304-487
Computer Architecture Laboratory

Project Compendium

2009/2010

Professor Cooperstock
Department of Electrical and Computer Engineering

A Hardware Fourier Tag Decoder

Anqi Xu and Frangois C6té
tangi.xu, francois.cote } @mail.mcgill.ca

Abstract — Fourier Tag is a barcode-like fiducial marker
system, designed primarily as a vision-based input interface
for a robot controller [1]. The numerical ID of each marker
is embedded in the frequency spectrum of the tag's grayscale
pattern, and can be interpreted by the robot.

This project involves the design of a Fourier Tag decoder
using FPGA technology. In the context of the robet, such
dedicated hardware would remove the need of a software
decoder, which would otherwise be competing with the robot
controller for precious CPU time. As a consequence, the
controller’s sampling time would be reduced, which would
result in a more stable and responsive robot.

The implementation consists of the following algorithmic
tasks: sampling the input image, averaging the samples,
transforming them using a pre-built FFT core [2],
thresholding the resulting magnitude spectrum, and finally
decoding the numerical ID. The main performance criterion
involves surpassing the decoding speed of a reference
marker software (ARTag) [3] that is currently used to
control robots.

Index Terms — Fourier Tag, fiducial marker, human-robotics
interaction, FPGA, VHDL

L INTRODUCTION

The use of visual markers as a close-range input interface
for robots is a relatively new and unexplored subject. Its
main advantages, such as low cost, portability, and
robustness to noise, can only be truly appreciated when
employed in extreme environments, such as underwater,
where conventional communication methods would be
either impractical or plainly impossible to implement.

Dudek et al. explored the possibility of using symbolic
tags to control an underwater robot named AQUA [1], by
mapping the detected marker IDs into a sequence of robot
instructions and executing them on-the-fly. In their first
implementation, they used a marker system called AR Tag
f3] (see Figure 1.a for a sample ARTag marker). These

visual symbols are extremely resilient to image distortions,

due to the vast abundance of redundancy in the system,
under the form of error correction codes. Unfortunately, a
substantial portion of the image is required to represent
these codes; therefore the size of useful information that
can be embedded is severely restricted.

This paper introduces a new fiducial marker system called
Fourier Tag, through the description of a particular
implementation of its decoder in hardware. The decoder

project is aimed particularly at the Human-Robotics
Interaction application domain, as a potential replacement
for ARTag markers in the context of the AQUA robot.
The Fourier Tag protocol is designed to feature similar
robustness qualities to those of the ARTag system,
although the crucial difference is that this new protocol
aims to reduce the space occupied by redundant
information, while still preserving roughly the same
amount of redundancy. Such a seemingly oxymoronic
design criterion is made possible by encoding the binary
data in the frequency spectrum of the marker image.

(a) (b

Fig. . a) An ARTag marker encodes data using black and white squares;
b) A Fourier Tag marker embeds data into the frequency spectrum of the
image.

A Discrete Fourier Transform algorithm is required to
decode Fourier Tags. Because the hefty computational
strain imposed by software DFT algorithms conflict with
the allocatable amount of CPU time for the robot
controller, this project proposes to move the decoder onto
an FPGA board, thus allowing the controller to have more
frequent access to the CPU, and therefore making the

robot more stable and responsive.

II. THE FOURIER TAG PROTOCOL.

A. Generator Algorithm
Footprint Bits

T
vi={111 &ﬂ 11]
Ji Data Bits
Sl untty smf
2::::2?;: vi Z 1 Magmtude Resﬂc‘:tor
j \ Converter]
Markerlmage

L! F_FUND
Fig. 2. The Fourier Tag generator algorithmic flow diagram

The Fourier Tag protocol embeds a binary data vector v;
of length I in the frequency magnitude spectrum of a
generated image. In particular, the periodic marker
sequence S[n] is composed of sinusoids whose
frequencies are integer multiples of a pre-determined
fundamental frequency, F FUND.

The binary vector v; contains a small footprint pattern
along with the rest of the data. The footprint bits, located
on both sides of the data bits in two equal parts, are
asserted in every marker and serves as a means to identify
the Fourier Tag. This positioning ensures that if some
high frequency contents were not detected, then the image
would be dismissed due to the absence of a full footprint
pattern, rather than having the data bits being truncated
and possibly misinterpreted.

The marker image is created from the summed sequence
S[n} by scaling the magnitudes to unity, duplicating the
horizontal sequence vertically, and then interpreting the
magnitudes as grayscale intensities.

B. Decoder Algorithm

P e
Sice &y o) 7 Fast -3 { -
N L..n) Slice o __x o L.~ Magnitude® |
- Pixel V| Averager || Fourier 2 Evatuator |
< 1 \ Bampler } | J Transform/ | J
Marker Image * : o
i i
~Validity™ /A
valid (ot Pattern 1L ,/”-—~\1<,§

| fy N
\Checker/ ™4 Threshold 1, | ladet
. Block !<4 7| Frequency E
[Data """ ; | Extractor
Vi < “‘g & <~ 7 N\ i /
!N Extractor |

F_FUND
Fig. 3. The Fourier Tag decoder algorithmic flow diagram.

The decoder aims to recover binary data from the
frequency magnitude spectrum of a supplied image,
which may contain some noise. Given a 2-dimensional
array of grayscale values (i.e. the supplied source image),
several horizontal rows (hereby referred to as slices) are
chosen at fixed intervals. These slices are then averaged
to attenuate the potential additive noise in the image,
possibly due to non-uniform lighting or partial occlusion
effects. Under these non-ideal conditions, the averaged
sequence will still be relatively similar to the ideal
sequence, assuming that the distortions are not
overwhelming.

A Fast Fourier Transform (FFT) algorithm is used to
obtain the frequency spectrum of the averaged slice. The
Fast Fourier Transform is a family of efficient algorithms
that computes the Discrete Fourier Transform of a
sequence. The output of the FFT consists of two
sequences, representing the real and imaginary frequency
values, up to a maximum frequency.

This particular Fourier Tag implementation only embeds
information in the magnitude spectrum of the image (as
opposed to the phase spectrum). To minimize resources,
the power spectrum (i.e. the squared magnitude spectrum)

is evaluated, by summing the squares of both the real and

imaginary values.

o

Next, the magnitudes at particular frequencies (i.e. at
multiples of the fundamental frequency) are extracted
from the complete data set. These values are then
converted into binary format, by thresholding the squared
magnitudes with one fourth of the maximum value (i.e.
half of the maximum magnitude). The resulting bit vector
contains both the data bits and the footprint bits, which
can then be easily extracted and validated, respectively.

At this point, a word of caution is due — the algorithms
described above are geared towards the simplified version
of the general Fourier Tag protocol discussed in this paper,
and thus by no means represent a complete documentation
for generating and decoding markers using the full
Fourier Tag protocol.

HI. DESIGN METHODOLOGY

A top-down design methodology was taken to separate
the decoder algorithm into different subsections, which
could then be implemented as individual hardware
modules. Because the heart of the decoder algorithm
involved computing the FFT, the design was split into
three stages — a central core consisting of the FFT,
sandwiched between an image-processing pre-FFT stage,
and a data analysis post-FFT stage.

Because the ultimate evaluation criterion for this FPGA-
based design is its processing speed, the general design
approach was established to build a system using as much
combinational circuitry as possible, which would
minimize the system’s latency by sacrificing resources.
Unfortunately, not all the steps in the algorithm could be
realized using combinational logic — the FFT and the
maximum magnitude detector blocks are both sequential
in nature. Therefore, the design procedure involved
building the sequential core first, and then appending onto
it the pre- and post-FFT combinational sections.

Since the Fourier Tag protocol and the decoder algorithm
are first introduced in this paper, it means that no previous
implementations exist for this hardware decoder project to
rely on. To ensure that the algorithm and the hardware
design were correct, a software Fourier Tag decoder
function was coded using MATLAB®. This function was
written in such a way to imitate the hardware design as
much as possible, so that all logical flaws associated with
this particular design would be fixed prior 1o
implementing it in VHDL!

Even with an emulated function written in MATLAB®, it
was not guaranteed that the hardware implementation
would succeed, due to complications that could arise only
in the hardware domain, such as lack of data precision
and race conditions. To ensure that the hardware
implementation would have a high chance of success,

three design goals were set in place — the hardware design
had to be modular, parametric, and scalable. The
implementation assigned variables to all parameters that
could potentially affect the outcome of the system, such
as the data resolution, the number of slices used, and the
number of samples used. Additionally, each step in the
decoder algorithm was broken down into separate, self-
containing modules, so that these modules could be tested
for correctness independently. Essentially, the hardware
system was designed for test.

To reduce on development time, it was decided that this
hardware implementation would use a pre-built FFT core.
After considering many implementations, including those
from OpenCores.ORG and from Xilinx®, the Altera® FFT
MegaCore function [2] was chosen, for its parametric and
scalable design, and for its extensive documentation.

As a consequence from choosing the Altera® FFT core,
the target device was constrained to be a member of one
of Altera®s FPGA families. The Stratix 11 device family
was chosen for its abundance of resources, and its
extremely swift circuitry. This decision perfectly reflects
the design approach of trading resources (including cost)
for speed.

Finally, two critical assumptions were made during the
design of the decoder system — the decoder assumes that
an external Fourier Tag detector delivers to it potential
marker regions of uniform dimension, extracted from a
source image. Furthermore, it assumes that these regions
contains a fixed number of periods of the data sequence
(H_PRD), so it would be the defector’s job to resize the
regions before sending them to the decoder.

IV. IMPLEMENTATION
A Pre-FFT Stage

Paraliel to Altera’s FFT

Seriat | Lore
Input Sfice Shifter :
 Memory Image Average | lFT~FFT§
Fourier puffer Sampler Unmiz | Lo
Tag s g_’
s % . g ca iTo Post FFT
IR AN A
I T
. [F W L. :

Fig. 4. Block diagram for the pre-FFT stage

The pre-FFT stage focuses on converting a 2-dimensional
region into a {-dimensional sequence of gravscale values,
ready to be processed by the FFT core.

The first module in the pre-FFT stage is the memory unit
(FT_MEM.uvhd). Being designed for simulation purposes
only, its function consists of reading in the Fourier Tag
region from a flat file, in binary format. Activated by a
reset signal, the memory stores the marker region and
allows it to be accessed by the rest of the hardware in its
entirety. In reality, this module simply represents the
wirings between the Fourier Tag derecior and the decoder.
Directed into the sampling module (FT_SMP vhd), the data
lines holding the stored bits are selectively reconfigured.
With the knowledge of the fixed image dimensions, this
module samples the data into 2°"“"F glices and
QSAMPLEEXP yixels, with the chosen slices and pixels taken
at constant intervals from the original array.

The previous module introduces a resource-saving
optimization. The sampling theorem [4] dictates that a
sequence only needs to be sampled slightly more than
twice per its smallest period, for the sampled sequence to
have identical frequency contents as the original one. The
pre-FFT stage thus down-samples every slice to reduce
the length of the sequence, which results in a smaller FFT
core. This optimization is only possible because the
fundamental frequency is assumed to be fixed and known.

Because the tag information is repeated vertically, ideally
only one slice of the image is necessary to fully describe
it. However, in order to promote robustness, the
hardware requires the average of several sampled slices.
The averaging block (FT_AVG.vhd) performs the addition
of the slice elements (i.e. the sampled pixels) in parallel
using a divide-and-conquer topology. The sums are then
right-shifted through rewiring, as an efficient way to
divide by the total slice count. Although this approach is
resource efficient and scalable, it requires the number of
slices and samples to be powers of 2.

Since the FFT core is sequential, a standard parallel-to-
serial block shift register (FT_PTS.whd) is required to
convert the data set into serial form, for further processing.

B. FFT Stage

Serial to
Paralief to Altera’s FFT i‘;; f{jif
Seriaf Core
Shifter Squared
FT-FFT Magnitude "“'} e B
Evaluator| [} I j
PFerz:n;T E : g s To Post FFT
e 4 : Stage
Stage p—ld d u)l, g
o o
e FT_MAX _)
f 11 Magnitude
Defector
FT_CTR

Cuontrolier Unit

Fig. 3. Block diagram for the FFT stage

The Altera® FFT core operates according to a point-to-
point interface protocol named Adansic. Fach element
inside the averaged slice is streamed to the core at every
clock cycle. This event is initiated using a hand-shaking
protocol — the central controller first asserts two ‘data-
available’ control signals (sink_dav, source_dav), and once
the core is ready, it responds by asserting a ‘ready-to-
receive’ signal (sink_en). Once the initial communication
has been established, the central controller then shifts the
data set into the core, element by element, while
simultaneously asserting a ‘start-of-packet” pulse
(sink_sop}. Once the transform is ready to present the first
output element, it asserts its own ‘start-of-packet’ pulse
(source_sop) and simultaneously shifts out the results. This
core expects data inputs and data outputs on pairs of ports
»»»»» one for the real part and one for the imaginary part. In

this particular case, the imaginary input port is never used.

For this application, the core (FT_FFT.vhd) is generated to
have 256 data points and § bits for data precision, using
the streaming mode. The multiplication operation is
realized by using a 3-multipliers-5-adders structure. This
fixed parameter setup adds a slight complexity to the
overall parametric hardware design ~ when the pre-FFT
sequence length is changed to a smaller value (by
decreasing the sampling rate, or equivalently
SAMPLE EXP) than the number of FFT data points, the
core automatically pads ‘0’s to the end of the smaller
sequence. Thus, the FFT implicitly up-samples of the
input slice, and even though this change does not remove
any information, the post-FFT stage must compensate for
this effect.

Because the FFT core uses signed arithmetic operations, it
is wasteful to represent the input grayscale values using
an unsigned format. Thus, the binary dump of the marker
image is generated (using a simple MATLAB® function)
using two's complement representation.

C. Post-FFT Stage

Serial to
P - Paraltel Magnitude
Altera’s FFT
Core Sguared Shiffer Extractor Validity o
oo Magnitude T Pattern E
: >

‘FT FFT' Evsluator N . Matcher

L

{4
Haximum ID Code
Magritude Extractor 8
Detector o
Fig. 6. Block diagram for the post-FFT stage

The post-FFT stage may appear overwhelming at first,
due to the numerous modules encompassed by it
However, the actual algorithmic goal is fairly simple -
look at the power spectrum at particular frequencies, and
identify peaks as binary ‘1°s and the lack of peaks as *0’s.

The squared magnitude evaluator module (FT_SMG vhd} is
placed at the output of the FFT core, so that the real and
imaginary frequency values can be immediately
transformed into magnitudes, thus halving the data set and
saving on resources. An additional advantage for
evaluating the magnitudes before converting the data set
back into parallel form, is that only one module is
required for the entire data set, because the set is
processed by this module sequentially.

Since most of the post-FFT modules can be expressed
using combinational logic, the output data set needs to be
converted back into parallel form before it can be
analyzed. A standard serial-to-parallel block shift register
(FT_STP.vhd) is employed to achieve this effect. However,
to fully exploit the sequential nature of the FFT stage, the
sole remaining sequential module — the maximum value
detector (FT_MAX.vhd) — is set to execute in unison with
the shift register. This module evaluates and stores the
maximum data among all of its previously seen inputs by
using a comparator (FT_CMP.vhd) and an internal register.
Since the data precision is parametrically defined, the
greater-than-or-equals comparator is coded using a
recursive algorithm, based on a 1-bit comparator.

After the data set has been converted back into its parallel
form, a frequency extractor (FT_EXT.vhd) module selects
the magnitudes at muitiples of the fundamental frequency
F_FUND. Because this implementation assumes 8 data
bits and 4 signature bits, the extractor module returns a
vector of length 12. It is worth noting that the length of
the input sequence is no longer 25*ME X byt rather N
(i.e. the number of FFT data points), since the FFT core
implicitly up-samples the input sequence (of length
2IAMPLEEXPY 46 its own length N, as mentioned previously.

v]i]=D

P NE . Vi
=D| (Q_I) + (g)(g){ F FLJND‘W j Q
L L N-2:H PRD |
25~"¥’{' NOEXP . SAMPLE BEXP

5

the discrete frequency range by the ratio of the

number of periods in the input region, is assumed to be
fixed and known beforchand. A second scaling factor, N,
is introduced to transform the range from [0, 1] into the
integer version [0, N]. Without considering the DC
component {© = 0 rad/s), which will be discussed in the
controller section, the desired frequency values are simply
the first | elements, at least in theory. Unfortunately, due
to the implicit up-sampling of the FFT core, the frequency
spectrum is divided by o = N - 25AMPLEEXP

QFFENEXP - SAMPLEEXE This means that there are (¢ — 1)
zeros between each desired element, so the offset (o — 1)
and the index factor o are added to compensate for the up-
sampling effect.

The threshold module (FT_THD.whd) employs the same
greater-than-or-equals comparator used previously, to
compare all the elements in the extracted data set to a
threshold value. This threshold is naturally chosen as the
maximum magnitude over 2, which, in the power
spectrum, is equivalent to the maximum value right-
shifted by 2 bits (i.e. divided by 4). The bit vector output
of the threshold module is simply the outputs of the
individual comparators, inside this block.

At this point, the target frequency values are now in
binary format. The remaining two tasks consist of
extracting the data bits through simple rewiring
(FT_DEC.vhd), and validating the footprint bits. The
validity pattern checker (FT_VALvhd) filters the raw bit
vector with a mask, to isolate only the bits that are
relevant to the common Fourier Tag footprint. All the bits
of the masked vector are AND’ed with each other using a
special sub-module (FT_vectorGate.vhd). This sub-module
is recursively coded using a divide-and-conguer algorithm,
to accommodate for vectors of arbitrary length.

D. Controller

The central controller (FT_CTRwvhd} is required to
guarantee synchronism between the sequential
components. This block consists of an 8§ state Finite State
Machine, which initiates all FFT core transactions. The
controller governs the data flow by invoking the pre-FFT
and post-FFT shift registers (inshift, outshift).

In addition to maintaining synchronism, the controlier can
operate selectively with the data transfers. Due to
excessive presence of noise in the first pass through the
core, the controller only asserts completion of the
transform once the second pass is ready (ready). Another
data anomaly is the zero frequency impulse — the first
element to emerge from the core corresponds to the
presence of a DC component. The presence of this offset
is traced to sinusoidal additions in generating the Fourier

Tag. Without omitting this impulse, other frequency
components appear relatively small and can pass
undetected. Luckily. due to its entirely predictable

position, the controller may block the artefact from later
parts of the hardware.

The states of the controller are detailed below. Figure 7
illustrates the transition flow of the states.

StartUp1 /™
s J ble=0
StartUp0 . N REe

fit_seset=1 | fitreset=0 1

7/ inshift=0 N
/ outshift=0 . 4 ¥ |) si -
C Lol - A / sink_enabie=0
| sink_dav=0 ! s e
source_dav=0 | 5
sink_sop=0 / T sink _dav=t b
s ready=0 \‘\ \source_dav=1; v
/ e L . - N
eset= [outshift=0 | — ! smk‘sopq \
reset=1 ‘. ready=1 Cont | inshift=1)
N\ S N s
o " Cons Cont N
L e
> N Con4 Con2~ K\
/ N . 7N
=0 Y S
A)utshmmeady Con3 smk:sop 0 /
| t=counts 1 = count=count+1
icoun N inshift=1 / count<285
f/ Tee 4 [inshitt=0 |
A ~\,/\ | N
count<256 PN //

(\4;/‘

source_sop=0

Fig. 7. State diagram for the controller using a 256 point FFT core

STATE DESCRIPTION

StartUp0 | All control signals are set to 0 except for the FFT
reset signal.

StartUpl | The FFT reset signal is unasserted; the core is reset,

Con0 | The FFT core is advised that data is available.

Conl When the core acknowledges the availability of the
data, it is advised of the “start-of-packet” signal. The
parallel-to-serial shift register is enabled.

Con2 The *start-of-packet’ streaming signal is unasserted.

Con3 After shifting in 256 data elements, the parallel-to
serial shift register is disabled.

Cond Once the FFT core asserts its own “start-of-packet’
signal for the output data streaming, and if this is the
second pass of the data through the core, the serial-
to-parallel register is enabled.

Con3 After shifting out 236 transformed elements, the
serial-to-parallel shift register is disabled.

Table 1: State descriptions for the controller’s Finite State Machine,
using a 256 point FFT core

£ Testbench

The testing of the Fourier Tag decoder uses several
testbench versions. In this section, the final testing
solution is described (see section V for the complete
testing methodology).

The testbench (FT_TSBwhd) is designed to feed the
hardware system with known tags and verify the output.

Making use of MATLAB?®, the binary representation for
all possible tag inputs are pre-generated into flat files.
During testing, the memory unit is instructed to read in
the tags one after another. With an inscribed code of 8
bits, 256 tag files are accessed by the memory unit. To
enhance the control over testing, the tags are fed in order,
from O to 255. As a consequence, the testbench uses a
counter to keep track of what the decoded tag should be.

