based on curréit es
cal representation of a network embedded region based Qfates of connectivity parameters (E Step), and then updates
glos(t)rrlbsu;ﬁgoorgserg)itrlOQSpiggiﬁtek?u]iclrgsmopnasssol\r/ﬁé I?écc"enrq? wor he parameters to maximum likelihood estimates based on the

o= ' o mpled trajectories (M Step). In this section, we will fiyie

[Marinakis et al., 2009 [Marinakis and Dudek, 200&hat  qjine the methodolg)gy be%)ind this technique; full dgtail
has shown the validity of an MCEM-based algorithm for sen-.4 pe found ifMarinakis and Dudek, 2006

sor network topology inference. This technique uses only the gigorithm simultaneously converges toward both the

detection events from the deployed sensors and is based @@rect observation data correspondences and the cogect n

reconstructing plausible agents trajectories. Howebveral- ok parameters by iterating over the following two steps:
gorithm requires significant prior knowledge regardingaloc

traffic patterns that limit its general applicability. Inetkap- 1. TheE-Step: which calculates the expected log likelihood
proach presented here, we incorporate the fundamental algo ~ of the complete data given the current parameter guess:
rithm developed in this previous work into a higher level-rea - -

soning system that is able to remove much of its reliance on Q0,001 = E[logP(Q Z|0)|0, 6" )}

prior assumptions. . . .
whereO is the vector of binary observations collected

> Probl D .. by each sensor, andl represents a hidden variable that
roblem Description determines the data correspondence between the obser-

We describe the problem of topology inference in terms of ~ Vations and agents moving throughout the system.

the inference of a weighted directed graph which captures 2. The M-Step: which then updates our current parameter
the spatial relationships between the positions of the sen-  guess with a value that maximizes the expected log like-
sors’ nodes. The motion of multiple agents moving asyn- lihood:

chronously through a sensor network embedded region can ) — argmaxQ(&,G(i_l))

be modeled as a semi-Markov process. The network of sen- 0



The E-Step is calculated by approximatigy(¢,0¢~1))  find reasonable solutions. We construct a heuristic evalua-
with M samples of an ownership vectbt™ = {I*} which tion function that quantitatively assesses a potentialtsni
uniquely assigns the agento the observation; in sample  based on the principle of Occam’s Razor. The topology infer-

m: ence algorithm takes the following inputs: the observation
_ 1 M O; the assumed number of agents in the environmé&rand

0 = argmax | — > logp(L™, 0|0) the SSLLH parameter. The outputs of the algorithm are the
0 M m—1 network parameter8 and theratio of data Ry, incorpo-

where L(™) is drawn using the previously estimatéd—") rated into the parameter updates:

according to a MCMC sampling technique. At every itera- (0, Raata) < alg(O, N, SSLLH)
tion, the M samples of the ownership vectéarare used to
re-estimate the connectivity parametefthe M-Step). The
algorithm continues to iterate over the E-Step and the M-Ste
until subsequent iterations result in very small changés to

Markov Chain Monte Carlo sampling is used to assign eac
of the observations to one of the agents. Given some gue
of the connectivity parameteét and the current state in the
Markov Chain specified by the current observation assign
ment L, proposals are generated by reassigning a randoml|
selected observation to a new agent selected uniformly
random. This new data associatién is then accepted or
rejected based on an acceptance probability which is dete
mined by the Metropolis algorithm.

The technique uses an inter-vertex delay model that allow
for the possibility of agent transitions to and from souraed
sinks in the environment. In addition to maintaining a ver-
tex that represents each sensor in the network, the algorith
assumes an additional vertex that represents the greaier en A = Z (a_)g
ronment outside the monitored regionsauirce/sink node. A sump !
mixture model is employed during the E-Step of the iterative
EM process in which potential changes to agent trajectoriesvheres determines the degree of the reward. We measure the
are evaluated. An inter-vertex delay time is assumed te arisutility of a given data use ratio by constructing an adjusted
from either a Gaussian distribution or from a uniform distri data ratio that attempts to reflect our belief in the solutien
bution of fixed likelihood. a function of the data used. The adjusted data ratio should

The data assigned to the Gaussian distribution are assuméttorporate the fact that some small portion of discarded da
to be generated by “through-traffic” and are used to durieg th is actually optimal, but that our belief tails off rapidly tee
M-Step to update our belief of the inter-node delay times andliscarded portion grows:
transition likelihoods. However, the data fit to the uniform
distribution are used only for updating the belief of traiosis Riota = _
to and from the source/sink node for the associated vertices [# Total Observatiorjs