In due course, the testbench verifies if the output
corresponds to the tag code, or more precisely, to the
count value. If the decoded value does not match the
count, a report statement flags the error during simulation.

Once the decoder passes all tags, another version of the
testbench is used to determine the processing time. Here,
VHDL report statements issue a timestamp at the
beginning and at the end of the decoding process.

V. EVALUATION AND OPTIMIZATION
A. Correctness Evaluation

The first step in testing consists of evaluating the
functionality of each of the individual system blocks. The
design modules are put together, block by block, and the
gradually built-up system is tested for correctness before
each additional block is added.

Because many combinational modules have a hardware
topology that directly reflects their function (for example,
rewiring), the RTL schematics of the synthesized blocks
are used as a visual indication of correctness. Once visual
correctness is ascertained, random test cases are chosen to
verify the functionality. As the system is being integrated
as a whole, the testbench is modified accordingly to make
the output of the last block accessible via a flat file. The
data can then be fed into MATLAB?®, for verification.

T

LU
L L 1555040403045
5.

|

Lk

1

L T Yio1moio

o

DTN

(b}

Magnitude

-

T E T T sttt
Frequency Index
(c)
Fig. 8. a) A Fourier Tag with the inscribed code [0 101010 1]
b) The corresponding wavetorm for the output of the decoder: the tag is
shown decoded (little-endian encoding) with the validity asserted:
¢) The MATLAB" plotof the FIFT core™s output.

At this preliminary stage of testing, only the apparent
corner cases (such as tags with all 1’s, 0’s, or alternating
patterns) are fully verified. This approach leads to an
early calibration of the system. Specifically, it gives an
indication of the required threshold to properly convert
the frequency content to a binary form.

B. Accuracy Evaluation & Optimization

Accuracy evaluation depends directly on the parameters
to which the decoder is set. These main system
specifications include: the tag Eixel resolution (RES), the

SAMPLE EX 2
number of samples (2°*™"F F¥%) and the number of slices
(751,,”"1{ EXP)

The resolution corresponds to the amount of shades of
gray possible used to represent the frequency content. In
its binary format, each pixel can take on RES different
values. The resolution describes the precision with which
one can represent the oscillations of the grayscale tag. The
lower the resolution, the greater the quantization noise,
and the spectral peaks are less pronounced. The number
of samples relate to how many pixels per horizontal row
are chosen to represent the frequencies of the system.

There are a total of 23*™PF.EX" [inear]y spaced sampled
pixels. Choosing too little samples may lead to aliasing.
The number of slices relate to how many horizontal rows
of pixels are chosen.

There are a total of 2°'“F ¥ Jinearly spaced slices taken
from the original tag image. The number of slices is a
direct measure of robustness. As explained previously,
when faced with partially corrupted tags, more slices
means more chances to overcome the distortion. Using
large values for these specifications undoubtedly leads to
successful decoding. Unfortunately, this comes at the
price of unnecessary resource usage.

The software (MATLABY) version of the decoder proved
to be dependant on the system specifications to perform
adequately. Varying these specifications caused the
system to fail while decoding certain tags. Therefore, at
the hardware level, similar results were expected.
However, it must be clear that a system which cannot
decode 100% of tags is considered be a failure and
therefore is unacceptable!

Because half the system deals with frequency content, it
becomes evident that the previously investigated apparent
corner cases are not really corner cases for all the
components of the design. Therefore, an exhaustive
testing approach must be used. Conforming to the format
of an inscribed 8 bit code, all 256 possible tags are
generated and automatically fed into the decoder. In
guise of an exhaustive testing strategy, it is impractical to
show the waveforms resulting from all the tests. The

system either passes or fails in decoding the tag. What is
observed is repetitious of the waveform illustrated in
Figure 8.b.

The strategy in determining the minimal specifications
consists in fixing two parameters and varying the third.
The minimum parameter which still leads to a successful
run is selected and fixed.

The first order of business consists of determining the
minimal number of samples before aliasing sets in. This
occurs when taking 64 samples (SAMPLE_EXP = 6). Next,
it is observed that the resolution fails at a 5 bit level (RES
= 5). Here, the lack of precision causes noticeable
frequency impulses to miss the threshold.

In order to test the required number of slices, an
obstructed image is fed into the system. In this case all
tested SLICE_EXP values succeed in extracting the tag.
However, due to the nature of the slicing, it may occur
that the slices are sampled completely around the
obstruction. Here, it is more important that higher orders
of slicing perform just as well; demonstrating the success
of the averaging. Therefore a reasonable minimum value
is set to 2, to insure coverage of the tag edges and center
region. The minimal specifications are therefore: RES = 6,
SLICE_EXP = 2, and SAMPLE_EXP = 7.

T
Lingl

Fig. 9. A partially obstructed Fourier Tag image

C. Resource Utilization

A decision is made to add a small margin to each of the
minimal specification parameter values. This safety net
ensures the resiliency of the system when faced with
unaccounted disturbances. To assess the cost of these
margins, the code is synthesized using both the minimal
specs and those with the margins.

Minimal Specs + Margins
RES = 7, SLICE_EXP =3,
SAMPLE_EXP =38

Minimal Specs
RES =6, SLICE_EXP = 2,
SAMPLE_EXP =7

10 34/343(9.91 %) 36/343 (10.50 %)

LUT | 3205/27104 (11.82 %) 14511 /27104 (53.54 %)
REG | 4121725034 (14.19 %) 5673 /29034 (19.54 %)
DSP 2/ 128 (1.56 %) 2/ 128 (1.56 %)

Clock | 6.43 nsec (155.44 Ml») 6.56 nsec (152.35 Mllz)

Table 2: Resource utilization data. after synthesizing the system using
both st of specs, for the device: Altera Stratix [EP2S30F484 Grade C

Table 2 illustrates that the cost of using the margins is a
four-fold increase of LUTs. This drastic gain can be
explained by remembering that both SLICE_EXP and

SAMPLE_EXP represent the 2's powers of the number of
slices and samples. Therefore, if these two parameters are
both incremented by I, this corresponds to doubling the
number of slices and the number of samples, thus
explaining the four-fold increase of look-up tables needed
to process the image in the pre-FFT stage.

Fortunately, the critical path for both set of specifications
is found through the sequential controller, which is
relatively undisturbed by changes in the parameters (other
than possibly updating the total number of cycles it takes
for the FFT core to process a slice). Because the speed of
the system is not severely hampered by the margins, the
set of specifications with the margins is designated as the
final system configuration.

D. Latency Evaluation

The final and most important evaluation phase involves
comparing the processing time for the finalized FPGA
system to that of its benchmark — the ARTag software
decoder function.

The duration it takes for the Fourier Tag decoder to
process a marker is determined by putting VHDL report
statements in the testbench (FT_TSB.vhd) before passing
the input image and after receiving the validity flag. This
simple approach makes the assumption that the marker
has been properly detected. Otherwise, the validity flag
would not be asserted.

To obtain the elapsed durations after processing multiple
markers through the system, the report statement outputs
are dumped into a flat file and are passed to a simple text
parser application that calculates the time differences and
also evaluates the average elapsed duration. Results from
the parser show that all time differences are identical.
This makes sense because the hardware propagation time
is constant for all possible marker inputs.

Obraining the processing time for the ARTag software
decoder function is equivalent to finding the wall-clock
execution time required by the function. The ARTag
timing testbench is a small application written in C that
generates all possible ARTag markers and then measures
the execution time the decoder function took to process
through each tag. These time differences are then tallied
and averaged. In contrast to the Fourier Tag hardware
system, the execution times actually improved as the
decoder processed through more markers. This effect can
be accredited to the marker buffer array finding itself into
the system’s cache due to its frequent usage. This
buffered setup is employed in reality, since the robot
constantly scans for tags because it does not know when
to expect the next marker.

After determining the clock speed for the Fourier Tag
decoder, a final version of the system is simulated while
noting the timing information. For the purpose of
evaluation, the ARTag timing testbench is executed on
the hardware of the actual AQUA robot. In comparing
the timing reports, the following results are obtained.

Fourier Tag Decoder ARTag Decoder Timing

ModelSim Simulation Testhench Application
Sample 22008 nsec 8364 usec
Data 22008 nsec 10825 usec
Set 22008 nsec 7718 usec
22008 nsec 9274 usec
Average 22 usec 9145 usec

Table 3: Sample data & average processing times for Fourier Tag
Decoder ModelSim simulation and the ARTag Decoder timing testbench

VI CONCLUSION

This paper proposed the hardware implementation of a
decoder for a novel barcode-like system called Fourier
Tags. The decoder samples the tag pixels, extracts the
spectral content and reads the inscribed code. The
hardware strategy of a scalable, parametric and modular
design allowed for full control and observability. In turn,
this allowed for pinpointing = the minimal design
specifications.

To achieve reliability, the minimal specifications were
increased by a small margin. The final specifications
describe taking 128 samples and 8 slices from an 8 bit
resolution image. In the scope of the robotic application
for which it is conceived, the Fourier Tag decoder has

proven to be 415 times faster than then current technology.

VIL FUTURE WORK

There are many possibilities in terms of potential
improvements and additions to the hardware Fourier Tag
decoder, although perhaps the most interesting and
valuable addition would be to fulfill the assumptions
made by this decoder project — design and build a Fourier
Tag hardware derector, that can determine potential
marker-looking regions in a given image, and send the
cropped regions to the decoder for analysis.

Other interesting work includes:

e Encoding data in the phase spectrum

s Reducing the number of footprint bits and
increasing the number of data bits

s Positioning the footprint bits at different
locations

+ Using other modulation schemes other than
amplitude modulation to encode data

» Testing the decoder with cropped regions from
photos taken by real cameras

(4

(2]

VIHL REFERENCES

G. Dudek, J. Sattar, A. Xu, “A Visual Language for
Robot Control and Programming: A Human-Interface
Study”, pending acceptance from IEEE/ICRA
International Conference on Robotics and
Automation, Roma, Italy, September 2006.

FFT MegaCore Function User Guide, Altera
Corporation, March 2001.

http://www altera.com/literature/ug/ug_fft.pdf
Accessed November 30th, 2006.

M. Fiala, “ARTag Revision 1: A Fiducial Marker
System using Digital Techniques”, NRC/ERB-1117,
November 2004, 46 pages.

Oppenheim, Alan V., and Willsky, Alan S. Signals
and System — Second Edition. Prentice Hall. 1983.
ISBN 0-13-814757-4.

FPGA Implementation of an Image Scaling
Algorithm

Seth Davenport

Undergraduate,

Dept. of Electrical and Computer Engineering,
McGill University

Abstract-- We present an FPGA implementation of the
bilinear interpelation image scaling algerithm, suitable for
use as a ‘digital zoom’ feature in a still camera.

FPGA solutions are replacing ASIC and embedded
software solutions currently in use due to their flexibility
and falling cost, which makes our implementation
attractive [5]. The bilinear interpolation algorithm was
chosen because preliminary Matlab simulations suggest
that it provides a good balance between image quality and
computational complexity.

The implementation targets image quality at low cost.
Therefore, speed is sacrificed for the sake of small chip
size, in order to place the design on a cheap FPGA.
However, we require sub-second response time for a 3.3
mega pixel image to provide acceptable user experience.
By varying the amount of parailelism in the circuit, we can
target the cheapest FPGA possible while still respecting
this constraint. Image quality was tested by loading
images into a VHDL test bench and saving the scaled
output to a file for review.

Index Terms-- Image Scaling, Digital Zoom, Bilinear
Interpolation, FPGA.

I. INTRODUCTION
A. Background

Many digital still cameras use so-called 'digital zoom'
technology to enhance the range of their lenses. This
consists of an image scaling algorithm which enlarges
the image beyond the capabilities of the lens. In this
way manufacturers provide greater zoom factors with
cheaper optical hardware, at a cost of image quality.

Current industry implementations use either ASIC
technology or embedded microprocessors to provide
limited on-device image processing. However, these
approaches can be too inflexible in the former case and
too expensive in the latter. Our implementation is
intended to address the need for a solution that is both
cheap and extensible.

B. Algorithm Selection
Over the years, several algorithms have been proposed

for the enlargement of digital images, with a
considerable range of image quality and computational

John Dawson

Undergraduate,

Dept. of Electrical and Computer Engineering,
McGill University

complexity. Most of these algorithms were designed
for software; many do not lend themselves to hardware
implementation due to their computational complexity.
Preliminary research led us to choose the bilinear
interpolation algorithm, since it provides reasonable
quality with a minimum of computation.

C. Features

The design presented in this paper is intended to be
extremely small, but also very flexible. It fits on the
smallest of the Spartan IIE series FPGA's, and provides
a continuous zoom range from approximately 1x to
256x. At its output, it can represent a maximum image
size of 4095 by 4095 pixels or 16.7 mega pixels. It
supports a 24-bit RGB colour model, and operates on a
user-defined region of its input image.

D. Image Representation

Our Design works on 24-bit colour images, which are
separated in to red, green, and blue channels eight bits
deep (fig. 1). The same algorithm is applied on all
three channels, which are recombined at the end to
produce the final image.

Figure 1. 4 full-colour image decomposed into red,
green, and blue channels.

E. Bilinear Interpolation

All image scaling algorithms map discrete coordinates
in the output image (i, j} to continuous coordinates in
the output image (x, y). The bilinear interpolation
approach does this by computing a weighted average of

the intensity values of the four input pixels surrounding
the point (x, yJ, based on their distance (see fig. 2). This
leads to formula 1, which gives the channel intensity for
any output pixel (7, jJ in terms of the nearest input
intensities and the scale factor, s, where (7, j) are the
integer coordinates of the output pixel, s is the ratio of
input image to output image size, and p and q are the
distances show in fig. 2.

06, j) == p) =) (i-s || js)
+(p) =) (i-s]/ s))
+(1=p)I(i-s L[j-s)
+(p))(i-s L[/ s)

Equation 1
» P«
(%0, o) I{x. yo)
v
94
I(x0, y1) I(x1, y1)
Input Image Output Image

Figure 2. Mapping of integer output coordinates to
Jractional locations in the input image.

II. DESIGN METHODOLOGY
A. Design Goals

We had a variety of design goals in mind when building
this project.
i. Cost
First and foremost, we needed this design to be cheap.
While design cost remains rather fixed, the per-unit cost
is the biggest factor in mass production. Naturally, we
then decided that we should be able to implement our
design on the smallest and cheapest chip possible. The
line of chips we decided to use is the Xilinx Spartan 2E
series, with the smallest chip being the 2850EFT256.
Xilinx claims that “the new Spartan-1IE devices give
you more I/Os at much lower prices than any competing
FPGA.” [6]
i, Speed

Also of great importance in our design is the speed at
which it runs. Given that our target market is digital
cameras, we anticipate that users will be willing to wait
up to one second before becoming impatient about not
seeing the zoomed image. Thus, we require that our
device be able to produce an image in less than one
second. Given that the standard maximum size image

on a digital camera is 3.3 mega pixels, we make this the
formal image size for the requirement.

B. Test Strategy

The test strategy comprised two broad classes of tests:
image cases, in which several differently structured
images were used as input, and boundary cases, which
tested the system's response to invalid control signals.
Each test case is described below; results are discussed
m section IV,

i. Boundary Test Cases

TLO1: Invalid Scale Factor

The scale factor is represented by its inverse, or the
ratio of input region size to final image size. This
means that a ratio of zero is not allowed, since that
would imply that the output image is infinitely larger
than the input region. This case tests the system's
ability to detect and flag such inputs.

TLO02, TLO3: Inverted Zoom Regions

The zoom region is specified in terms of the coordinates
of its top-left and bottom-right input image coordinates.
However, a user could define the region 'upside down',
by swapping these two values. This case tests the
system's ability to detect and correct such inputs.

TLOS: Invalid Zoom Region

Bilinear interpolation computes output pixels from
blocks of four input pixels. As such, its results are not
defined for zoom regions with either height or width
less than two. The system should be able to detect and
flag such cases.

it. Image Test Cases

TLO6: Greyscale Image

The purpose of this test was to ensure that the system
could handle monochrome grey images. In the colour
model discussed in 1.(D), this situation corresponds to
an image having three identical channels.

TLO7-TL09: Monochrome Red, Green, and Blue
Images

These cases test the system's ability to handle single-
channel images. Such an image only has intensity
values for one of its channels, the other two are set to
zero. In practice, this test also ensures that our design
does not erroneously mix channel data during the
mterpolation process.

TL10, TL11: Minimum-Dimension Zoom Regions
These cases test the response to zoom regions that are
the minimum acceptable height and width, respectively,
as discussed above,

TL12, TL13: Coordinate Overflow

The current implementation represents image
coordinates by 12-bit vectors. This means that an
image can be at most 4095 by 4095 pixels. These two
test cases evaluate the result of a zoom region and scale
factor that would create an image larger than this.

TL14, TL15: Baseline cases

These cases test that the system works under normal
operating conditions, and provide a basis for image
quality comparison.

C. Test Bench Design

One of the more challenging aspects of the project was
finding a way to simulate the design with full image
data. We envision our module as having access to an
external memory unit from which it can fetch input
pixels and to which it can save its results. Thus for
testing purposes, we decided to implement a test bench
capable of simulating such a random access memory
unit. As may be seen in fig. 3, the test bench consists of
a non-synthesizable memory simulator unit and some
Matlab routines for pre- and post-processing of test
bench data.

The memory unit is simulated using the file VO
capabilities of VHDL. Unfortunately, the
std_logic_textio package is extremely limited in
scope, and provides only for sequential access of ASCII
text files. Thus, it was necessary to write Matlab
routines to decompose popular image formats (JPEG,
PNG, etc.) into their RGB channel information and
translate it into files that could be read by VHDL.
Matlab was chosen because it has very powerful image
processing features built-in; this allowed us to focus
more on the VHDL models without being overwhelmed
by the details of image encoding formats.

ad bl cO

VHDL 2jpe
Output
‘memory’

(unsynthesizable)

A

VHDL
Scaler

T

VHDL)
Input -
L ‘memory’

I | (unsynthesizable) -

Figure 3. Schematic depiction of the test bench.

H1. DESIGN DESCRIPTION
A. Data Path
i Overview

As indicated in section “I. D. Image Representation”,
we compute the new intensity of a pixel based on the
intensities of the pixels around it and the relative
distance the new pixel to each of the old pixels. We
could then represent the algorithm as demonstrated in
the following Matlab code:

function [OUT] = myzoom(IMG, x0, y0, x1, y1. Sinv);

Rx = x0;
Ry = y0;
iout=1;
jout=1;

while Rx < x1
Ry = y0;
jout=1;
while Ry <yl

i0 = floor(Rx);
j0 = floor(Ry);
il=10+1;
JjI=jo+1;
p=Rx-1i0;
q=Ry-j0;

OUT(ioutjout,1) = (1-p)*(1-qy*double(IMG(i0,j0,1))

+ p*(1-q)y*double(IMG(i1,j0,1))

+ q*(1-p)*double(IMG(i0,j1,1))

+ prq*double(IMG(il j1,1));
OUT(ioutjout,2) = (1-p)*(1-q)*double{IMG(i0,j0,2))

+ p*(1-q)*double(IMG(i1,j0,2))

+ q*(1-p)y*double(IMG(i0,j1,2))

+ p*q*double(JMG(il,j1,2));
OUT(ioutjout,3) = (I-p)*(1-q)*double(IMG(i0,j0,3))

+ p*(1-g)*double(IMG(i1 j0,3))

+ q*(1-p)y*double(IMG(i0,j1,3))

+ p*q*double(IMG(il j1,3));

Ry = Ry + Sinv;
jout = jout+ 1;
end;
Rx = Rx + Sinv;
iout = iout+ 1;
end;

Figure 4. Matlab code implementing our algorithm.

In order to achieve our goals of both cost and speed, we
need to be very careful in implementing our design.
Each of these goals applies constraints on our design in
the following ways.
e Cost

The need to conserve space means that we have to both
minimize the amount of hardware we use and maximize
the usage of all the hardware involved. To achieve this,
we limit our design to a single ALU unit, in which
intermediate values are fed back into a register file and
re-entered into the ALU for future computations. Also,
given the nature of the computations being done, during
each pixel computation, there is idle time in which we
are waiting for the results of certain multiplications. To

maximize the usage of our hardware, we actually
compute two pixels at a time, interleaving their
computations, as shown with the multiply unit in Figure
5. While it would also appear that computing two pixel
values at once would require twice the number of
registers used to store intermediate values, it can be
noted what with our design, this is not necessary. As
each intermediate value is finished being used, it is
overwritten by the value for the second pixel. In this
way, we are also maximizing the use of the register file,
and thus saving space.

Cycles Multiply Qutput
1-4 Pixel 1
5-9

10-13 Pixel 1

14-17 Pixel 1
1-4 Pixel 2
5-9 Pixel 1

10-13 Pixel 2

14-17 Pixel 2 => Pixel 1
1-4 Pixel 3
5-9 Pixel 2

10-13 Pixel 3

14-17 Pixel 3 => Pixel 2
1-4 Pixel 4
5-9 Pixel 3

10-13 Pixel 4

14-17 . Pixel 4 => Pixel 3
1-4 .
5-9 . Pixel 4

10-13

14-17 => Pixel 4

Figure 5. Overlapping pixel computations

e Speed
The need for speed means that our overall algorithm
must be kept as quick as possible. The design indicated
above requires 16 multiplications, 16 additions, and 4
requests to memory. To cut down on the time required
to complete all these values, the ALU is built so as to be
able to perform both an addition and a multiplication at
the same time. Also, the multiplier is pipelined, to
maximize its throughput. Altogether, including
multiplication delays, the whole process takes 34 clock
cycles to compute. Thus, by interleaving two pixels, we
can produce a pixel every 17 clock cycles. Also of high
importance in determining speed is the width of the
data. The wider the data, the longer each multiplication
will take and the slower the clock rate will have to be to
allow the adder to complete its addition. We decided
upon an eight bit multiplier and a twenty bit adder. The
reasons for this are that the channel intensities are all
eight bits, and by making our fractional values (p. q.
etc.) eight bits, we minimize rounding error, so in a

picture with intensities ranging from 0 to 255, there is
not noticeable difference. Also, a twenty bit adder is
needed to compute output pixel locations. The twenty
bits is divided into 12 bits for integer digits, and eight
bits for the fractional part. This is required, because if
you remember from Figure 2, we need to represent real
locations that have both an integer part that can be as
large as the image and a fractional part that is eight bits.
With twelve integer bits, we can have a maximum
width and height of 4096 pixels. Given that digital
cameras usually follow the standard ratios for picture
sizes, this allows for pictures up to 4096 x 3072, which
corresponds to a 12.5 mega pixel image and is
considerable larger than we assumed the camera was
capable of producing. However, using an eleven bit
adder would limit the output image size to 2048 x 1536,
which corresponds to a 3.14 mega pixel image, which is
smaller than we want.

It should be noted that the method indicated in Figure 4
is not the only way to implement this algorithm. It is
possible to compute each subsequent value of i0 and jO
by doing:

i0 = floor(i/S + x0);
jO = floor(j/S + y0);

Figure 6. Alternate method of determining i0 and j0.

This method requires the use of a divider and requires
the multiplier to have a width of 12 instead of 8, adding
many clock cycles to or method. Thus, we decided not
to use this method.

Altogether, our design ends up being quite simple, and
our overall architecture is portrayed in Figure 7.

ii. Input Checker

The input checker is placed between the system inputs
and the inputs of the main data path. Its function is to
check the input region coordinates and scale factor for
errors, correct them if necessary, and raise the
appropriate output flags.

Corrigible errors concern the definition of the zoom
region. This region is bounded by its top-left and
bottom-right corners, denoted (x, 3,y and (x; v;)
respectively. The design of the data path imposes the
constraints that x,;>x, and y,;>yy; if this is not the case
the input checker swaps the misordered values and
raises a warning flag. The controller is then started and
the image is scaled as normal.

Incorrigible errors involve inputs that have invalid
values, or regions that are too small to be scaled (either
dimension is less that two pixels). In theses cases the
mput checker raises an error flag and does not start the
controller; the image is not zoomed and the hardware
waits for the next scaling request.

B. Control Unit

The control unit for this device is a 20
state machine. One state is the reset
state, two states are used to start up the

M Mtiplier Accumulator image zooming, and the next

-—-sz seventeen states represent each of the

Iouts | = AL seventeen clock cycles used to
—p [produce a pixel. For brevity, we have
B Ihoe not included the state transition

i Adder diagram for the states though it is easy

LS Outputs to see how each state runs

Pigel Green L sequentially. It is important to

Fixel Blue remember here that it actually takes 34

Figare 7. Overail design

Cycles to generate a pixel, but since
there are two pixels being computed at
once, we can overlap the computations
into 17 states. While pixel 1 is

iii. Arithmetic Logic Unit

Pixel intensity values are all members of the set of
natural numbers. This simplified the ALU design
considerably, since negative numbers did not have to be
handled. However, the scale factor and the
interpolation parameters all have fractional parts.
Fortunately, this image processing application does not
require excessive precision; in all cases we tested, the §-
bit fixed point representation chosen was more than
enough. In fact, the test output images and the
corresponding high-precision Matlab-generated
comparison pictures were indistinguishable to the naked
eye, despite the certain presence of rounding and
truncation differences in pixel intensities.

The ALU therefore supports 8-bit fixed point
multiplication, and 20-bit integer addition and
subtraction. This is due to the Differential Digital
Analyser [3] style approach used in the scaling:
multiplications of coordinate values with the scale
factor are replaced by the repeated addition of a
constant fraction to the coordinate values. Since our
coordinates are represented with 12-bit integer and 8-bit
fractional parts, the 20-bit adder is necessary.

In initial implementation of the adder as a ripple adder
was extremely slow; synthesis results suggested that the
circuit would have run at one third the clock speed
required to meet our time constraint. This problem led
us to re-implement the adder using carry-look-ahead
logic. While this led to a significant speed-up, the
adder is still the critical path in our design.

Finally, after recognizing that multiplication would be
the most heavily-used operation in the design, we chose
an eight-stage pipelined multiplier. Fortunately, we had
already implemented one in a previous project [2]
which was re-used without modification.

running steps 1-17, pixel 2 is rumn‘nt%
steps 18-34. Then, when pixel 1 is finished its 17
state, it becomes pixel 2. For a complete diagram of the
states and the operations computed in each state, please
refer to the appendix.

Iv. RESULTS
A. Image Output

Below are the results of selected image output tests
described above. The leftmost image in each set is the
input image to the scaler; the zoomed region is marked
in red. The middle image is the output, and the
rightmost image is a reference image generated by
Matlab.

As can be seen, the Matlab images are identical to those
produced by our system. Image compositing reveals
very slight differences, due to rounding errors and the
lesser precision of our system, but these are so small as
to be invisible to the naked eye.

Figure 8. Test case TLOG6 images. Zoom region: (30,
30) (75. 75). Zoom factor: 2x.

Figure 9. Test case TLO7 images. Zoom region: (30,
30) (75, 75). Zoom factor: 2x.

Figure 10. Test case TLO8 images. Zoom region: (30,
30) (75, 75). Zoom factor: 2x.

Figure 11. Test case TLO9 images. Zoom region. (30,
30) (75, 75). Zoom factor: 2x.

M R
Figure 12. Test case TL10 images. Zoom region: (0, 0)

to (7, 1), zoom factor: 16. Note that the input image
has been shown enlarged for the sake of clarity.

e v
] .
1 1
. v

i

n
Figure 13. Test case TL1 I images. Zoom region: (0, 0)
to (1, 7). Note that the input image has been shown
enlarged for the sake of clarity.

~ T

Figure 14. Test case TL14 images. Zoom region: (0,)
to (511, 511), scale factor 2.5.

B. Boundary Cases

Simulation traces representing several of the boundary
cases shown above may be found below. These show
the various warning flags associated with invalid input
values.

Aoplevelick |
Aopleveix0 (40

Aoplevely0 (40
foplevelix1 [BO
ftoplevely1 160
Ropleveirsing [0 T
Noplevelfstart

ftoplevefidone
!toplevelibadié i
Aoplevei/bad_region
Aopleveliwarn_region

Aopleveliresetn
ievant intefnalSignt
Aopievelzoomstart

Figure 15. Simulation trace for test case TLOI. The
SINV input is invalid. This causes the BAD SINV error
flag to be raised, and prevents the zoom unit from
starting (ZOOMSTART stays low) even though the
START input is set high.

fto plevéizé Ik
ftoplevelx0

~ topleveliy 0

i Roplevelxi
e Aopleveldyt
foplevel/siny {128
ftaplevei/start

Aoplevei/done

}tqpbeve!fbad_smv

ﬂoplé{}élzpad_reg ion
Aoplevelivarn_ teghen
Nfoplevel/resetn | |

j___.___..““;

foplevel/zoomstant

Figure 16. Simulation trace for test case TL02. The y
coordinates for the region specification are inverted.
As a result, the WARN REGION output flag is raised to
show that the error has been corrected. ZOOMSTART
is asserted when the START signal is given, which tells
the scaler to operate as normal on the corrected region
values.

| Zoom inplts|

Aoplevelick

AoplevelxD

« foplevely0 130
o Aoplevelxt 75

A Aoptevelyt 130

Soplevelsiny 1128

Stoplevelstan

| Zoom Outg
Aoplevelidons

foplevelbad_siny

foplevelbad regitn

ftoplevelivarn_region

foplevel/resetn | |

ant internal Sig

Moplevalizoomstarn

Figure 17. Simulations trace for test case TLO5. The
zoom region has been defined to have a height of 0,
which is an incorrigible error. As a result, the
BAD REGION error flag is raised and the scaler is not
started.

V.ANALYSES
A. Size Evaluation

As per our first goal, we required that the design be
small so it can fit on a cheap chip. This goal was
achieved as we fit our design onto our target chip
without any real problems, using a little over half the
chip (see Figure 18).

st ot B o o8 sk o s o ok ok o ok ot ol e ok s st s ok sk ok ot ke ok o sk ke koo ol s e skl ok ok o ok oK o
Device Utilization for 2s50eft256
Sk sl sk ok s ok ok o8 o ok okok o ok o sk ok sk R i e e e s ok e s ot ok ok ok st ok ok o sl ok R OR
Resource Used Avail Utilization
10s 158 178 88.76%
Function Generators 788 1536 51.30%
CLB Slices 394 768 51.30%
Dffs or Latches 650 2070 31.40%
Clock : Frequency
CLK 1 39.0 MHz

Figure 18. Synthesis results

B. Performance Evaluation

Our second goal was high speed. Namely, we required
the ability to compute a 3.3 Mega pixel image in less
than one second. In this respect our design both fails
and passes. The maximum clock rate of our design is
39MHz, which gives us an tmage computing rate of

39MHz lyﬁegaPixelS/
17Hz/ §
/ Pixel

Equation 2. Device speed

While we can see this is lower than our target rate, it
should be noted that our design is scalable. By simply
dividing up the zoomed image into pieces, it is possible
to have several of our units running in parallel. Figure
19 demonstrates the method for connecting the units
together.

t Zaorrn Uinits }

Starton
eycle 1 | Done

Starton
cyele 5 Done

All Done

Starton i
eyele 3 | Done

Starton
evele 13 | Dome

Figure 19. Scaling design to increase speed

While we have not implemented this interconnecting
hardware, it would be incredibly simple to do, needing
only a set of shift registers (to divide the image into
regions — either into 2 pieces or 4 pieces), an adder to
compute output pixel locations, and a simple state
machine to get each unit running 4 clock cycles offset
from each other. The reason this is possible is that each
unit runs independently from each other, with the only
time constraint being that there are memory requests.
Given we have a seventeen clock cycle system, with
four clock cycles required to request the intensities of
the surrounding pixels, we can run up to four units in
parallel, offset so no memory requests overlap, and still
only require that the memory unit be able to read one
memory location at a time.

We can now see how we have both fulfilled this
requirement and not. While it is possible to use several
units in parallel, this new design will not fit on the
smallest chip anymore. However, using a larger chip
may not result in a significant cost increase. A bonus
feature of this design is that due to its modularity, the
user can decide which trade-off they’re willing to make.
One the one hand, they could simply use one unit to
keep cost down, but sacrifice speed, or they can use
more units, increasing the cost of the chip, but allow for
considerably faster computation time.

VL CONLUSIONS

This project allowed us to experiment with designing
hardware for real world situations. We had design
constraints for both size and speed, and while we met
these constraints on a general level, we learnt about the
nature of compromising and the power of a scalable
circuit. With our scalable design, we can allow the user
to decide which of the two constraints is more
important, and act accordingly. It should also be noted
that a VHDL implementation of a bilinear zoom
function is easily done on an FPGA, and there is no
need for ASICs.

VII. REFERENCES

[1] Bovik, Al (Editor) “Handbook of Image and Video
Processing”
©2000 Academic Press, London

[2] Dawson, John, Davenport, Seth. Scalable Pipelined
Fixed-Point Multiplier.
http://www.ece.mcgill.ca/~sdaven/papers/FX_Mult rep
ort.pdf

[3] Hearn, Donald, Baker, M. Pauline. Computer
Graphics, C Version. 2nd Ed. © 1997 Prentice Hall,
New Jersey pp. 87-88.

[4] Hori, B., Bier J. “Effective Fixed Point DSP Design
for Low Cost Consumer Multimedia Applications”

Oct 2003, WWW:
http://www.iapplianceweb.com/story/OEG20030615S0
001

[5] “Spartan-1I Product Overview” Oct 2003 WWW
http://www.nalanda.nitc.ac.in/industry/appnotes/xilinx/
documents/products/spartan2/overview.htm

[6] R. Olay. “Spartan-lIE Family Grows”. Retrieved
Nov 2003 from the World Wide Web

http://www xilinx.com/publications/xcellonline/xcell 4
S/xc_sp2e45.htm

Appendix:

The following table depicts the order of operations required to compute the output intensities of the pixels
we wish to generate. In our unit, we have a separate Multiplier, Adder, and Accumulator so each of these
columns can have operations running concurrently.
operation is added as a separate column too. In our state machine, we can see that for each state, we simply
need to set the signals to allow each of the operations that happen in that cycle. The first 17 cycles in this
diagram represent the first run of the system, where we only have one pixel being worked on. The
following sets of 17 cycles, we see that we have two pixels being computed at once. Although at first, 1t
may seem that we would need 34 states, if you collapse the operations for pixel 1 and pixel 2 for each unit

(multiply, adder, accumulator), you see that there are only 17 unique states.

Notes on abbreviations:

We also need to order pixel intensities, so this

A: (1-p)(1-q) 11: Intensity for pixel (x0, y0)
B: (1-g)p I2: Intensity for pixel (x0, y1)
C:(1-p)q 13: Intensity for pixel (x1, y0)
D:p*q 14: Intensity for pixel (x1, y1)
Rx:x0+p Sinv: Inverse of the scaling factor
Ry:y0+q
Multiply Adder Accumulator Order Intensities
Cycle Pixel 1 Pixel 2 Pixel 1 Pixel 2 Pixel 1 Pixel 2 Pixel 1 Pixel 2
1 p’q (1-p)
2 (-p)q (1-q)
3 (1-a)p jo+1
4 (1-p)t-q) i0+1
3 i4
6 13
7 12
8 11
9 Ry + sinv
10 D4
11 CHg
12 B*i2
13 AT
14 14
15 Chi3
16
17
1 p'q (1-p) D+0
2 {1-p)g (1-q) Acc ©
3 (1-g)p j0+1 Acc B
4 (1-p)(1-q) i0+1 Acc A
5 D4 40 14
6 CH3 13
7 B*i2 12
8 A Acc £ 11
9 Ry + sinv
10
11 Cria

iy
[

i

&

13 D+0

14 Acc C

15 Acc B

16 Acc A

17 A => Pixel 1
1 P'q D+0

2 {1-p)g Acc C

3 (1-gqip Acc B

4 (1-p)1-q) Acc A

5 D4 0+0 14

8 C*13 Acc C 13

7 82 Acc B 12

8 ATt Aot A 11

9

10 D4

11 CH3

12 B*2

13 A1 D+0

14 D4 Acc €

15 C*13 Acc B

16 B*12 Acc A

17 A*td => Pixel 2
1 p’q (1-p) D+0

2 (1-p)g (1-q) Acc

3 (1-gjp j0+1 Acc B

4 (1-p)(1-q) i0+1 Acc A

5 D14 D+0 14
6 C*13 Acc C 13
7 B2 Ace B 12
8 A1 Act A 11
[e] Ry + sinv

10

11

12

13 D+0

14 g Acc C

15 Acc B

16 Acc A

17 => Pixel 3

34

A AR A A A A b A A A A A A A A A A A N B B K N R R e

An Implementation of Tomasulo’s Algorithm

Brian Carrillo and Peter Levine

Abstract--Tomasulo’s algorithm is a technique used in the
design of computer hardware to allow for automatic and
efficient exploitation of floating-point arithmetic units
{Tomasulo, 1967]. The algorithm uses specialized control
hardware to maximize the number of arithmetic instructions
executed in a pipelined architecture. This hardware includes
“reservation stations” to buffer instruction operands and a
“common data bus” to load operands into arithmetic units.
In addition, the algorithm defines a register renaming scheme
to avoid write-after-write (WAW) and write-after-read
(WAR) hazards.

A pipeline to perform floating-point operations using
Tomasulo’s algorithm will be designed. This will include
adders and multipliers as well as reservations stations and the
common data bus. Each module in the pipeline will have its
own control circuitry and will transfer data via the common
data bus. All hardware will be designed and simulated using
VHDL.

Implementation of Tomasulo’s algorithm is interesting and
challenging because it requires the designer to have a
thorough understanding of advanced pipelined architectures
and how these are constructed at the register transfer level.
In addition, since Tomasulo’s algorithm is currently used in
numerous architectures like the PowerPC, it demonstrates
the elegance and efficiency of modern computers.

The design of the pipeline based on Tomasulo’s algorithm
will be evaluated using a set of real assembly instructions.
The type and ordering of these will be chosen to demonstrate
that the pipeline operates correctly and that the number of
wasted clock cycles is minimized.

Index Terms—Tomasulo’s algorithm, pipelining, floating-
point, register renaming, scoreboarding.

I. INTRODUCTION

When IBM built its System/360 Model 91 computer in
1967, the designers found that simple serial execution of
floating-point instructions took too long to complete and
fast execution times using universal floating-point
execution units were difficult to achieve. As a result, an
engineer named Robert Tomasulo devised a method of
executing floating-point instructions concurrently using
multiple instruction units. This scheme, which is known
as Tomasulo’s algorithm, was able to overcome the long
floating-point delays and memory accesses associated with
the Model 91. Today, Tomasulo’s algorithm is used in
numerous computer architectures such as the PowerPC and
MIPS.

Both authors are Computer Engineering students at McGill University,
Montreal, Quebec.

Tomasula’s algorithm uses special hardware buffers called
“reservation stations” and a “common data bus” (CDB) o
implement scoreboarding and register renaming schemes.
These eliminate write-after-read (WAR) and write-after-
write (WAW) hazards during instruction execution. The
avoidance of these hazards reduces the number of stall
cycles executed by the processor, effectively decreasing
execution time.

This report explains an implementation of a pipelined
computer architecture that is based on Tomasulo’s
algorithm. A brief description of the algorithm is
presented followed by detailed descriptions of each
functional unit in the pipeline. Simulations of the
individual units are shown and explained in order to verify
that each operates correctly. Next, the components are
combined to form the entire pipeline and its operation
veritied. Sections discussing how design issues were
resolved, design improvements, and the results of logic
synthesis of the pipeline are also included.

It must be noted that the arithmetic execution units
incorporated in this design perform integer operations
only. Although Tomasulo’s algorithm was originally
intended to speed up pipelines that contain floating-point
execution units, the out-of-order execution as well as the
scoreboarding and register renaming schemes used in the
algorithm can still be demonstrated. In addition, the
implementation of floating-point execution units adds a
great deal of unnecessary complexity to the design.

All functional units were designed using VHDL.
Simulations were performed using Altera’s MAX+plus II
synthesis and simulation software.

II. THE ALGORITHM
Tomasulo’s Algorithm is composed of three main steps:

1. Issue: An instruction is fetched from the instruction
queue and an empty reservation station is found.
After this, data is routed to the appropriate reservation
station. If an empty reservation station cannot be
found, the instruction queue is stalled.

[

Execute: The operation stored in the reservation
station is performed by the appropriate execution unit
if the operands are available. If the latter condition is
not satisfied, the reservation station monitors the CDB
for the required operands.

Write-Back: Results from execution units are written
to the CDB and subsequently latched by reservation
stations and registers.

Lad

T TR e W W W W W W W W W Q@ W W N S S NP W s

HI. INSTRUCTION SET ARCHITECTURE

The pipeline based on Tomasulo’s algorithm was designed
to operate using a register-register instruction set
architecture (ISA). All instructions are 36 bits in length
and are composed of a 4-bit opcode, 16-bit address for
operand A (also known as the “sink” of the instruction),
and 16-bit address for operand B (also known as the
“source™ of the instruction). Table | shows the opcode for
each instruction.

Opcode Instruction
0000 Add
0001 Subtract
0010 Multiply
0011 Divide
0100 Load
0101 Store

Table 1: Opcode Definitions
Examples of instructions using this architecture are:

Load A, B
Store A, B
Add A, B

In the Load instruction, operand A specifies the address of
the register used to store the data from the memory
location specified by operand B. In the Store instruction,
data found in register A is stored in the memory location
specified by operand B. When the Add instruction is
issued, the data in registers A and B are added and the sum
is stored in sink register A.