The portion of data fit to each component of the mixture (Raata—7)*
model is controlled through a a tunable parameter, called
Source Sink Log Likelihood (SSLLH), that determines thewherey andr describe the shape of the belief curve (figure
threshold probability necessary for the delay data to be in2). The final simplicity metric incorporates a weighted com-
corporated into parameter updates. The probability for afination of A, and R4
inter-vertex delay is first calculated given the currentdjedf . A\
the (Gaussian) delay distribution. If this probability dsver Qsimp = (Asimp)" * (Ragj)
than the SSLLH then this motion is interpreted as a tramsitio wherer and )\ reflect the relative weights assigned to the two
madevia the source/sink node and the transition is not usegortions.
to update the network parameters associated with the origin With the construction of the simplicity metrQ iy, We
and destination vertices. The value assigned to the SSLLIHave shifted our dependence from spedifipriori assump-
parameter determines how easily the algorithm discards outions that must be made on a case to case basis. Instead, we
liers and, hence, provides a compromise between robustneggpend on more general assumptions regarding the atsibute
to observational noise and a tendency to discard useful dataof a believable solution for this problem domain.

Different input values result in different environmenta a
sumptions and, hence, produce different outputs.

We have created a metric that attempts to assess the valid-
ity of a solution by making the assumption that a good solu-
ign both explains the majority of the data and issasple as
possible. This principle, known as Occam’s razor, statiés, “
presented with a choice between indifferent alternatitres)

ne ought to select the simplest one.” The concept is a com-

on theme in computer science and underlies a number of
approaches in Ale.g. hypothesis selection in decision trees
and Bayesian classifiers.

Our simplicity metric incorporates a measure of the sim-
plicity of the transition matrix and the amount of data ex-
plained by the solution. We measure the simplicity of a trans
tion matrix by rewarding it irnnverse proportion to how close
it is to a uniform belief of transition probabilities:

a;EA

|# Explained Observatiohs

_1
Rugj =exp™ 7

4 Automatic Parameter Selection 5 Simulation Results

Our reasoning system treats the fundamental topology-infedn this section, we attempt to validate our general approach
ence algorithm described in the previous section as a ‘blacfor selecting nearly optimal input parameters for the funda
box’ and attempts to search over its input parameter space toental topology inference algorithm by using attributes of
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Figure 2: Example relationship betwe&g,:, andR,q; with
~v=0.9andr =0.1.
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Table 1: Table of values used to shape the simplicity qubtien
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the solution it produces. We select parameters defining the 20; Correct
Qsimp Metric based both on domain knowledge and experi- g l
mental methods (Table 1). ? 02
In order to justify these parameter values and to assess 01
the effectiveness of this approach, we conducted a number o ‘ ‘ ‘
of simulations in which we varied the input parameters and 0 Acsumed Number of Agents ’
looked for a correlation between the performance of the-algo (b

rithm and the simplicity metric.

Experiments were conducted by simulating agent traffic
through an environment represented as a planar graph. The
simulation tool takes as input the number of agents in the
system and a weighted graph where the edge weights are pro-
portional to mean transit times between the nodes. The out-
put is a list of observations generated by randomly walking
the agents through the environment. Two types of noise were
modeled in order reflect observations collected from realis
tic traffic patterns. First, a ‘white’ noise was generated by

Squared Error of Transition Matrix

removing a percentage of correct observations and reglacin 9% = =" = - .
them with randomly generated spurious observations. Sec- SSLLH Pa(fésnae’ Setting

ond, a more systematic noise was generated by taking a per-

centage of inter-vertex transitions and increasing thesGau

sian distributed delay time between them by an additional de " No Noise

lay value selected uniformly at random. The range of this 0es

additional delay time was selected to be frono 20 times
the average normal delay time.

For each experiment, the results were obtained by calcu-
lating the squared error between the trieand inferredA’
transition matrix:

Erra= Y (ag—adj)’ o

’
(LijEA,aijEA’ 04

Simplicity Quotient
°
a

. i -ZDSSLLH-llgaramet-é? Setting-5
Input parameters that resulted in good algorithm perfor-

mance also resulted in solutions that generated tigh,,

quotient values (figure 3). When the error in the inferred-tran Figure 3: The effect of varying assumed input parameters on
sition matrix was plotted against the value obtained for theperformance and the simplicity quotient. Results are aver-
simplicity quotientq)s;,,,, for a number of simulations, there aged over 20 graphs using 4 simulated agents on 12 node,
was evidence of a definite correspondence (figure 4). The eft8 edge graphs with 4000 observations. Simulations labeled
fect appeared robust to moderate levels of observations¢no ‘Moderate Noise’ had per cent of both white noise and sys-
and different sizes of graphs. This result gives suppomfor  tematic noise added to the observations. For charts a) and b)
adoption of Occam’s Razor as a mechanism for selecting ingSLLH was set to -5.0 while for charts c) and d) the assumed
put parameters. number of agents was set to 4.