IV. FUNCTIONAL UNITS

This section describes how each functional unit in the
pipeline was designed to operate. A figure showing how
all blocks are interconnected to form the entire pipeline is
included in Appendix A.

A. Decoder

Upon receiving an instruction from the instruction queue,
the decoder examines the specified opcode. It then checks
the busy lines of the reservation stations associated with
the execution unit that will perform the specified
instruction operation. If the decoder finds a station that is
not busy, it sets its operand lines with the register
addresses of operands A and B. The decoder also notifies
the floating-point register unit as to which reservation
station the data associated with the operands must be sent.
This information is latched by the floating-point register
unit and is subsequently used to retrieve the data at the
appropriate addresses. In addition, the opcode itself is

[o]

2

routed to the reservation station and floating-point register
unit by the decoder.

In the event that all the reservation stations associated with
a particular execution unit are busy, and the next
instruction in the queue requires use of that unit, the
decoder stalls the instruction queue. During the first clock
cycle of a stall, the decoder stores the next instruction from
the queue and only broadcasts the required operation and
register addresses when one of the busy signals from the
group of reservation stations is deasserted.

B. Floating-Point Register Unit

The floating-point register unit is composed of sixteen, 5-
bit tag registers and the same number of 16-bit data
registers. Its functions are to provide the reservation
stations with valid data and latch data from the CDB when
the arithmetic units have completed calculating the results
of an instruction.

When the register unit receives the reservation station and
operand addresses from the decoder, it stores the
reservation station address in a register associated with the
sink operand. This storage unit is known as a “tag
register” and the address of the reservation station it holds
is called a “tag”. At the same time, the register unit sends
the tags associated with operands A and B, as well as the
data stored at these register locations, to the appropriate
reservation station. The tags sent to the reservation station
can be set to either of the values described below
depending upon the state of the pipeline:

1. The tag will be the address of the reservation station
that will produce a result to be written into the
registers. In this case, the reservation station will
ignore the data sent from the floating-point register
unit.

2. The tag will be a special value to indicate that the data
currently being sent to the reservation station from the
register are valid. When this occurs, the reservation
station should latch the data and indicate that it is
ready to be processed by the appropriate execution
unit.

C. Reservation Station

The reservation station performs the following operations
in the order shown below:

1. The station monitors the decoder’s address line and
operator output. It latches the opcode and sets its busy
bit when the address from the decoder matches its
own.

The station then checks the address lines of the
registers. When this address matches that of the
reservation station, the station latches both the rags
and data for the source and sink operands.

wwwwwWWWWWVUWﬂ’WWWWWWWWWWWWWW

3. The reservation station compares the CDB address
lines with the stored tags. If there is a match, the
station stores the data from the CDB data lines into the
appropriate data register. The reservation station then
replaces the tag with a special bit pattern indicating
that the data is valid.

4. When both operands in the reservation station contain
valid data (i.e., both tags contain valid bit patterns),
the station asserts its ready line.

5. The reservation station then clears its busy bit when
its associated execution unit completes the operation.

D. Common Data Bus (CDB)

The CDB receives data from the arithmetic units and
carries data to the floating-point register unit. It also
accepts address tags from the execution units and brings
them to the reservation stations.

The CDB is composed of an arbiter and a multiplexer
which grants the bus to any execution unit that needs to
write to the bus. The arbitration scheme is such that the
load/store unit has the highest priority over the bus,
multiply/divide has the second highest, and the
add/subtract unit has the lowest priority.

E. Execution Units

Two arithmetic units and a single load/store unit have been
implemented in the pipeline. The first arithmetic unit
performs addition and subtraction while the second
performs multiplication and division. Each unit has three
reservation stations associated with it.

When a reservation station has received the necessary data
to perform its operation, the station notifies the appropriate
execution unit by asserting its ready line. Once the
execution unit sees this, it latches the data from the
reservation station and determines the result. Once granted
permission from the arbiter, the execution unit places the
result of the instruction and the address of the reservation
station from which the instruction was received on the
CDB.

V. IMPLEMENTATION OF KEY FEATURES OF TOMASULO’S
ALGORITHM

A. Out-of-Order Execution

In order to exploit instruction-level parallelism (ILP),
multiple execution units must be installed in the pipeline.
However, because of the inherent latencies in different
instructions. sequential instructions may not necessarily
complete in the order in which they were issued. This out-
of-order execution of instructions can cause such data
hazards as WAR and WAW.

3

Out-of-order execution was implemented by creating
multiple execution units that perform different operations.
Since these units are independent of one another, they can
execute instructions concurrently.

B. Scoreboarding

Scoreboarding is a technique that allows instructions o be
executed out of order when no structural hazards are
present in a pipeline. In Tomasulo’s algorithm, the
decoder and floating-point register unit provide the
scoreboarding feature. During an instruction issue, the
decoder and floating-point registers broadcast a reservation
station address and data to all reservation stations. Each
station compares its own address with the broadcasted
address and then decides whether or not it should store the
data.

C. Register Renaming

Perhaps the most interesting feature of Tomasulo’s
algorithm is its register renaming capabilities. In a register
renaming scheme, register names are dynamically
allocated in order to avoid data hazards. In this
implementation of Tomasulo’s algorithm, registers are
renamed when the floating-point register unit issues data to
the reservation stations. If the data in the floating-point
registers are not valid (i.e., the registers are waiting for the
completion of other instructions), the unit will issue a tag
indicating which reservation station holds the instruction
needed to compute the result. The process of assigning
tags to register addresses implements register renaming in
the pipeline.

V1. RESOLUTION OF DESIGN ISSUES

This section describes some of the decisions that were
made in order to solve various design problems.

A. Decoder Instruction Issuing

When the decoder receives an instruction from the
instruction queue, it issues the operands to the appropriate
reservation station and sends the address of this station to
the floating-point register unit. However, the floating-
point register unit is unable to latch the issued instruction
from the decoder and output the appropriate data on the
same clock cycle. As a result, more than one clock cycle
is needed to issue a single instruction. Since this delay is
expensive, a new scheme was developed.

In this new scheme, the decoder issues a new instruction
on every clock cycle. The floating-point register unit
latches the address of the reservation station to which the
decoder sent the instruction. On the next clock cycle,
while the decoder is issuing a new instruction, the register
unit sends the data to the reservation stations. Although

TTTTTT W WA NG GGG WA W e e

this design causes one extra clock cycle delay, it allows
for the issuing of instructions to be pipelined.

B. Reservation Station Busy Response

There is a timing issue involving the busy line of a
reservation station that has just received an instruction
from the decoder. Since it takes one clock cycle for the
busy signal of a reservation station to propagate back to
the decoder, the decoder could send another instruction to
the same reservation station if designed improperly.
Therefore, the decoder has been designed to always store
the address of the reservation station to which it has just
sent an instruction. This ensures that new information is
never sent to a busy reservation station.

C. Stall Resolutions

When a stall occurs, the decoder cannot notify the
instruction queue on the same clock cycle. As a result,
instructions continue to be sent to the decoder from the
queue. If this problem is not corrected, a single
instruction would be lost on the first clock cycle of every
stall because the decoder has no place to route this
instruction. This is unacceptable.

In order to resolve this issue, the decoder was designed to
store the instruction sent to it by the queue during the first
clock cycle of a stall. Once the structural hazard has been
resolved, the decoder issues the stored instruction and
ceases stalling the instruction queue. As a result, no clock
cycles are wasted and no instructions are lost during stalls.

D. Tag Encoding Schemes

Since there is a great deal of data circulating in the pipeline
and it is the tags that determine which functional unit
should latch the data, certain tag bit patterns are required to
indicate that the data is invalid and should be ignored. At
one point in the design of the pipeline, the bit pattern
‘11111 was used to indicate this. Unfortunately, this
same pattern was used to indicate that the data stored in the
reservation stations was valid and that the data in the
floating-point registers was correct and not waiting on any
other reservation stations.

In order to resolve this, three different bit patterns were
used to differentiate between erroneous data, valid data in
the reservation stations, and valid data in the floating-point
registers. The bit patterns selected were ‘111117, ‘11110°,
and ‘11100,

E. Execution Speed of Arithmetic Units

During initial simulations of the arithmetic units, it was
found that results were computed in less than a single
clock cycle. This excessive speed prevents the pipeline
from taking full advantage of Tomasulo’s algorithm. This
issue was overcome by adding an artificial delay o each

4

execution unit. These delays were set to match those
measured in the IBM System 360/Model 91 computer.

VII. SIMULATION RESULTS

This section shows simulations of the decoder, floating-
point register unit, and reservation station. In addition, a
sirulation showing the operation of the entire pipeline is
included in Appendix B.

A. Decoder
Wame \alug 00ns 2000ns 3000ns 4000ns 5000ns
g reset 0 }

2= clock 1 ﬁerLmerﬁ_ﬂwﬂbmJquUi

0 1

HF F of 1 Yol vy

e (S

o

i J
e [of F iof Y F Yofry
Hic joof F 1c Ymo¥mimf F Yooyor}

8000 000
HO 0
SFtusyald [BOD w0 oot 00

Figure 1: Simulation of decoder.

Figure I shows the operation of the decoder. After the
‘reset’ line is deasserted, the bit pattern for an add
operation is specified by ‘Instruction{35..32]" at 180 ns.
On the next clock cycle, the decoder sets its ‘op_out’ line
with the bit pattern for the add operation and specifies that
the operator should be sent to the first reservation station
(‘00%). On the next clock cycle, the decoder issues a
subtract instruction (‘017). Since the first reservation
station is busy due to the previous add operation, the
decoder sends the current operator to reservation station
01

The third operation is another subtract. This is sent to
reservation station ‘02°. The next operation is an add.
This causes the decoder to stall the instruction queue since
there are no available reservation stations associated with
the add/subtract arithmetic unit. At 380 ns, one of the
reservation stations becomes free. The decoder becomes
aware of this on the next clock cycle. After this event, the
decoder drops the stall line and issues the saved add
instruction. It then continues to issue instructions received
from the instruction queue.

B. Floating-Point Register Unit

On the first clock edge in Figure 2, after the reset signal is
deasserted, the floating-point registers receive an add
instruction from the decoder. This is indicated as ‘00 on
the “OPER_IN’ lines to the registers. The operands to
which this operation is to be applied are ‘03 and ‘08’, as
shown on the 'INST_OPRND_A’ and ‘INST_OPRND_B’
lines. Since the add operation involves a write-back to the
registers, "TAG3', the address of the operand A register, is

TTT T T W W OW W W T W W W W W W W W W W S Y e e W

set to ‘00" indicating that the result of the Add operation
will be produced by reservation station 0.

Bions s Wi0 Al Mils Ml Iim
O O O B M O
(o { mos § o § o B | aw
IR s HE- R N
{2 71 g HIETD O
@ om o fom fowm o fowm [o®m o f u
L e T o @ {0 T w { % fw
FFFF
FREF X_Forr Y Feee K65 ferer
5 I o ¥ ¢ T w v [€ Ym
i€ HERG £ ¥
[oGy [
FFFF T FFFF
0 0 iF] 03 7 5
&7 BATA o ooe { FPEF =T FFFE
o TAGY WO L@ { I © 1 o
&7 DRI mm@: FFFF
& A% LRI i { [} L m
o AT HO0; o § FREE

Figure 2: Floating-point register unit simulation

The next instruction occurs at 100 ns. This is a multiply
operation involving operands at addresses ‘00° and *02°.
Since the multiply operation is being sent to reservation
station 3, ‘TAGO’ is set to ‘03".

At time 180 ns, when the result produced by reservation
station 3 comes back on the CDB, the floating-point
registers latch this data (‘2534”).

Further inspection of the waveform indicates that an
instruction can be processed by the floating-point registers

on every clock cycle.

C. Reservation Station

Nams; vatuer | 1000ns 200ns 00.0ns 400.0ns 500
S 2 5 e e N
i raset x [

a reseiBusy X ft-—“j
257 ntemnai_address] HXX m
B opn HX [} TXMT“‘V,\)]
B s decod | H ¥ m IF w Y i
5 aner_reg Hxt 17 (o | F {o iF
5 agh H W CF | [{m § 0
5 datah H 000 o H OFF 4]
HXX £ {F] o [
H X wm LT | 7] oz W
i ic (w {
H0s o0 e { o
% | f
i busy ¥ i i
Y ResDaah [0 7] I WFF T ow v
&P FesDual K it ¥ oOFF ¥ [iiir]
& ResOpla HY] H i]

57 tagh i HX [1E I HEERD a2 1 FF

&7 tagh int H 7] iE i i | G
Figure 3: Simulation of reservation station.

Figure 3 shows a simulation of reservation station ‘00°. At
time 80 ns, the decoder broadcasts a subtract instruction
(*01") on the ‘op_in" lines of all reservation stations and
sets the address line ‘addr_decod’ to *00°. The reservation
station shown compares its internal address with the
‘addr_decod’ line and because they match, the operation is
stored in the reservation station. The station then asserts
its busy signal on the next clock cycle.

J

The floating-point register unit broadcasts the address of
the reservation station shown on the ‘addr_reg’ line as well
as the tags and data associated with both instruction
operands on the ‘tagA’, ‘tagB’, ‘dataA’, and ‘dataB’ lines.
Since the tag lines are set to ‘1F’, the reservation station
knows that the data sent directly from the floating-point
registers (i.e., ‘FFO0") is valid. The reservation station
asserts its ready line on the next clock cycle, indicating
that its operands are ready to be processed by its associated
arithmetic unit. At time 200 ns, the ‘resetBusy’ line is
asserted which indicates that the arithmetic unit has
performed the specified operation and has written back to
the CDB.

At time 320 ns, the reservation station receives another add
instruction. However, this time, the data associated with
operand A is not available in the floating-point registers.
Rather, the result will come from the operation stored in
reservation station 2. This is indicated by ‘02° on the
‘tagA’ line. The reservation station must therefore latch
the data from the CDB after the data is computed. Note
that data for operand B can be taken directly from the
floating-point registers because the tagB line has been set
to ‘1F.

At 400 ns, the CDB address lines (‘CDB_addr_I") are set
to ‘02’ indicating that the operation stored in reservation
station 2 has completed and its result has been placed on
the CDB. When reservation station 0 sees this, it stores the
data from the CDB and asserts its ‘ready’ line.

D. Entire Pipeline

Appendix B shows the operation of the entire pipeline with
all components connected. The instructions executed are
as follows:

. MULT FO0, F1
. ADD F2, F2

. SUB F3, F4

. ADD F5, F5

. SUB F4, F4
ADD F3, FO
ADD F3, F3

. ADD F3, F3

. ADD F3, F3

D 0O SN L B L) B e

The first data hazard in this instruction mix is between
mstructions 1 and 6. This is 2 WAR hazard because the
ADD instruction could read the data in register FO before
the MULT instruction has had time to write to it. The
subsequent data hazards are a series of WAW hazards. For
example, due to the out-of-order execution inherent in the
pipeline, there is a possibility that instruction 7 will write
to register F3 before instruction 6 has the opportunity to do
S0.

Instructions 7 to 9 are a worst-case scenario for an out-of-
order execution pipeline. This is because WAR and WAW
hazards appear repeatedly and with the same register. In

TTOTTOTEOTEOTE NN T WEON W W W G N S R N N W N W D i N N W NI W N W e N

order to overcome these hazards, the register renaming
scheme incorporated in Tomasulo’s algorithm must be
exploited. As the simulation shows, these instructions are
completed successfully.

VII IMPROVEMENTS
A. Number of Reservation Stations Per Execution Unit

In order to reduce the number of stalls issued by the
decoder, more reservation stations could be added to each
arithmetic unit. This would allow more instructions of the
same type to be issued without causing structural hazards.
The main problem with this improvement, however, is that
the complexity of the pipeline is increased and the addition
of more reservation stations might not necessarily improve
performance.

B. Number of Execution Units

Increasing the number of arithmetic units would allow for
more instruction-level parallelism because operations of
the same type could be executed concurrently. Although
this addition almost guarantees better performance from
the pipeline, the amount of hardware is greatly increased.

C. Arbitration Scheme

The current arbitration scheme used for the CDB is that of
a simple algorithm which gives more priority to slower
execution units and less priority to faster ones. A more
advanced arbitration scheme could be implemented such as
“first-come-first-serve”. This might have the effect of
increasing throughput on the CDB.

D. Number of Common Data Buses

Currently, all functional units are attached to a single data
bus. This causes a bottleneck in the pipeline because all
execution units must wait their turn before being able to
write back to registers. If the number of data buses were
increased such that each execution unit has its own bus,
then no contention for the bus would occur and a write-
back could happen immediately. The major drawback to
increasing the number of data buses is that the hardware
complexity of the reservation stations and floating-point
registers, which monitor the buses, is increased.

E. Decoder Issuing Scheme

When multiple execution units of the same type are
available in the pipeline, an advanced decoder issuing
scheme can distribute instructions uniformly between the
units. Implementing a more advanced scheme will
improve the amount of imstruction-level parallelism
because instructions will not be waiting idle in reservation
stations.

IX. LOGIC SYNTHESIS AND TIMING

The pipeline based on Tomasulo’s algorithm was
implemented in VHDL. In order to facilitate reduced
compilation times, a pipeline consisting of only two
execution units and three reservation stations per execution
unit was synthesized and simulated at a time. Therefore,
the pipeline either contained one of the arithmetic units
and the load/store unit or two arithmetic units.

Prior to synthesis of the VHDL code, it was estimated that
approximately 750 flip-flops would be required by the
design. This value was obtained by adding the number of
bits that each functional unit in the pipeline must store and
the number of outputs from each unit. This value also
assumed that only two execution units and a total of six
reservation stations were present in the pipeline. Synthesis
using Altera’s MAX+plus II software indicated that the
design required a total of 829 flip-flops and 3986 logic
cells. In addition, the design was successfully routed to an
Altera FLEX10KI100EBC356-1 field-programmable gate
array (FPGA).

Timing analysis revealed that the longest delay path in the
pipeline was 9.8 ns and that this occurred from the clock to
CDB multiplexer outputs. Therefore, the highest
frequency at which the pipeline can be operated is
approximately 100 MHz.

X. CONCLUSION

In conclusion, a pipeline based on Tomasulo’s algorithm
was successfully implemented. As the simulations show,
the pipeline was able to overcome WAR and WAW data
hazards in a sequence of instructions. In addition, the
pipeline was able to issue one instruction on every clock
cycle. This pipeline based on Tomasulo’s algorithm can
easily be incorporated into a larger pipeline which would
perform all other necessary operations, such as branching
and jumping, to make an entire CPU.

XI. REFERENCES

Hennessy, J. L. and D. A. Patterson [1996]. Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Francisco.

Hwang, K. [1993]. Advanced Computer Architecture: Parallelism,
Scalability, Programmability, McGraw-Hill, New York.

Tomasulo, R. M. [1967]. “An efficient algorthm for exploiting multiple
arithmetic units”, IBM J. Research and Development 11:1 (January),
25-33.

Digital Audio Amplification Using Sigma Delta
Modulation and Bit flipping

Jakub Dudek, David Lamb, and Frédérick Chalifoux

Abstract— This project will implement the front end of a digital
audio power amplifier. It will consist of a SPDIF (CD data)
decoder, an interpolating moving average filter, a 5th order
digital to analogue sigma delta modulator with bit-flipping.
The SPDIF decoder reads 32 bit words from a stereo CD and
outputs 20 bit words into the moving average oversampling
filter. The filter oversamples the data 64 times and sends it to
the sigma delta modulator. The modulator encodes the
original signal using only 1 bit, given that its input is properly
oversampled. The pulse repetition frequency (PRF) in the
output bit stream is reduced using a method called bit-

flipping.

True digital amplification is a relatively new technology
and there are very few models available on the market.
Digital amplifiers present several advantages over analogue
amplifiers like energy conversion. They attain power
efficiency levels of 90% and thus require smaller power
supplies and no heat sinks. The realization of a working
prototype is well within current market technologies.

Each module will be tested separately in Altera MaxPlusIl
using vector files that represent relevant input waveform. An
output stage for the amplifier will also be simulated in Matlab,
in order to perform different analysis (FFT, SNR) on the
signals generated by the front end.

Index Terms — Digital power amplification, one-bit DAC,
power DAC, bit-flipping, SPDIF, AES3, sigma-delta
modulator, PRF

I. INTRODUCTION

The theory behind digital audio power amplifiers has
been developed several years ago. However, only
recent developments in digital signal processing technology
have allowed the hardware implementation of high quality
amplifiers. The main idea behind digital amplification is the
conversion of a pulse-code-modulated (PCM) signal
directly to an analogue signal without the need of
intermediate analogue amplification. It follows that the
heart of a digital amplifier resides in the conversion of the
PCM signal to an oversampled single-bit stream that
controls a power switch. This high voltage version of the
one-bit pulse stream is then low-pass filtered in order to

produce an amplified version of the original analogue
signal across the loudspeakers.

The one-bit conversion process presented here is known
as sigma-delta conversion. Despite their high linearity,
sigma delta modulators are not well suited for power
switching because of their high output average pulse
repetition frequency (PRF). To overcome this problem, a
technique called bit-flipping was discussed in [1] and is
implemented here.

In this paper, we present a brief overview of digital
amplification using bit-flipping sigma-delta modulators
along with design requirements. The implementation was
done in VHDL and synthesized for an Altera FPGA.

II. DESIGN METHODOLOGY

A top down design approach was used to decompose the
overall system into low-level and smaller modules. The
reference paper [1] only provided general guidelines on the
design and implementation so thorough Matlab simulations
were performed in order to go from the general
specifications to the design to be implemented.

Figure 1 shows a block diagram of the front end of a bit-
flipping sigma-delta modulating power amplifier. The input
consists of the digital output of a CD player and the output
is the one-bit modulated signal that would be used to
control a power switch at the output stage of the amplifier.
Following the high-level abstraction of the system, an
outline of the different blocks is given below:

1) Flexible decoder for the digital output of a CD

player

2) 64 times moving average interpolation filter

3) 5t order sigma-delta modulator

4) Bit-flipping controller unit

64 times
Input SPDIF ;
e »! Interpolating
DECODER filter
Output Bit-flipping 5th order sigma
B B o]
controller delta modulator

Fig. 1. Block diagram of the front end of a digital audio amplifier
Fig. 1. Block diagram of the front end of the digital audio
amplifier

Each block will be designed, implemented and tested
separately in MaxPlusII. The final design entity will consist
of those four components connected together.

HI. THEORY AND DESIGN

A. SPDIF Decoder

Music is digitally recorded on a CD at a sampling
frequency of 44.1kHz. Every sample is then quantized,
(mapped to a word of given length). Typical CD players
perform digital to analogue conversion before outputting
the signal. In the past years, many commercial units have
incorporated a digital out output to allow external digital to
analogue conversion. The digital out outputs the binary
words encoded during original signal sampling. The format
of this output is either one of two standards: SPDIF or
AES3. These two formats are almost identical and differ
only in the control portion of their code. AES3 contains
more information about the recording details (clock
precision) and is mostly used in professional recording
environments. SPDIF is widely used in mass-market
applications, such as in CD players and computer sound
cards.

The SPDIF format is a three-layer structure: bit layer,
frame layer and block layer. The bit layer defines how the
bits are encoded. Each data bit is coded with two code bits
so that the polarity of the SPDIF signal changes with every
data bit as can be seen in figure 1. This scheme is known as
bi-phase coding (or Manchester coding) and it allows for a
DC-free recording. A ‘1’ is encoded either as “01” or “10”
and a ‘0’ is encoded either as “00” or “11”. Figure 2
explains the polarity change between data bits,

data }<_
bit
]

code bits 9.1 0.0 1.01.4 0.0l1.0l1:0
data bits 0 1 o G 1 1

Fig. 2. Bi-phase u}dmg: every data bit is represented using two code bits

[[5

The Frame layer indicates the architecture of the signal.

There is one frame per sampling period, meaning that the
frame clock runs at f& (sampling frequency). A frame
consists of a 32-bit subframe per channel thus requiring a
data clock of 64 fs. A subframe (shown in figure 3) is
defined as follows:

1) Bits 0 to 3 are known as the preamble and indicate the
beginning of a new block. They also specify the
subframe’s channel.

2) Bits 4 to 7 are set to zero unless 24-bit resolution is
needed.

3} Bits 8 to 27 correspond to the audio sample itself. If
the samples are 16bits wide as in a CD, the first four bits
are set zero.

4) Bits 29 and 30 are the user and channel status
respectively.

3) Bit 31 is used as a parity bit.

bitcount e
034 78 783 ’sfxck
{Peamtle] Ax JiSB mimdosmiewsd WSBVIUCIP] '
~ 77
prearmble = 1100 / /
1 if preambie = 1100
\ ttoreamale H"’O
W
v i
I Channel
Preamble SampleA ||SampleB User Status
Register Register ||Register Register Register

Fig. 3. SPDIF subframe

The channel status bit is extracted from 192 consecutive
frames to form a 192-bit word. The same is done with the
user bit. The processing of these two 192-bit words is the
main difference between AES3 and SPDIF. In AES3, the
user bits have no standard definition (for example they can
be used for labelling in asynchronous formats) whereas in
SPDIF, they contain the CD subcode. The subcode
contains information about track length and limits. The
channel status bits contain useful information about the
system. For example channel status bits encode
information regarding the nature of the signal and copyright
information.

B. Interpolating Filter

Data coming from the SPDIF decoder has to be
oversampled so that the sigma delta modulator produces an
accurate representation of the input signal. It has been
shown in [2] that an oversampling rate of 64 produces good
results in audio applications.

C. Sigma Delta Modulation

The sigma delta modulator is a circuit that translates a
binary number into a pulse train whose duty cycle (the
fraction of time that the signal is high) is proportional to the

binary input. This pulse train can then be converted into an
analog signal by averaging it over time with a low-pass
filter.

A first-order (single integration) sigma-delta modulation
encoder is shown in figure 4. The input to the quantizer is
the integral of the difference between the input and the
quantized output. The difference between the input signal
and the output signal approaches zero and the average value
of the clocked output tracks the input. There is little dc
error in the output signal; the frequency spectrum of the
quantizing error rises with increasing frequency (6
dB/octave). The integrator forms a lowpass filter on the
difference signal thus providing low frequency feedback
around the quantizer. This feedback results in a reduction
of quantization noise at low (in-band) frequencies. Using a
linear model of the sigma delta modulator, the noise and
signal transfer functions are found to be

STF(z) = (T%)NTF(Z) - [TT;}UJ
Z zZ

In practice, the in-band noise floor level is not
satisfactory with first-order SDM. Further noise shaping
must be achieved with higher-order (multiple integrations
with feedback and feed forward) sigma-delta modulation
coders

Jilegator .
- L
XJ+\ :\/*‘\ f i a E ¥
N [N ! f i ;
! oA ;
i i . |
H : z i
| SR == |
o ‘
[| ;
[or

Fig. 4. First order sigma de}t;a modulator with one integrator

The 1-bit signal can be amplified using a class D output
stage, also called a MOSFET bridge or a power switch.
Such an output stage never operates in the linear region
except during switching time and thus draw very little
current, allowing efficiency levels unattainable in
traditional class A B or AB output stage.

D. Bit Flipping

The sigma-delta modulator presented earlier requires an
oversampling rate of 64 in order to achieve high resolution
in the audio band. Unfortunately, at this clock rate, the
average output pulse repetition frequency (PRF) of the
modulator is too high for efficient power switching in the
output stage. For 44.1 KHz and 64 times oversampling, a
typical range of PRF is 1.2Mhz, too high for efficient
power conversion. Furthermore, since the PRF is dependant
on the input amplitude, its negative effect on the power
switch will be perceived as distortion.

A technique called bit flipping can be used to lower and
regulate the PRF. The concept of bit flipping is quite
simple: the quantizer output is inverted in a way that the 1-
bit signal transition rate is lowered. A control algorithm
regulates the PRF by first monitoring a change in the

previous and current output. It then decides whether the
current bit should be inverted according to the following
two constraints:

/) PRF constraint (N): Bit flipping should occur
whenever the average PRF exceeds a target PRF f; The
average PRF can be measured by counting the number of
transitions P that occurred in the last B bits and is given by

(2]

When (P/B) exceeds a target value of (I/N), a flip is
required in the quantizer output. A value of N=2 yields an
acceptable PRF of 370 kHz.

2) Alternation Constraint (4): To prevent the buildup of
a dc error when switching, the alternation constraint
regulates the number of positive (0->1) and negative (1 =20)
flips that occur. For example, an alternation factor (A)of 2
signifies that no more than two consecutive positive or
negative flips can occur. This reduces the effect of
constraint number 1 on PRF reduction.

IV. IMPLEMENTATION

A. SPDIF

The implementation of the SPDIF/AES3 decoder is
comprised of two sections: a bi-phase decoder for the Bit
layer and a frame and block decoder.

The bi-phase decoder was implemented using only a 2-bit
counter and 2-bit shift register as can be seen in figure 5.
The 2-bit counter is used as a clock divider since there is
two code bits for every data bit. At every two clock cycles,
the two code bits received are XOR'ed to form a data bit. A
simple Finite State Machine (FSM) with two states ensures
that the data transition occurs on the rising edge of the
clock.

i

128Fs 2.bit — Afler 2 Clock| 3 64Fs
snit qfcaes.femg) xon [G bt
Register [>from SR’ 7

|
|

Fig. 5. Biphase decoder block diagram

The frame and block decoder uses a similar approach. In
this case, a modulo-32 counter is used for the bit count and
frame cycle while a modulo-192 counter is used for the
frame count and block cycle. Five shift registers buffer the
Preamble (4 bit), Left_channel (24 bits), Right_channel (24
bits), User (192 bits) and Channel Status (192 bits) inputs.
A FSM is used in conjunction with the bit count to enable
registers at different times in order to separate the incoming
data properly. Each portion of the signal has it’s own state,
meaning that data from the Preamble state is ready in the
Sample state, where Ready Preamble is asserted.

The audio samples are declared ready in the Parity state
of the Right channel subframe for synchronization
purposes. When recording, the audio signals are sampled
simultaneously from the left and right channel, thus
decoding should output simultaneously.

B. Interpolating Filter

The interpolating filter has two sections: the difference
section and the summation section. Figure 6 shows a block
diagram of the interpolation filter. The difference section
computes the difference between the current and previous
input and sends it to the summation section. The surumation
section adds the difference to the previous output to form a
new output. The summation section is clocked 64 times
faster than the difference section, which effectively creates
64 outputs for 1 input. The output signal’s amplitude has
now been scaled by a factor of 64 and thus needs to be
rescaled. Every output value is right shifted 6 times to
implement division by 64.

zd
1Fs \j/ ¥ &M L Outpu

All the data paths are 30-bit wide to insure that there is no
overflow in computations. As the maximum difference
calculated by the subtractor is 2**~1 and the modulator
scales the input by a factor of 64, the difference offers a
maximum output of 2*°-1.

SRR
tal 64 Fs
]
|
Z»t

24 bits 30 bits

Fig. 6. Interpolating filter block diagram

C. Sigma Delta Modulation

A fifth order sigma delta modulator was implemented as
shown in figure 7. More details on this topology can be
found in [1] and [2]. The shifters in front of the integrators
and in the local feedback paths ensure that the signals do
not grow too rapidly and destabilize the modulator. Further
precautions to avoid unstable behavior will be addressed.

. "9 ’“';.;f
+ Gaint jntegratel?

Gaind integrates

Fig. 7. 5® order sigma delta modulator

The implementation of the integrator blocks is shown in
figure 8. Each integrator consists of a 24-bit adder and a
24-bit flip-flop connected in a feedback topology. 24-bit
data paths are used throughout the design to avoid frequent
overflow. Each integrator contains logic that resets the state
of the loop filter H(z) if its internal state is larger than a
value T. High order modulator can become unstable and
this instability is characterized by high signal levels and a
failure to code the input signal properly, Whenever the

internal signal in the first integrator is greater than the
threshold value T, the internal state of the whole filter is
reset. Threshold values for each integrator have been found
using Matlab.

The first integrator also contains hardware for the bit
flipping control. Figure 12 shows the first integrator. The
need for this extra adder will be discussed the bit-flipping
section.

D. Bit Flipping

The overall block diagram of a Bit-flipping sigma-delta
modulator is shown in figure 8. The bit-flipping is
implemented in combinational logic and consists of four
parts:

1) PRF monitor (figure 9): The PRF monitor was
implemented as a counter (count N) that counts down at
every sample when no change in output is detected and
counts up 2 steps when a transition occurs. When the
counter output is positive, the PRF monitor requests a flip.
This translates into flip N being asserted.

2) Alternation control (figure 10): The alternation
controller was implemented as a counter (count A) that
counts up whenever a positive flip (0->1) occurs and
counts down whenever a negative flip (1->0) occurs. The
current quantizer output (Qo) is used in conjunction with
the flip signal to determine the sign of the flip.

3) Flip acknowledge (figure 11): Whenever the PRF
monitor requests a flip, the value of the alternation counter
is checked along with the sign of the current quantizer
output.

4) Flipping unit (figure 12): The flip output of the bit-
tlipping controller controls a multiplexer that selects
between the actual quantizer output and its inverse. For
causality reasons, the bit flipping must occur outside the
feedback loop of the modulator. Compensation must be
made in the loop filter to take into account the change in
quantizer output. Only the first integrator needs to be
modified as shown in figure 13.

fiip PRF and
alternation

controfier
X Hez) — a ~1 7
: Qo

Fig. 8. Sigma delta modulator with bit flipping

Qo
Qp - Msb of Count N
) controls flip_ N
Court M| (PRF flip request
N (32} line|

Fig. 9. PRF Monitor

3 tRe ke thal couns

e numbey of
COABETLLIE POSHien o7

Count A fegaAe YL
e 1 Viview betwern -2 g 1

Fig. 10. Alternation Control

Flip_N
Qo]
ry Flip controf fine.
Count_a > -A Flip high. the
adizet Output is
Flip_N it
Not {Qo)]

et

Fig. 11. Flip acknowledge

Fig. 12. Flipping integrator

V. TESTING METHODOLOGY

Testing has been performed on the level of individual
modules and complete system. Each module has been
tested separately to initially isolate any potential problem in
order to minimize debugging time during system testing.
The overall system was then tested and the results are
presented in the following section.

A. Module testing

1) SPDIF decoder: A vector file was used as input for the
testing. A CD outputs 64 bit frames serially at a rate of
44.1 KHz. This amounts to a clock rate of nearly 6MHz for
bi-phase coding. To reduce the amount of data to simulate,
the bi-phase decoder was tested separately. Testing
involved creating a random input and verifying the output
by inspection.

A MATLAB routine was written to simulate the frame
and block structure of the SPDIF/AES signals. Audio
samples are generated using sinusoidal signals sampled at
44.1kHz. The results are then written to a vector file that
can be imported into MaxPlusII. This input file can then be
decoded and the outputs are inspected in the waveform
analyzer.

2) Interpolating filter: The testing of the interpolation
filter consists of taking the output of the SPDIF/AES
decoder and feeding it to the filter. This provides a realistic
input for the filter. In addition, other tests were performed
to check the interpolation between two very close numbers,

between two very distant numbers and finally between
positive and negative numbers.

3) Sigma delta modulator: Thorough tests have been
conducted on the sigma delta modulator with emphasis on
accuracy of data coding and stability. The modulator has
been sine wave tested. A sine wave was input to the
MaxPlusIl waveform editor by hard coding the 16-bit data
values at the input. The sine wave frequency was 2757Hz
sampled at 44.1kHz and oversampled 64 times. The output
was exported to matlab and low pass filtered to obtain the
analog sine wave. Both signals are shown in figure 13.
The signal-to-noise-ratio (SNR) was calculated and a Fast
Fourier Transform was performed to examine the output’s
frequency content. The FFT is shown in figure 17. The
modulator was also run under instability conditions to test
the internal reset of the integrators.

I

ig. 13. The top scope shows the wave input to MaxPlusIl. The middle
scope shows the MaxPlusll modulated signal imported to matlab. The
bottom scope shows the analog output after it has been filtered.

4) Bit flipping unit: Testing of the bit-flipping unit was
done by comparing the change in PRF introduced. PRF was
calculated by counting the number of output signal
transitions within a given simulation time.

B. Module testing

The overall system was tested with a vector file that
encapsulates a stereo SPDIF encoded signal. Each channel
consisted of a sine wave. A complete waveform output is
shown in figure 14 with intermediate outputs at every stage.

VI. ANALYSIS OF RESULTS AND PERFORMANCE

The output waveform in figure 16 shows the output of
the system simulation. From the stereo serial input bit
streamn, the preamble, user bits and channel bits are
extracted. Both channels are also extracted in
Right SPDIF and Left SPDIF. The oversampled output
from the filter is shown in Left INTER and righ INTER.
Left MOD and Right MOD are the two modulated bit
flipped output. left flip and Right flipB are asserted
whenever the bit-flipping unit flips the output to lower the
PRF. The Lesft_reset/NT and RIGHT resetINT signals are
asserted whenever an integrator resets itself internally to
prevent instability.

The PRF and stability problems were successfully

addressed in the design. Figure 15 shows the output of the
modulator with and without internal resetting of integrators.
As can be seen, the signal failed to be coded properly.

Fig. 15. The top wave is the output when the internal reset of the
amplifier was enabled. The bottom wave, the internal reset was disabled,
the modulator became unstable

Figure 17 and 18 show the FFT of the output signal
without and with bit flipping respectively. It can be seen
that bit flipping increased the noise floor by about 10 dB. It
is stated in [5] that the high PRF characteristics of sigma
delta modulators result in an intolerance to mismatch rise
and fall times in output switching stage resulting In
distortion and noise intermodulation which are far more
problematic than the bit flipping noise.

w0 15 e Lo
Frequency (kHz

Fig. 17. FFT of the output signal without bit flipping. Noise floor is at
-30dB.

el

l;ia gni udt,ﬁ a8

B & 3884

(] 5 S T o 15 20
: Frame: 2 .. Frequancy (kHz)
Fig. 18. FFT of the output signal with bit flipping. Noise floor is at

-30dB.

The number of transitions with and without bit-flipping
was 20713 and 13519 in 20ms of simulation. The average
PRF was effectively reduced by 35% bringing it from
1.035MHz to 675kHz.

Name: _Value: L
Ty
- serial N | 1

L
|| U

-9 Left_Mod 1

-c@ Right_Mod 1

T LT T

33 Preamble 81100

m“g_r.'mm

@ User H 0O o
S5 Channel H0O g

: 4414208
5 Lef_INTER
&% Right_SPDIF } 19549 ﬁ 19403 1 19256
% Right_INTER @23040?(g27pope X 14118€ 3270016
< Lef_Fip | /m A .!k X16735778 § 16735606 ¥ 16735633
-€9 Right_Flip [N | f.”l_'_l-UL " T

~4# Left_resetiNT
=g Right_resetiNT

Lo S v T e B o |

T T .

T~

fig. 16. Output of full simulation: serial_IN is the serial input stream feeding the SPDIF decoder. Preamble, User and Channel are specific code portions of the
data words. Left_SPDIF and Right_SPDIF are the 16 bit music samples. Left_INTER and Right_INTER are the stereo outputs of the interpolating filter. The

zoom shows many Interpolated values for 1 audio sample (actual number is 64

). Left MOD and Right_MOD are the sigma delta modulating output for each

channel. Finally, the reset and flip for each channel are acknowledged when bit flipping occurs or when internal reset occurs.

The FFT (figure 17) of our output signals show
frequency peaks at the frequencies of the inputs. The signal
was thus well transmitted. The noise floor however is very
high, in the range of ~30dB. This is far from good enough
for a commercial unit. The noise floor can be reduced by
implementing proper coefficient scaling in the transfer
function H(z) of the sigma delta modulator. Details about
finding optimal coefficients can be found in [2]. Time
constraints has not allowed for the development of an
optimal transfer function H(z).

The objectives were met in a satisfactory manner. Even
though this digital amplifier is not suited for commercial
production, every necessary block that constitute it has
been implemented and is functional. The modular design
approach used makes the digital amplifier simple to
upgrade and debug in the future. This design is a first step
of a work in progress that will be improved in the future. It
is shown in [1] that SNR of the order of 120dB are
attainable. The extra noise inferred from bit flipping would
be negligible at such high SNR values even though it is not
with the current design.

The following table summarizes the resource usage for
the implementation of a stereo front end of digital amplifier

Total input pins 4
Total output pins used 59
Total logic cells used 1795

Maximum clock rate 5.81Mhz

Device Family Flex 10k

Device EPF10K40R(C240-3

Table 1. Hardware usage for modular exponentiation module

I. DESIGN CHALLENGES

Challenges were encountered mainly in the design part
of the project. Documentation and relevant sources of
information had to be extensively researched and authors of
certain papers had to be contacted. Digital audio amplifier
is a new branch of the audio field and is not very well
documented. High-level designs are available but specific
design had to be constructed from scratch using matlab.

Some time had to be spent figuring out the theoretical
results that would have to be obtained. These were not
readily found and many Matlab simulations were run to
obtain theoretical results.

Understanding the S/PDIF protocol was an ambitious
task as relevant sources were hard to find. Once this was
accomplished, implementation was pretty straightforward.
MATLAB proved very helpful in generating test benches
for the decoder (12288 entries per blocks, 2822400 per
second).