) ‘ ‘ during a six and a half hour period from 10:00am to 4:30 pm

3 5 NoNoise on a weekday. In total, approximatelf00 time-stamped
© Moderate Noise events were collected.
158 ] To determine appropriate input parameters for our infer-
. ence algorithm we conducted an exhaustive search over the

‘ PN ] range of N = 2,..,6 andSSLLH = —7,..,—3. We then
. & chose the output values that maximized @y;,,,, metric.
(We used the same shaping parameters focihe,, metric
that were verified through simulations.) The maximizing ar-
guments wereN = 5 andSSLLH = —5. Therefore, we
‘ ‘ : ‘ selected the solution generated by these parameter vadues a
0 0.2 si n?b?icty Qu%-gem 08 1 our inferred network.

Except for a few small differences, the network parameters
Figure 4: The mean error in the inferred transition matrix el NT€/Ted by our topology inference algorithm closely cerre

sponded to the ground truth topology. Figure 6 compares the

ements plotted againgls;,,, for data obtained from the sim- . . . . .
ulator with 4 true agents from 4 random graphs of 12 nodesanaIyncaIIy determined and inferred topological mapss-Di

48 edges and 4000 observations. Input parameters to the 4£J2rding reflexive links, the difference between the irefer
gorithm were varied: assumed number of agents from 2 t nd ‘ground truth’ results amounted to a Hamming erradt.of

7: and SSLLH from -2 to -7. Trials labeled ‘Moderate Noise’ he two significant errors are: an extra edge found between

; ; ; ; . sensorsd and B; and a missing one-way edge from senBor
contained per cent of both white noise and systematic noise. to 1. Additionally, the connections to the inferred sourcedsin

node occur primarily for boundary nodes (figure 6(c) ) and are
therefore consistent with an analytical assessment ofdffie t

The accuracy of the solution we obtain depends heavily Oﬁlc patterns. Since traffic commonly enters and exits the mon-
the assumed number of agents in the environment. The lowelPred regionvia one of the boundary nodes, the inference
error was consistently observed when the assumed number 89°rithm should commonly employ the source/sink node in
agents was set to the correct value, and generally, therclos8'der bring the agent back into the system.
to the correct value this parameter was set, the better the r .
sults. Over-estimating the assumed number of agents had le  Conclusion
impact on accuracy than under-estimation. In this paper we presented a method for inferring the topol-

A correctly tuned SSLLH parameter was also important toogy of a sensor network given non-discriminating observa-
the accuracy of the final solution. As the input value for thistions of activity in the monitored region. Our technique
parameter was increased, there appeared to be a “phase traeeovers the network connectivity information opporttinis
sition” in the accuracy of the results. Past a certain tholekh  cally through the exploitation of existing motion. Our work
the error suddenly increased dramatically. Interestinjg  improves considerably on earlier related efforts for togy!
best results for both the inferred mean delay times (not preinference which require prior knowledge regarding motion
sented here) and transition likelihoods seems to be oltaineén the environment. It is worth noting that our final tech-
just before this sudden degradation in performance. nique recovers a much more complete description of network

While, the shaping of th€),;,,, metric is ongoing work, —connectivity than just a topological map of the environment
the current parameter values are adequate to demonsteate #dditionally, we learn information regarding inter-node-d
correlation between the correctness and simplicity of the i lay distributions, inter-node transition likelihoods,caother
ferred transition matrix. In our experimental work, desed  statistics regarding motion patterns in the system.
in the next section, we took advantage of this correlation to
select appropriate input parameters since the ‘correttesa References

0.5¢

Squared Error in Transition Matrix
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Figure 5. The layout of the nine senor (heterogeneous) mktused for the experiment. Labeled triangles represeminds
based sensor positions (A-F) and labeled rectangles exgriesv-powered photo-based sensors (G-1). The circleessgnts the
location of the central server.
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Figure 6: Topological maps of the environment that were:na)ydically determined by a human based on the actual né&twor
layout; b) inferred by the algorithm; c) inferred by the aigfum including the source/sink node.
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