The testing for stability of the sigma delta modulator
required creating instability conditions within a few periods
of a sine wave. The output had to become unstable within
only a few periods because simulating the sigma delta
modulator takes up a lot of time for only a few
milliseconds. The instability had to occur early so that the
internal resetting could be shown to work properly.

Overall testing of the sigma delta modulator called for
the design of a scheme for importing MaxPluslI output into
matlab. This required creation of a table file and text file
manipulation to make the file Matlab readable.

The combinational nature of the bit- flipping unit made
precise timing a strong requirement. Every input had to be
analyzed and decision had to be taken concemning the
flipping of the current output within a clock cycle. No
design for the combinational logic itself was found and thus
had to be made from scratch.

I1. CONCLUSION

An implementation of a digital audio amplifier in FPGA
has been presented. The design has been shown to be a
working unit but time constraints have not allowed it to
attain performance suited for commercial production. The
modularity of the design will allow for further development
in a near future and every block will be improved until the
specifications meet current technology standards.
Specifically, software will be used to design an optimal
modulator transfer function H(z).

APPENDIX
VHDL code included in the appendix

ACKNOWLEDGMENT

Team LCD would like to thank Jessie Gabe for helping
the editing of the paper.

REFERENCES

[1] A.J. Magrath, L.G. Clark and M.B. Sandler. A sigma-delta digital
audio power amplifier — Design and FPGA implementation.
Department of Electronic and Electrical Engineering King’s College
London, June 1997.

[2] A.J. Magrath. Algorithms and Architectures for High Resolution
Sigma-Delta Converters. Phd thesis, King’s College, University of
London, October 1996.

[3] James C. Candy, Gabor C. Temes, Oversampling Delta-Sigma Daia
Converters, Theory, Design and Simulation. New York: IEEE
PRESS, 1992.

{41 A.J. Magrath and M.B. Sandler. Digital Power Amplification using
Sigma Delta Modulation and Bit Flipping. Journal of the Audio
Engineering Society, June 1997.

[5] A.J. Magrath and M.B. Sandier. Digital-domain Dithering of Sigma
Delta Modulators using Bit-Flipping. Journal of the Audio
Engineering Society, June 1997,

{6] L. Risho. FPGA based 32 times oversampling 8® order sigma-delta
audio DAC. Presented at the 96® Convention of the Audio
Engineering Society, Amsterdam, Preprint 3808, February 1994

[7] John Watkinson, The art of digital audio, third edition, Oxford: Focal
Press 2001.

[8] Leong, Choon Haw. New architectures for High-Order Bandpass
Sigma-Delta Modulation in Digital-To-Analog Converters. Master
thesis, McGill University, June 1998.

[9] Jim Thompson. (1995, June 8). Care and Feeding of the one bit
digital to analog converter. {Online]. Available:
htip://www.ee.washington.edu/conselec/
CE/kuhn/onebit/primer.htm

[10] P. Craven, “Toward the 24-bit DAC: Novel Noise-Shaping
Topologies Incorporationg Correction for the Nonlinearity in a
PWM Output Stage,” J. Audio Eng. Soc., vol. 41, pp. 291-313
(1993 May)

[11] Ken C. Pohlmann, Principles of Digital Audio, McGraw-Hill, 2000

Pipelined Route Optimization Hardware For The Traveling
Salesperson Problem:
A Genetic Algorithm Approach

Benjamin Kuo, Angelique Mannella

Abstract—The primary goal of this project is to determine an
optimal solution of the Traveling Salesperson Problem by
using a hardware implementation. The design is based on a
Genetic Algorithm coded in VHDL, and later simulated on an
Altera Flex10K FPGA. The nature of the Traveling
Salesperson Problem makes it difficult to adhere to a true
Genetic Algorithm, thus several components of the Genetic
Algorithm were slightly modified. In an attempt to optimize
the performance of the hardware implementation, this design
is pipelined. The success of the final design is evaluated by
whether the solution converges, and by how well it maps into
the Altera Flex]10K FPGA.

The Traveling Salesperson Problem is representative of many
routing problems found in telecommunication networks. The
design will provide an alternative to software solutions, and
will provide a foundation for which more complex routing
hardware, such as that found in real-time communication
networks, can be optimized.

Index terms——traveling salesperson problem, genetic
algorithm, VHDL, FPGA

1. INTRODUCTION

The Traveling Salesperson Problem is one of a class of
complex problems known as NP-complete problems. Non-
deterministic Polynomial (NP) problems are decision or
recognition problems. The decision within the Traveling
Salesman Problem is, 'Is there a tour of length less than LY
Formally, the Traveling Salesperson Problem (TSP) can be
described as follows:

There exists a set of n nodes (cities), and a distance function

D:VxV —-> %R,
that gives the travel distance between any given pair of
nodes. The goal is to find a tour of the nodes v, ...,v, such
that
s~1
> D(vi,vi+1)+ D(vn,v1)

i=1
is minimized. This is the shortest trip that visits every city
exactly once. Figure [-A illustrates the idea of the TSP.

Beniamin Kuo is an undergraduate Computer Engineering student at
MeGilt University, Canada.

Angeligue Mannella is an undergraduate Computer Engineering at McGill
University, Canada.

City 0 (Start & End)
,(/ S

.
-

Figure I-A: TSP: Which city sequence is the shortest tour?

Solving this problem for a small number of cities is not
complex. However, as cities are added to the tour, the
search space grows factorially, and the computational
complexity rapidly increases.

This problem has many important applications, such as
route determination in transportation or telecommunication
networks, thus a method of solving this problem quickly and
with minimal resources is desired. One approach to solving
this problem is to use a Genetic Algorithm.

Genetic Algorithms simulate the way nature uses evolution.
A GA (Genetic Algorithm) contains an initial population of
solutions called chromosomes. Members of this population
produce new ‘children’ solutions, which are hopefully better
solutions than the parents. This is called crossover.
Mutation occurs randomly, and slightly alters the newly
formed solutions. It is possible that the mutated solution
will vield a better solution, that crossover could not have
produced. The newly formed solutions are then subjected to
a fitness test. The fitness test determines how well the
solutions solve the problem at hand. In this investigation,
the fitness of a solution determines whether or not the
solution will be written back into the population. Only the
fittest two solutions from the two parents and two offspring
will survive.

Traditionally GA’s have been implemented in software.
However, within this paper we investigate a hardware
implementation, with the hope that its advantages and
usefulness will be evident.

II. OVERVIEW OF THE ENTIRE DESIGN

Several parameters are needed in the implementation a GA
to solve the TSP. Firstly, solutions must be encoded in
‘chromosomes’. Permutation encoding is used, as this
allows every chromosome to be a sequence of cities,
representing a tour. Eight cities (city 0 through city 7) are
used within a tour, and each city is encoded using 4 bits (an
extra bit is introduced for debugging purposes). Therefore,
each chromosome is a 32 bit sequence, representing the
order in which the Traveling Salesperson will visit the §
cities. Also, the distance between all pairs of cities in the
tour must be determined. The city-to-city distance is
encoded in 8§ bits, and stored in a ROM module, thus
eliminating the need to calculate the distance.

Another necessary parameter is the population size. A
population of 64 solutions is used. GA events that need to
be defined include; how solutions will be selected for
crossover, how crossover and mutation will occur, and how
solutions will be chosen for entry into the population.
Within this design, all events of the GA are pipelined. Each
event within the GA is implemented as a module, and
register banks exist between the modules. The population is
stored in a RAM module, crossover and mutation occur in
the Crossover and Mutation Module, solution fitness is
tested in the Fitness Module, and chromosome removal and
entry into the population occur in the Chromosome
Selection and Write Back Module. Figure II-A below
illustrates the entire design.

32x64 ROM 8X3
POFQL ATIDN PATH LENGTHS

R - e
——CHROMSOME ™ VIR & | FITNESS
SHECTIONE | \orani H MODULE| PPELINEBUFFER

0 b poged e .

L&ATCH

FITNESS ENABLE

% CONTROLLER
|

Figure II-A: Schematic of All Modules

1. MAIN CONTROLLER

The controller contains a finite state machine, which
operates after a global reset signal is set. The finite state
machine controls the enable, fimess enable, and latch
signals. It sets the enable and fitness enable signals to *1” at
specified times, allowing the modules to begin operation.
When it sets the latch signal to ‘17, signals produced by a
module are stored in a register bank. The Controller consists
of 3 states: IDLE, PROCESSING and FIN state.

IDLE: The state is reset to IDLE when reset is *1°. The
subreset signal is then asserted to reset all the modules. In
this state, once all module control signals are set to 0 and

the. internal counter is reset to 0, a transition to the
PROCESSING state occurs.

PROCESSING: The counter increments every clock cycle,
and when it reaches 48 (the slowest stage has finished), it
will proceed to the FIN state. Otherwise it will stay in the
current state and increment the counter.

FIN: When this state is reached, all stages in the pipeline
have finished and their outputs have stabilized. The state
machine then issues the latch signal to the pipeline buffers.
This causes them to update their contents with values from
the stage before. The state machine will then continue to
IDLE state.

V. POPULATION OF SOLUTIONS

The initial population of 64 chromosomes was randomly
generated using a program coded in C (see Appendix). The
population changes with each iteration of the GA. Three
components contribute to maintaining the Population of
Solutions: A Random Number Generator, A RAM Module,
and A Chromosome Selection & Write Back Module.

A. Random Number Generation

The random number generator plays a very important role
within this design. Two randomly selected solutions are
chosen from the population to generate two new solutions.
Mutations also occur randomly within the newly generated
solutions. Within this design, a pseudo-random number
generator is used.

The random number generator is designed to output an § bit
random number. A seed is required to start the generator.
The seed can be selected from the random number output,
after it has been initialized. The random number generator
block consists of simple bit manipulations that rotate the
upper 3 bits to the left and lower 5 bits to the right. To
increase the randomness, a counter is used to trigger a bit
flip during rotation at several different count values. This
bit flip occurs in both the upper part and lower parts of the
bit string. This implementation is shown in Figure IV-A.

Shift Shift
pEe "
Aol s s 67
{ Pt |
i ressbmesey §
L [Blip | | Flip | S/
N Bdad P

i i | et
! i

; Connter

Figure IV-A: Base Random Number Generator Block

The pseudo-random number generator further increases the
degree of randomness by using linear feedback. The
feedback system makes use of the numbers generated, as it
routes them back to the seed input. The block diagram is
shown in Figure IV-B.

]

Cutput

Base random number generator |
¥

7

T — .
| Controller Update
Seed

1

New Seed

Figure IV-B: Linear Feedback Pseudo-Random Num. Gen.

At times, an enable bit will be set by the controller, that will
update the seed, thereby generating a new set of random
numbers.

B. RAM Module

The RAM Module contains the population of 64 32-bit
chromosomes. This block is constructed using an Altera
LPM module, which make use of the memory portion of the
FPGA chip. The RAM is initialized with a memory
initialization file (.mif files). For simulation purposes, a
simple .mif file generator was written in C (see Appendix).
This program generates random tours consisting of all eight
cities. To improve access time, the RAM uses
asynchronous read and write.

C. Chromosome Selection and Write Back Module

The Chromosome Selection and Write Back Module is
enabled by the central controller. It receives random
numbers from the Random Number Generator, and uses
these numbers to select the addresses of two chromosomes
from the population. This module also receives two
chromosomes from the Fitness Module, and the addresses
into which it will write these chromosomes. This Module
consists of a random number filter, and a 14 state Finite
State Machine.

The random number filter continually inputs random
numbers into the module from the Random Number
Generator, but prevents the same random number from
appearing twice within three consecutive accesses. This
filter is explained in more detail in section VI,

The Finite State Machine includes an abundance of states,
however, many of these states are wait states. These extra
states are essential, as they ensure the accuracy of reads and
writes to and from the RAM module. The fourteen states are
described below. Figure IV-C below illustrates the Finite
State Machine.

IDLE: This is the initial state. If the enable line from the
controller is set to ‘1 a state changes to RDATA_1.
RDATA 1. In this state the address line to the RAM
module is set to a random number received from the
Random Number Filter,

RDATA 2. The data stored in the address set in state
RDATA 1 is retrieved, and the address line to the RAM is
reset with another random number.

READ FIN: The data stored in the address set in state
RDATA 2 is retrieved. If the variable ‘count’ is not 3
count is incremented. Count’s value determines whether a
write will occur or not. If it is less than 3, the pipeline has
not been initially filled.

WDATA 1: This is the first write state. Count is 3 when
this state is entered. The first address to write, and the first
data to write are set on the Ram address and data lines.

W EN, W EN2: The write enable line for the RAM
module is setto “1°.

W DIS: This state sets the write enable line to *0".
WDATA 2: This is the second write state. It functions the
same way as WDATA 1.

WRITE FIN: This state sets the write enable line to 0° for
the second time.

WAITIL, WAIT2. WAIT3, WAIT4: All these states hold the
past state for one extra clock cycle.

l RESET="1"
er WR’TE ¥, ?__.(IDLE e RDAT:\ 1

¢ R - _ ENABLE-1

inEm/é - o :

e -

(warrs)
o, gOLNT =3 o
{w_p1s: } RDATA 2
4 3’

i | e

SWAITT

v . P [

{WAITS,
\QVDATA i TREAD FIN o

7 COUNT~ 3

Figure IV-C: FSM of Chrm. Sel and Write Bck Module

D. Simulation of the Population of Solutions
The following diagrams illustrate the functioning of the
Chromosome Selection and Write Back Module, the
Random Number Generator, and the RAM Module.

|tk N EEEREEnl L O rrrn L
& rnds 0] L Z‘{”“@ @{_’“‘J ERER LMW: EBE x Y
E_ Ram ot 0] b [T & 1 {
B data o e300 B ATH CEE {oowe § o K] wsm
B ot addnss 0] ¥z i T)

3 g ¢ R S } FaEH
-y ame 5 983 5 { %
£ va_dnat3t 0 fiopits T i ST

Figure IV-E: Sim. of Population of Solutions — Part A

The random numbers 62 and 25 are used as RAM
addresses. A short time after address 62 is set, the
chromosome 37210564 is obtained from RAM. The
contents of addresses 62 and 25, along with these addresses
are then set on the Module’s output mes

o | DUTUTDUILT

2 fum et 0] T g Ju] &
£ wrte go_ani3t 3] HBOTE ETE } w05 |

R Z)
LEC I | a9

) %

;4 Q}gg@%{ EHRE

Figure IV-F: Sim of Population of Solutions - Part B

Lo

The addresses 32 and 35 and the chromosomes 26741503
and 26740153 are set to the inputs of the Population
Selection Module. At a later point in time, the addresses are
placed on the RAM address line, and the chromosomes are
written into the RAM.

V. CROSSOVER AND MUTATION

Due to the nature of the TSP, genuine crossover cannot be
performed, as it may cause duplicate cities within the tour,
or the absence of certain cities. Genuine mutation cannot
occur either, as flipping a random bit may introduce a city
that is not in the tour. The method used for crossover and
mutation is based on the original crossover and mutation
algorithms, but is slightly modified in order to prevent
‘nonsense’ solutions from entering the chromosome
population.

To produce a child solution, the following steps are
followed within the crossover and mutation module.

1. Select the primary parent, and latch it to the
gene_to_cross buffer. Latch also the secondary parent
to the process buffer.

2. Mutate the gene to_cross buffer.

3. Scan and latch genes that do not exist in the
gene to_cross buffer, from the process buffer.

A. Crossover

In this design, the first half of each parent chromosome is
duplicated in one child. The second half of each child
consists of the remaining genes in the order they appear in
the second parent. Figure V-A illustrates how the genes are
selected for a child from the two parents. The primary
parent provides a child with the first half of its genes, while
the secondary parent provides the remaining genes.

tl23]a[s]s]7]
1718l

Primary Parent LQ i

Secondary
Parent

Child

Figure V-A: Crossover selection for a child solution

The Crossover module selects which parent will be used as
the primary gene provider with a switch signal line. As
dynamic access to places in latched buffers cannot be
achieved in FPGA programming, two internal shift-registers
are used for the crossover processes; Figure V-B illustrates
the crossover process adopted in this design.

At the beginning of each crossover process, a shift-register
latches the secondary parent according to the switch signal,
while the second shift-register latches the first half of the
primary parent. The content of the first shifi-register is then
compared with all genes on the second shift-register in
order to determine which genes are already present in the
child. This is accomplished with a loop that loops for the

same number of times as the number of genes. During each
iteration, the shift-register shifts out one gene, which places
the next gene to scan at the place where the comparison will
take place. When the comparison indicates that the current
gene is not from the first shift-register (first half of the
primary parent), the gene is latched and appended to the
second shift-register. At the end of the iteration, the second
shift-register contains the first half of the primary parent and
the remaining genes in the order of appearance from the
secondary parent.

Secoudary
Pareat

Primary
Parent
Child

1% Dreration
3 fteration

3% Iteration

6% Jreration

Figure V-B: Crossover process

B. Mutation

The mutation process randomly chooses a gene found in the
first half of the primary parent, and places it in the last gene
position in the primary parent. A three bit random factor is
provided from the random number generator. This value is
used to determine which gene will be mutated.

As mentioned before, two shift-registers are used in the
crossover process. Mutation is implemented in a way that
modifies the shift-register process, (first register above)
before the crossovers actually takes place. The mutation
logic can be best understood by examine Figure V-C shown
below:

Mutation Ciene to Mutate Cutput
Factor

=001
“010™
o111

. ¢ 1
Others L' o i slo 1 1] o S
J—

Figure V-C: Mutation logic

The Mutation logic prepares a gene to_cross buffer that
represents the mutated substitution for the first haif of the
parent gene. As one can see in Figure V-C, the mutation
factor selects which parts of the gene to_cross buffer will
be mutated. The mutation logic replaces the gene position
indicated by the mutation factor, with the first gene. The
non-mutation logic simply shifts the genes by one position
to the right. The genes that are used in the crossover
process are the last four genes in the gene_to_cross buffer.

C. Simulation of the Crossover and Mutation Module

To verify the crossover and mutation method described
above, the following figure shows the result of a crossover
operation on both a normal crossover and crossover with
mutation,

i ins m;és Mhes 400w H0Ok B00w 700ns Blns S00s

Kaing Valye H

AENMON | HOIZHST : [

&# 040 | wETME : ST

& aro woss] oiEe o § amis f (=l 1 STUE
e gmabile : g j’_} | §_.E i

e swich | 3] |

&BF mutas_faie 5 HE 1 t

Figure V-D: Simulation of Crossover and Mut. Module

VI FITNESS EVALUATION

The Fitness Evaluation Module receives two parent and two
child chromosomes from the Crossover and Mutation
Module, and determines which two chromosomes represent
the shortest tour. The two chromosomes with the shortest
tour are written back into the population, and their tour
lengths are written to a RAM module. The contents of the
RAM module are used for testing purposes. This module is
enabled by the Fitness Enable line set by the controller.
The following diagram illustrates the main components of
the Fitness Evaluation Module.

COUNTER

JnerCrd
Cous Wl - St .
%3 {iuhd
o Slavmnsor ¥ l
Chreanosonmel
.

Chvosorsd | #301 MUY cii}gutf}:?gﬁ 154 DEMUS
Shaveoanteed

* H 7

r’ﬂi ﬁ Cj_fup FLOPS
RoM R

Tour Distanoes

COMPARATOR

sy

CUTPUT
MU

L p s
Bestvo yy 4%
chromowmes

Beat tey o distances
{sar Crbng Blodses

Figure VI-A: Fitness Evaluation Module

The following steps illustrate the functioning of the entire
module.

1. Two parents and two children chromosomes are the
input to the mulitplexer. The Counter sets the input
multiplexer’s select line, and sends a ‘start’ signal to
the Path Length Calculator.

The Path Length Calculator accesses the ROM with
each set of sequential genes in the chromosome. The
genes are used to determine which address holds the
distance between the two adjacent genes (cities). A
running sum is kept of the total tour length. It is
incremented after each ROM access.

Once the Path Length Calculator has calculated the
total tour length, it sends an ‘increment count’ signal to
the counter. This signal is used to enable the

I

L

demultiplexer. The count value is used both as the

select signal for the demultiplexer, and as an enable for

a flip flop that stores the tour length.

The above three steps are repeated four times in total.

Once for each chromosome. Once all four tour lengths

have been latched into four flip flops, the values are

fed into a comparator. The comparator determines the
two shortest tour lengths.

5. A signal from the comparator is used to select the two
chromosomes with shortest tour lengths. These
chromosomes will be latched into a pipeline buffer,
and later written back into the population.

6. For testing purposes, the tour lengths of the two best
chromosomes are written into a RAM module. See
section VIII for a more detailed description of the
testing procedure.

B

The main components of the fitness module are the ROM
Module, the Counter Module, the Path Length Calculator
Module, the Comparator, and the Output Multiplexer
Module.

A. ROM Module

A ROM table is used to store the distances between the
cities. This table is represented by an 8 x 8 matrix. This
allows the distances between the cities to be easily
determined. The address in which the distance between two
cities is stored is determined from the starting city and
destination city numbers. Each cell in the matrix is an 8 bit
number, varying from 0 to 256.

The ROM block is constructed using the Altera LPM
modules, which makes use of the memory portion of the
FPGA chip. Since the LPM ROM is formatted as a one
dimensional array of words, calculation is required to map
the (X ,Y) coordinates into the displacement of the memory.
This is done by the function:

Displacement = X + 8Y

The ROM is initialized with a memory initialization file
(mif files). For simulation purposes, a simple .mif file
generator was written in C (see Appendix). This program
generates random values for the matrix. To improve access
time, the ROM uses an asynchronous read which allows the
ROM access to be completed within one clock cycle

B. Counter Module

The counter module is a 3 state Finite State Machine, based
on a 3 bit up-counter. The count value is used to select
which chromosome will be inputted into the Path Length
Calculator Module, which demultiplexer line the tour length
will be routed to, and which flip flop will be enabled to
latch the tour length. The three states of the FSM include
IDLE, PROCESSING, DONE. Figure VI-B illustrates the
FSM.

Ly

IDLE: If the enable line has been set to ‘1° by the controller,
then a signal telling the Path Length Calculator Module to
start is set to “1°.

PROCESSING: If the increment count line is set to ‘1” by
the Path Length Calculator Module, the count value is
incremented. If the count has been incremented the next
state is IDLE, otherwise the state is PROCESSING.

DONE: The count is reset to its initial value.

|
5
Heser=1"

= 1
-
.,’/ ILE
A
AN
Y ~
L Enable—1°
yd \\

s Trer Coung =17
< o
\
{ pone] PROCESSING
,,/ Iror Counk =41> \\\//

arad covd=t100°

Figure VI-B: FSM for Counter Module

C. Path Length Calculator Module

This module receives a chromosome from the multiplexer,
accesses the ROM module to retrieve the path lengths of
each pair of adjacent cities, and outputs the path length to
the demultiplexer. It also sets the signal ‘increment count’
to ‘1° when it has finished calculating a tour length. This
signal tells the Counter Module when to increment its count.

The Path Length Calculator Module is a 10 state Finite
State Machine, consisting of the states described below.
Figure V-C below illustrates the FSM.

IDLE: In this state, the increment count line connected to
the counter is set to ‘0°, and the sum is reset to ‘0’. If the
start signal from the counter is set to ‘1°, then the input is
ready. The most significant four bits are set to ROM
addressA and the second most significant four bits are set to
ROM addressB. The state then changes to SEGMENTI. If
the start signal is set to ‘0’°, the ROM addresses are not set,
and the state remains IDLE

SEGMENT]1: The path length for the first two adjacent
cities is retrieved from the ROM. The address lines are set
to the second and third most significant four bits in the
chromosome. The state then changes to SEGMENTZ.

SEGMENT?2: The running sum is set to the path length
retrieved in the previous state, plus the current value of the
sum. The path length is then retrieved from ROM, and the
address lines are set to the third and four most significant
four bits in the chromosome.

SEGMENT3 through SEGMENTS: These states function
the same way as SEGMENT2. Which four bit number the
address lines are set to, changes in every state. In
SEGMENTS, the least significant 4 bits are set to ROM
address 1 and the most significant 4 bits are set to ROM
address2.

CALC LEN: The total tour length is calculated, the
‘increment count’ line is set, and the state changes to IDLE.

4 ™
R -~ Seonet_Cabemt 3
-~ =
/// e \\0\’/ e ~
» e
e * \
7 ~ { smomamen |
(\\(“AIL‘:WYYN—) N A
I d o -
P
™~
iiﬁm&&m;
' /
\\\\ Y
77
(asommencen)
. / J— .
— s .
[smcaveENTs N
L s ys |
\

Figure VI-C: FSM of the Path Length Calculator Module

D. Comparator Module

This module consists of six Altera LPM comparator
modules, which output a “1" if the first input is less than or
equal to the second input. The four calculated total tour
lengths are fed into the comparators. Different combinations
of the six comparator output signals, and their complements
are ANDED in order to determine which sum is the
smallest, and which sum is the second smallest.

E. Output Multiplexer Module

This module consists of two multiplexers and a selector
module. It takes as inputs, the outputs of the Comparator
Module, and the four chromosome sequences. The selector

- module sets the select lines for the multiplexers, and outputs

the best sum and second best sum. The multiplexers output
the best chromosome and the second best chromosome. The
chromosomes will then be latched in a pipeline buffer
before being written back into the population. The sums will
be written into a RAM module used for testing purposes.

F. Simulation of the Fitness Module

The following figures illustrate the functioning of the fitness
module.

L et 3

o UL OO U
HEATE BILET4S
7064105 D
BRI SR
BB Fisikr
B ot 19 1
[]) I CIGIC T % (i s
L | F EREHEICHER S K £ R ED
[A BERE B
o1 e ERERE 3 . Fiiefiis
s temss et ces @ | W 7 [
i A 5 a

Figure VI-D: Sim. Resuts of the Fitness Module: Part A

In the above figure, when the counter value is 2, the tour
length of chromosome3 (16432570) 1s being calculated. The
ROM addresses are addrx, addry and the value accessed is
the port named path. The port named sum is the running
sum of all the path values. The tour length, 802 is routed
through the demultiplexer, and then latched in a flip flop.

o Fompante camglsi [om &5
| e sy el l v]

E; Pewgatr cmtinel 3 bE Ey

I et cogiss | o [{ i
¥ ves gt i 7 1 o
Bt © 1 i
i 1 BT
|) } T

WEY
Figure VI-E: Sim. Results of the Fitness Module: Part B

In figure VI-E, the tour length of the four chromosomes, are
input to the comparator. Best_suml, and best_sum2, and
best] and best2 are the output of the Output Muliplexer
module.

VII. PIPELINE OPERATION

Pipelining is integrated within the design to optimize
performance. The concept of pipelining requires that the
input signal to each stage of the pipeline be stable at the
time the slowest stage is finished. This is achieved by
employing pipeline buffers that latch the outputs from each
of the stages. The latched data include: the address in RAM
where the solution is fetched, and the tours. The design has
three pipeline stages, therefore 3 sets of pipeline buffers
exist.

The pipeline buffers are controlled by the main controller.
The controller signals to the pipeline buffer when to latch
new data from the previous stage. The time between latches
is equal to the amount of time it takes for the slowest stage
to complete. Currently the slowest stage is the fitness stage,
which takes 48 clock cycles.

Due to pipelining, WAW errors could occur in this design.
This error occurs when the same population address is
selected by consecutive stages within the pipeline. It is
possible that a better solution can be overwritten with a
worse solution, if the address has not been rewritten, before
it is accessed again.

To eliminate the WAW errors, a random number filter is
implemented in the population selector module. The filter
prevents the same number to occur at 3 consecutive stage of
the pipeline.

The filter compares the current random number with the last
3 numbers generated. These numbers are stored in latches.
If a duplicate number is found within the buffer, the current
random number will be modified before it is latched. The
modification will reduce the occurrence of consecutive
duplicate numbers.

When duplicate numbers exist, the new modified number is
produced by XORing two of the latched numbers. With the
XOR operation, it is only possible to get an identical
number when one of the numbers contains all 0’s. The filter
first checks if any number in the buffer is 0, when it sees
zero, it XOR’s a hardwired number with one of the numbers
in buffer, otherwise it XOR’s both of the buffered numbers
to produce the current number. As a result, the new number
is completely different from the numbers in the buffer. This

reduces the occurrence of WAW errors, which can impede
the convergence of the population. The design flow is
shown below in Figure VII-A.

(/’) ‘\& /,/\ ..
ADuplicate~, _ A exist in™
ff:/ number :}-——-—*{j butfered
Ny \f:suﬁd?// Yes \\Qimberg/’ Yes
Y "
| No
!bdﬁcrga :
numbers §
‘ New Number

Output new number
Figure VII-A: Flow chart for Random number filter

VHI. ANALYSIS

The overall design uses 1970 logic cells of the FPGA. This
corresponds to 85% of FLEX10K40RC208-3 chip. The
memory component utilizes 3264 bits, which is 19% of the
device’s memory. This relatively small resource usage
leaves space for implementing more complex version of the
GA modules.

A. Maximum Frequency Analysis

Each of the modules within this design has independent
timing requirements. The longest path from the inputs to
the outputs, for each stage, is determined by performing
several timing analyses. The results are shown in table VIII-
A below:

Population

Crossover & Fitness testing
selector Mutation
15.6ns 12.8ns 40.9ns

Table VIII-A: The longest path for each pipeline stage

Table VIII-A indicates that the Fitness Module requires
40.9 ns to produce stable output, thus the maximum
frequency of the design is 1/40.9ns = 24.4Mhz

B. Performance Analysis

The clock cycles needed for each pipeline stages can be
obtained from the number of states in the finite state
machine in each pipeline stage. The results are shown in
Table VII-B.

Population Crossover and Fitness testing
selector Mutation
15 cycles 6 cycles 48 cycles

Table VII-B: Clock cycle required for pipeline stages

As shown in Table VII-b, the non-pipelined
implementation would require a minimum of 15 + 6 + 48 =
69 clock cycles per iteration of the genetic algorithm, which

is approximately 2.83us. In contrast, the pipelined
implementation requires 48 clock cycles for each pipeline
stage, therefore each iteration of the genetic algorithm
would take approximately 48 clock cycles, which gives 48 *
41ns ~ 2s per iteration.

Therefore, the overall improvement for employing the
pipeline technique is:
2.83us-2us
2ps

Pipelining yields a 41.5% improvement in speed.

*100% = 41.5%

As the reader might have notice, the Fitness testing stage is
the performance bottleneck of the design, however this
module was designed with space minimization in mind.

To evaluate the solutions obtained from the genetic
algorithm, and to determine whether the solution converges,
a Debug RAM module is implemented. This module stores
the tour length of the fittest solutions each time two
chromosomes are written back into the population. While a
simulation of the design is performed, the contents of the
Debug RAM are observed. In order to determine whether
the solution converges, a simulation was run over 1.5ms
(this corresponds to 37 iterations of the GA). The tour
length values tend to decrease over time. This indicates the
worse solutions are weeded out. Figure VIII-A, shows the
average tour length over time, for a population of 64
chromosomes.

Convergence of Tour Length Over
Time for the TSP

Tour Length
W b
Q
(@]

T
!

!

200 - |- ol R | 18 IS | LIy

e | MRS NSRS Sew | EE ES =

100 300 500 .70? 900 1200 1500
Timeé(us)

Figure VIII-A: Convergence of Tour Length Over Time

IX. FUTURE WORK

There are many aspects of this design that could be
improved, or modified. The speed of the fithess module
could be improved, if space is compromised. Also,
introducing a crossover probability would allow the design
to be more consistent with a pure GA, and could lead to a
greater rate of solution convergence. A different crossover
algorithm could be implemented, such as a stochastic
method, and the performance of the two algorithms could be
evaluated. Tournament selection or Rank selection, are two
chromosome selection methods that may improve the
performance of the design. Had there been more time, these
alternative methods would have been investigated.

X. CONCLUSIONS

The goal of this project was to design route optimization
hardware using a Genetic Algorithm, and show that this
implementation provides a solution to the Traveling
Salesperson Problem. Our design maps well into an Altera
Flex10K FPGA, as it uses only 1970 logic cells, and 3264
bits of memory. Also, it is fast, as it can operate at a
maximum frequency of 24.4MHz. Our simulation results
indicate that the solution to the TSP converges over time,
thus our design meets all project expectations. In addition
to the speed advantage a hardware implementation of a GA
could have over a software implementation, the applications
of a hardware implementation are plentiful. Work done by
Tommiska & Vuori 1] indicate hardware GA’s may be
particularly suited to the optimization of routing in ATM
networks. Our design could easily be applied to
applications such as this one.

XI. REFERENCES

[1] M. Tommiska and J. Vuori. Implementation of genetic
algorithms with programmable logic devices. In J.T.
Alander, editor, Proceedings of the Second Nordic
Workshop on Genetic Algorithms and their
Applications 2NWGA), pages 71-78, August 1996.

{2] Thomas Dean, James Allen and Yiannis Aloimonos.
Artificial Intelligence Theory and Practice. Addison-
Wesley Publishing Company, New York, 1995.

[3] http://cs.felk.cvut.cz/~xobitko/ga/

A VHDL Implementation of an IEEE-754
Standard Single Precision Floating Point Unit

Jeffery Montesano, Nicholas Chan and Eric Chung Kam Chung

Abstract—Floating point is non-integer representation of a
number; the number is represented as significand and exponent.
Hardware that performs arithmetic operations using this
representation is known as a floating-point unit (FPU). FPUs
can be found in virtually every computer today, either integrated
within a CPU (such as Pentium or PowerPC) or as a separate
specialized unit (such as graphics accelerators). They allow
calculations to be performed with a high degree of precision and
speed.

This paper presents an implementation of an FPU in VHDL
complying with the IEEE-754 standard. The IEEE-7534
standard specifies the actual representation of the number and
the handling of special cases such as “NaN” (not a number),
“infinity” and rounding schemes. The FPU is able to perform
the basic single-precision operations of multiplication, addition,
subtraction and division. The IEEE-734 single precision number
is based on a 32-bit word: 1 bit for the sign, 8 for the exponent
and 23 for the mantissa.

The basic architecture of the FPU consists of a centralized
controller and three separate functional sub-units. The division
of arithmetic operations into three separate functional units
allows the FPU to implement instruction level parallelism (ILP).

Keywords—algorithms, floating-point, ILP, rounding.

1. INTRODUCTION

LOATING-POINT arithmetic was first implemented in
the computers of the late 1940’s. However, the decision
1o include floating-point arithmetic in the early computers
created a conmoversy. The computers of the day only
implemented exact integer arithmetic. It was argued that

implementing floating-point arithmetic would be a waste of

" (the then) precious memory since the computations using real
numbers could be done in software using floaring vecrors and
scaling factors and integer operations. The drawbacks of
using this scheme quickly became apparent. Implementing
floating point arithmetic became widespread by the late
1950's {2].

By the early 1o mid 1980’s, companies such as Intel,

Manuscript received December 3, 1999.
leffery Montesano (9728164) is a2 smudent of Computer Engineering at
Megill University, Monteal, Quebes.
Nicholas Chan (9728058) is a student of Computer Engineering ar Mcgill
University, Montreal, Quebec,
Eric Chung Kam Chung (9729176) is a swdemt of Computer
Engineering at Mcgill University, Monteal, Quebec.

Motorola and Macintosh were implementing their own FPUs
and including them in computers that were accessible to the
general public. However, no standard on the exact
representation of the floating-point had been decided upon.

“The final standard, [EEE-754, was made official only in

1985.
A. The I[EEE-754 Standard

The IEEE-754 standard for single precision floating-point
numbers has the following format:

(sign)l.mantissa*2 P17 0

It provides 1 bit for the sign, 8 bits for the exponent and 23
bits for the mantissa for a total of 32 bits. To allow for more
precision in the mantissa, the IEEE-754 standard makes the
leading °1’ in front of the decimal implicit. Also, the
exponent is stored in a bias 127 format to avoid the use of a
two's complement representation. In this case, -2 would be
represented as -2+127,, = 125, = 01111101 ... Using this
scheme, a range of abs(1.175%10°%, 3.4*10"%) can be -
represented. The precision that can be achieved is:

of decimals points precision = (23 log 2)/(log 10)
= 6.9)

Results using this representation are accurate up to the sixth
decimal point.

The IEEE-754 standard provides four rounding modes as
shown in Table L.

TABLE1
[EEE-754 Rounding Modes
Rounding Sign of Resuit 20 Sign of Result < 0
Mode
- +IifrORs
- +1ifrCRs
]
Nearest +1H{r ANDoo) OR (7 AND ©) +1if (r AND po} OR (r AND 53

The symbols 7 and s represent the round and sticky bits,
which are obtained during computation of an answer. They
are used to make the final decision on whether to round or not
depending on the mode. A 3" bit, g or guard bit, is also used
in the rounding process. Its purpose is to update r and s
during computation.

Table II shows the IEEE-754 encoding to represent values
such as +eq ~eq Ngh,

TABLE D
[EEE-754 Representation of Special Values

Exponent Mantigsa Represents

¢z Emin-] f=0 =0
¢ = Emig-| f=0 0.fw2bm
Emin S ¢ $Emax - 1froEms

ExEmx e} f=0 -

ExEmx+] fe0 NaN

B. Design Objectives

Today, FPUs are found in virtually every computer system
and used in virtually every application: scientific, business
and even leisure. With computing power doubling every 18
months, floating-point unit architectures are being developed
to take advantage of this fact. One method is known as
Instruction Level Parallelism or ILP. ILP is a scheme in
which more than one instruction can be executed
simultaneously giving rise to an increased performance. The
main goal of this project was to implement, in VHDL, an FPU
capable of multiplication, division, addition and subtraction
with an ILP of thres instructions. ‘

II. DESIGN METHODOLOGY

A top-down design approach was taken for this project.
The required tasks of an FPU when interfaced with a RISC
computer architecture were examined. It was determined that
‘the FPU must:

Receive instructions from the instruction register.
Compute the result.
Write the result to a file register.

el)

Next, the overall architecture of the FPU was determined by
examining possible methods of implementing ILP. The
obvious choice would have been the use of pipeline registers
at every stage of the computation process. However, due to
lack of time, an alternate method was used.

The alternate method separated the arithmetic operations
into three functional sub-units: one for multiplication, one
division and one for addition/subtraction. Since each sub-
unit is independent of each other, simultaneous computations
are possible. However, to provide functionality, a main
controller is necessary to maintain proper data and control
flow between the functional sub-units and act as an interface
to the CPU. The architecture of the FPU can be seen in figure
L.

The FPU must now:

f—y

Receive instructions from the instruction register.

2. Route the operands to the appropriate functional sub-unit
based on the opcode.

3. Compute the resuit.

4. Write the result to a file register.

[)

It is assumed that each functional unit has its own write port
on the register file

A iyt P Adsw
Rog sty o _—
Ju—
z s
" MUX }
T2t RTINS
T] N trwt L
3w SPCODE H Ragpaear ™ spropser T
1 Sankng Lad
E
g
— D|VM$
- lqm--___‘ ¢ Divow
Carnraitar e }

Figure I: Architecture of Floating Point Unit

III. DESIGN IMPLEMENTATION

The actual implementation of the floating-point unit was
done in VHDL using Altera’s MAX+PlusI] software. The
target technology was Altera’s Flex10K family.

A. Main Controller

The architecture shown in fig.! suggests a relatively simple
main controller, consisting entirely of combinational logic.
Its function is to receive the opcode from the recently latched
instruction in the instruction register, and enable the input
register of the appropriate functional sub-unit based upon the
opcode received. While this may seem a little simplistic,
more thought was required than this. Firstly, the functional
sub-units are all unpipelined and therefore cannot handle
overlapped instructions. As a result, the main controller
cannot be allowed to send an instruction to a functional unit
while it is busy. This leads to a handshaking protocol.
whereby the controller is only allowed to enable the input
register of the target functional unit provided that unit is not
busy. The busy signal comes from the dedicated controller of
each functional sub-unit. It is asserted during computation
and deasserted otherwise. This eliminates the possibility of
the input register ever being written during computation,
which would unquestionably lead to calculation error. The
routing of the instruction is accomplished by a “busmux”,
which takes as input the €9-bit instruction (two 32-bit
operands, a 3-bit opcode and a 2-bit rounding mode) and uses
the opcode to determine where to route it. The enable line is
not only sent to the input registers, but also to the dedicated
control units of each functional unit, giving the “start” signal
to begin computation.

The input registers of the functional units are interesting
in themselves, as they perform a very important task required
by the IEEE-754 standard. Namely, they “unpack” the
mantissa making the implicit *1" explicit. This is necessary
since all of the arithmetic algorithms use this value to
compute their results. As a consequence, the input registers

"packed” eperands Iape

accept a 23-bit mantissa, but output a 24-bit mantissa for use
by the functional unit with the most significant bit hardwired
to ‘I The input registers are also accompanied by
multiplexors, allowing them to “load” the next value, or
“remember” the last value. This is illustrated in figure 2.

"mpacked™ opersnds
to functons) wndt

trom 2:] Bea MUX
R

Figure 2: Functional Unit Input Register

B. Division

Floating point division is very similar to integer division
algorithmically. It essentially involves subtracting the
exponent of the divisor from that of the dividend, and
performing integer division on their unpacked mantissas.

Of the many binary division algorithms, a decision was
made to use the “restoring division™ algorithm based on its
simplicity. It is basically equivalent to the paper and pencil
method used in base-ten arithmetic: find the largest multiple
of the divisor that can be subtracted from the dividend,
creating a digit of the quotient on each attempt. Binary
division involves only two numbers (0’ and *1') thereby
simplifying the algorithm: the multiple of the divisor either
goes into the dividend zero times or one time. To perform the
restoring division algorithm the n-bir divisor is stored in an n-
bit register, while the n-bir dividend is stored in the right half
of a 2n-bir left-shift register. The divisor is subtracted from
the dividend, and if the result is positive then a ‘1" is shifted
into the quotient register, otherwise the dividend is “restored”
and a ‘0’ is shifter into the quotient. This may seem puzzling
at first glance, since the divisor is remaining static (not
increasing in size), while the dividend is shifting lef
(increasing in size). The grammar school algorithm
prescribes exactly the opposite i.e. keep the dividend static
and shift the divisor right (having started in the left half of a
2n-bir register), making the divisor decrease in size until the
largest possible multiple of it can be subtracted from the
dividend. As it tumns out, computer architects discovered long
ago that making the dividend shift left yields the same result
as making the divisor shift right [2].

Dividing two unpacked 24-bit mantissas requires altering
the division algorithm slightly, since the numbers will always
be aligned (l.mantis$aygens / 1.Mantissagviser). This means
that there is no need to start the dividend in the right half of 2
2n-bit register, or any need for a 2n-bit register at all. The
dividend can be stored in an n-bir shift-left register, the
divisor in a static n-bit register, and the quotient in a shift-
right n-bir register. The hardware used to implement the
mantissa division is shown in figure 4 [1].

1

Thont / Renae R 53 g gw;.-«m«-‘ }
o T -

4‘—:»}‘ ==
N T
] ~ml-“-'u$u-a-

Figure 4: Hardware used to implement mantissa division

After performing the algorithm for twenty-six iterations
(two. extra iterations to calculate round bits), the most
significant bit (MSB) of the result is examined: it could be
either a ‘1" (meaning the resuit is properly normalized as
l.mantissa) or a ‘0’ (meaning that normalization is necessary).
If the MSB is a ‘0", then the 2™ MSB ,musz be a ‘1, simply
due to the fact that the operands were normalized prior to
calculation. This situation requires a shift left of the mantissa.
and a subtraction of one from the exponent.

Computing the result’s exponent seems straightforward at

- first glance: simply subtract one exponent from the other, and

store the result. Unfortunately it is not that simple. First off,
the exponents come into the divider as 8-bit unsigned bias-
127 binary numbers. Just subtracting one from the other
would result in an answer with a bias of zero:

Consider the following situation:
Dividend exponent = (5 + 127) = 132
Divisorexponent =(2+127)= 129

Subtracting the two exponents would result in a value of 3,
which corresponds to (3 - 127) = -124 in IEEE-754 notation.
Clearly, the bias must be added to the result in order to
conform to the standard. Thus, 3 + 127 = 129 is what would
need 1o be stored in the result’s exponent register.

Another obstacle arises from the problem of exponent
overflow and underflow. If the exponents are subtracted from
each other (with the bias added), and the result is zero or
negative, then underflow has occurred (the exponent is less
than 2%, On the other hand, if the exponents are subtracted
and the bias added and the result is larger than 254, then
overflow has occurred (the exponent is larger than 2'%'). To
properly detect both overflow and underflow, a 10-bit
representation of the 8-bit exponent is needed. This works as
follows: upon entry to the functional unit, the exponent is
“padded” with two 0’s at the two MSB’s. The subtraction
occurs on the two-padded exponent, the bias is added, and
then the two MSB’s of the result are examined. A ‘1’ in the
most significant bit of the 10-bit result indicates that the result
is negative (since addition and subtraction are performed in
two's complement), and therefore underflow has occurred. A
special check is also made to see if the resulting exponent is
zero, since this is a reserved value, and results in underflow as
well. A ‘1" in the second MSB means that the result is larger
than 254, and therefore overflow has occurred. Again, 2
special check is made to see if the result is 255, which is a

reserved value, and also results in overflow.

Taking care of the sign is a simple matter in floating
point division, simply taking the XOR of the signs of the
operands and storing them in the output register.

Having explained the basics of floating point division, it is
now time to look at special cases. Division offers more
chance for an invalid operation than any other arithmetic
operation, requiring painstaking exception checks every step
of the way [1]. Upon entry to the division unit, the operands
are passed 10 an exception check unit which checks for every
possible invalid case. This includes operations such as zero
divided by zero resulting the in special value NaN, a number
divided by zero resulting in the special value e, and many
other cases. When a special case is encountered at this early
stage in the computation the entire data path is bypassed, and
the control unit writes the result to the output register. This
type of operation requires the use of multiplexors at the
output register controlled by the control unit, selecting
whether the result should come from the data path or from the
control unit.

The rounding was implemented according to table I, with
an exception check performed afterwards for overflow. An
interesting case to be covered is the case where the largest
possible mantissa (1.1...1) is divided by the smallest possible
manussa (1.0...0) resulting in a mantissa of 1.1...1. If the
result’'s exponent is 127 (254 in IEEE notation) (the
maximum possible) and a round-up occurs, then the divider
will add one to the mantissa, causing it to reset t0 0.0...0, and
the exponent is incremented accordingly. At the exception
check stage, overflow will be detected since the exponent has
bypassed the allowable range.

C. Multiplication

The floating-point multiplier was designed the same way as
the other floating point units discussed. It contains a finite
state machine contoller that controls the data path. The
algorithm for floating point multiplication is investigated

next

multiplicand = mA * 2%

multiplier = mB * 2>

where mA and mB are each unpacked 24 bit mantissas.
Multiplying the two numbers results in the following product:

(mA* 2% * (mB *2%B) = mc*2°C

where mC = (mA* mB)
eC =cA +eB - bias 127.

Notice that because the exponents are stored with a bias 127,
the same bias has to be subtracted from the sum of the
exponents in order to get the new biased exponent.

The algorithm for normalized floating-point multiplication
illustrated in Figure 5, is a direct implementation of (3).

mA raB .
+

-
+ r 3
-t

ez |
Special nuerbers 1

[Tt for specinl cxses of il ;

Landing Normmlitosd

Loefy Skift sl one
b

T

- v
{ Rourding biock |
¥

[Text Br overfiow of mC ‘

No Ovarfiow § Ovartfiowe

Righs Shift ml ore
bit

. h 4
(Test for special caom of «C _

I Rarge
l Overflow i Und extiow
Set wecial vadaes of rweult)

Pt
v

L

C=A*E

Figure 5: Floating-point Multiplication algorithm

As seen in the floating-point division algorithm, special
cases must be checked before, during and after computation
to make sure that all such cases are handled. First off, if the
operands are special numbers, the whole algorithm is
bypassed and the result is set. In multiplication some of those
cases are shown in table II1.

Tasre 11
EXAMPLE S OF SPECIAL CASES
OF FLOATING POINT MULTIPLICATION

NaN * # = NaN
0 * oo = NaN
0*#=0

+oo * # = oo

-ou * 0o o oo

The first step after the initial check for special conditions
multiplies the mantissas using ordinary integer unsigned
multiplication and computes the new biased exponent. Altera
LPM modules were used for both the multiplication and
addition. For the resulting mC (48 bits), there are two special
cases. If the result’s most significant bit is in the second
leftmost bit (product contains a leading zero), then a left shift
of mC is necessary to normalize the result Otherwise, C is
already in normalized form, and there is a branch to the
rounding stage. The rounding module implements the IEEE
rounding scheme which rounds according to the round bit,
guard bit and sticky bits in the least significant 24 bits of the
mantissa product. In fact, any desired rounding scheme could
be implemented in the rounding unit due to the modularity of
the design.

After this rounding, it is possible that mC will overflow. In
this case, it is necessary to shift mC right one bit and

increment the exponent by one. The next step checks for
special cases of eC. If there is an overflow or underflow of
eC, it is handled in the "set special values of result” module.
Otherwise, the result is in range, and the calculation is
complete.

Just as in the floating-point division, the exponent was
extended from 8 bits unsigned to 10 bits signed prior to
computation to allow checking for overflow and underflow of
the result.

D. Addition and Subtraction

The decision to combine addition and subtraction in the
same unit was based on the algorithm chosen. The algorithm
can compute sums with negative numbers. This makes
subtraction a simple matter of inverting the sign of one of the
operands and computing the sum. A simplified version of the
algorithm is as follows:

1. Check the exponents.

2. If the signs differ, convert the 2 operand to its two’s
complement.

3. Shift the smaller number right until the exponents match.
Store g, r and s bits.

4. Compute the preliminary mantissa. If the answer is
negative, replace it with its two's complement.

5. Shift the preliminary mantissa until it is normalized.

Adjust the exponent accordingly.

Update r and s bits.

Round.

8. Compute sign.

Mo

The algorithm was first encoded into a controller as a finite
state machine. To keep control complexity to a minimum
level, a direct approach was taken. Every operation necessary
in each step was mapped directly into hardware. For
example, in steps 2 and 4, it may be necessary to perform a
two's complement. Instead of having one unit perform the
operation for both steps and having the inputs and outputs
multiplexed, two separate units were used. This gave the data
path a unidirectional flow simplifying the task of the
controller; only components involved in the current step of
the algorithm have to be monitored. The drawback to this
approach is that more hardware resources are required. The
resulting architecture is shown in figure 6. Note the
multiplexors just before the final register. This allows the
source of the final answer to be selected: either the computing
hardware or the controller in the case of special values or
exceptions. As with the previous operations, rounding is
based on table L

The stages in which underflow or overflow may occur are
during the normalization and rounding process since during
these stages, if the mantissa is shifted left the exponent is
decremented, and incremented if shifted right. The exponen:
logic unit performs all exponent computations and monitors
for underflow and overflow.

As mentioned, since there are only a finite number of bits
that are used to represent mantissa, only a finite precision is

>

possible. In the case of the adder/subtractor, the largest
difference possible in the exponent is 253. However, the
mantissa is represented with 23 bits. Any difference greater
than 23 in the exponents of the operands, will result in the
answer being equal to the larger operand.

Figure 6: Architecture of Floating Point Adder/Subtractor

IV. RESULTS AND ANALYSIS

A brief look at the results of each functional unit will
provide some insight into the strengths and weaknesses of the
overall design. ’

A. Divider Results and Analysis

The floating-point divider is capable of computing a single
instruction every 74 clock cycles, most of which are spent
performing the iterative restoring division algorithm on the
mantissas. While very area efficient at Jjust 510 logic cells of
the Altera FLEX10K FPGA chip, the design can only be
clocked at 10.12MHz. The main reason for this poor
registered performance is the long path between the output of
the divisor register and the input to the dividend register when
performing mantissa division. This path includes a 25-bit
adder and a 2:1 multiplexor. Despite the lack of performance,
the divider excels in computation correcmess, handling sll
possible cases and outputting results to six decimal places.

S
i —

Figure 7: Sirmalation of Division: Issue of Instraction

ey

e
prm
Sy

Cpwrandl i
oD N

CHFr O OOE

. rame 1Y

Rigane L SO0 SV

F WM A, RN IO
o Yo ova s gt ooy
T Crwes i _w o 1w irbecery
Bow | Dbamth mse & amgaiasors

W B Fero sees wpsirers
ORI

e a0 v gthien

P ey

i e o 5. s §o

g LI Ty

<

il 20X Ginve AGD Tirsa LLX3 Oram OO0 G i Owun 1
o

L I L ; 1

i

|
ifg
Jﬁ

11
<
o

4 . —

ooo'soo
g

 CATCRO LSRRI

I

N 35 St

N Tom Gurw

W— i,
p—] o’

W
L
L
——
——
——-—

———
——

T

Parme et o
sopremeamwndd W
OO OE

[LR

arnder buwy

LIS e Sero e mcap e
v DA B RS
Gov | v -l Wl eOrs
CM-N.N"'.(,-’.'“

e vy Fowts mms moctorane
¥

et o grteies

i {

bbb R R T A

PR AOOE CEE Y 3 € C R WA W BT OO XS

]

Result o S

v

[

(m:’r.--\\m((-tli'o'l],‘(nmlt jx DM TE098 078 SCHTE LIPS T T erveWIe (X311 3 vave v

Figure 8: Sirmilation of Division: Result of Instrustion

1o uns
Nameo \aluo ﬁ’ AL Creew ACAT Qrem LN O [3 3 R el 1 (lean Y Jun 1 duw
ma— ik) I 1] 1 J L j 1 | — f 1 I L j
Bt ey 2] i 1
e Speiandal N . i SR X XTI X0 CXXIOCIIOTCTD X__ 0107 10000 1 1 DOCEDOCOCONICCOICONT b
N st . me
Rt (3T LOLE N (S5) i o 3 X
B 1 ervadde M o § o T Ty ToTE __)_ YT T T T ———— X
B N At Aaretted o i
e it oy o Instruction Issue E—
xawr "lull_b-t\uﬁ - i R A Y S X K O X A N T io'm wl
—— TRGH_werte reognie u 1 .
|

Figwre 9: Sirmlation of Multiplicatios: Issue of Instraction

Namo Value ! ":‘ 3 Jus 3 3us 3 4
< < = ey e egm— e
™ v 1 i 1
R LG Gat [+]

R Gprerend! 1N
P-4 CperandY IN
wm DECODE N
=t _mode N

K= rmult_esception handied
- multipher_tusy

A munt_rezult

- MLl _wata ieghie

o Result

O {

N —.

|

Figure 10: Sirmilation of Multiplication: Resalt of Instruction

L
- :_x O 1001 1 1O TO0L0 Y DU SOOI I00LInn0 po g OO0 A AR T LR A LE I
— 1

Narrr N mirim ! 1O Oevne X0 Gom 200 G AQD o S0 O BO0 O 700 Une 800 Oie 900 Ons 1 Ous
[ri—— T v) 1 1 i 1 i T] L 7
e OPCQLE e [aB*] [*] 2]

et wade BN

w0 gt

nae® Sprandl N

B e 0t

P RS weribom |t eneytriey

— > nm_unaurﬂo-ﬁo-e-m-m

W wOd wewrlow earcespion
o i Pl wruwplion

— St Luty
R 3G _rw st

J
X ! X

=2 =

03 1 L4330 1 BS000COS0C D00 IO 000 X

X O3 1OXX30 1 1 000300 | COCCODOOCOON0000 X

1

[+3

H

> —Iinstructionlssue
&

]

[+]

Figure 11: Semalation of AdderfSubtractor: Issus of Instruction

[P

~J

Pl v N waleans 3 tus 3 Y 3 Dun D dus R Busn
M- L. b Q L~ j_ f { f
i OPCODE N 1] i) . T
Bt £ Paoge N regy [
Kt Cporangt N - COR0D0D00OM0DOC000UO X TIOA XL F I
S e mea N o |7 e e G00000080G000000D0ITRIIID
R Terw oy G
P W et e e [¢] Result l f
ki mocl urvdmefiow ey e eption a S
A ML tvn i w8 g s] \
—iar SIS PN _ el #ptaon o NG
——aFIt sty 1 I_t i
o v rew o - L OO OCTAOOTO000GOOOOOTIIES X oG 0000 1 ouLas TOIITAID XA KAXID -

Figare 12: Sinmslation of Adder/Subtractor Resclt of Instructon:

Figures 7 and 8 show a sample calculation performed by the
division unit, split into two steps - instruction issue, and
result: ’ -

The calculation performed in figures 7 and 8 is:
1.75x27 +1.4375x 2% %)
A standard scientific :.?'I‘culatcr gives the result of (4):
6.920068383 X 10-
The FPU division unit gives the result of (4):

6.920068089 x 107

B. Multiplier Results and Analysis

By far the fastest of the three functional units, the
multiplier unit performs its calculation in just 11 clock cycles.
Despite this small latency, the unit can only be clocked at a
maximum rate of 8.95MHz. This is due in large part to the
use of the Altera LPM multiplier unit, which was instantiated
in its unpipelined version. This requires the multiplication of
WO 24-bit numbers in a single clock cycle, thereby
decreasing the maximum clock rate substantially. A total of
2355 logic cells were used, making the multiplier the largest
functional unit in the FPU. Figures 9 and 10 show a sample
calculation using the same operands used earlier in the
division example:

(1.75%27 Jx (1.4375x2%) ()

A standard scientific calculator gives the result of (5):

7.603010038 x 107
The FPU multiplication unit gives the result of (5):
7.603010037 X 10®

This calculation appears to have eight decimals of
precision, but this is just due to rounding by the multiplier
unit.

C. Adder/Subtractor Results and Analysis

The latency can vary from as lirtle as 2 clock cycles to as
much as 280 clock cycles. The shift registers used in the unit
can only shift 1 bit per clock cycle. As mentioned before, the
difference in the exponents can be up to 233, requiring the
mantissa of the 2* operand to be shifted 253 times.
According to the registered performance function in Altera’s
Max+Plusll, the adder/subtractor can only be clocked at a
maximum 6.93MHz. This can be atributed to the use of
unpipelined Altera LPM adder units throughout the design.
The adder unit required 1096 logic cells to synthesize onto

the Altera FLEX10k FGPA. Figures 11 and 12 show a sample
calculation using the following operands:
(100X 27)+ (10078125 % 2)
A standard scientific calculator gives the result of (6):
1307818871 X 10°"®
The FPU adder/subtractor unit gives the result of (6):
1307818871 x 10°'®

6

The adder/subtractor unit produced the exact result. This is
because the operands’ exponents do not differ by a large
amount. The greater the difference, the more numerous the
number of shifts required leading to greater inaccuracies.

D. Integrated FPU Results and Analysis

Integration of the three functional units into a single unit
was 2 seamless operation, as much thought had gone into
the interaction between the main contoller and sub-unit
conuollers during the design process. Since the integrated
FPU incorporates three functional units of differing
latencies, it makes little sense to talk of the latency of the
FPU in clock cycles. The maximum clock rate for the FPU
is 3.15MHz, which is slower than that of any of the three
functional units. Obviously the interfacing with the main
controller is responsible for this. The FPU takes a total of
4315 logic cells, occupying 87% of the Altera
FLEX10K100 FPGA chip. The FPU accomplishes the task
of ILP as shown in figures 13 and 14, where three
instructions are issued on consecutive clock cycles and are
computed simultaneously.

V. CONCLUSION

In conclusion, our team accomplished the goal of
implementing a single precision IEEE-754 standard floating-
point unit in the IEEE standard hardware description
language VHDL. As the final integrated design shows,
performance in terms of clock rate is not very good, but since
this was not a design goal litle time was spent trying to
optimize it. The main design goal was to accomplish ILP and
it was achieved. For increased ILP support, multiple
functional units could easily be incorporated into the FPU,
increasing overall throughput and performance. The final
design is generic enough to fit into most RISC-type
architectures, receiving instructions from a pipeline register,
and writing results to a multi-port register file.

e s

v mtriw | AT Oovin RO Derin GO Deane 1 O ‘.‘ T Zaew 1 A L -2F

bied '] ! S L] L j L { 1 J t ; L j
— o n

nomemeat W - TR UM AT IR YN LI RN N AL L CXUNAN S I AT IR AT N UNK AL AN KA XN -
Apemnad ik . S TRANAKN NS S AACUNTI TSN ARD mm P X M
OO ™o 5] !) B X -) 4 [

v rmser_tre " G ?7"" . .3 X il

D Sy 4] J

Y sy oty b 7

e rmeaiat - AR RN FACLNRN AT R AR NN N

M _tany n Pl el §

WISEE st remrytiton o -

et _rwwnn{ 31 O . = - CXRERAA R LR KA NKEN K AXKAURARA A AN

vt recn n

o _emmantt . A KAKT R A KE AN AN KL AR R AT KRS AN At

Figure 13: Three instructions are sent to the FPU on consecutive clock cycles. The busy lines

react two clock cycles later,

Name vaiue 1 A Qun 8 Oun t20us 16 0us 200us 240us DA 0ux 320us MBOus 400u~ 440
s T T e B T TR T T T T T T e T T e T T T e T R T
T - 1, 1 . .

K a1 N - OO OO K IO T A O00 00000
e Dpetand N . % CCCCCOOCCOG 000 DO DOCDOo000
e R OLE e [al] . o

R s erssastes I 0 j(x (3]

> rrasitepalinr iy <

e el wvile | rogfite [+ f

Some reah_rmauit - - - OICCE 3 K2R I JOCI ARSI CSORX A KO R
-~ melchme faiamy o T‘\ 1
— LU _wrno_reable <] i
Tawr 2aa_ tesumiY U LR JOCE AR K XXX K RIS T E RS LKA -4 LXIRIKH RIS XIARY S HLE B ALY B XS IXK
~ et Buny o] . 1 /

B R TR o \ ”
R drw_sonult - COCOOOO000ON0CICOOOCIONOINE OO R OO0 DCI000CKIC COC DOO0CCLO 00 00O

Figure 14: Tha answers of the three nstructions are cutpat

V1. ACKNOWLEDGMENT

We would like to thank the McGill University Software
Engineering Lab and its suaff for providing the facilities and
service required to implement our project. Network
administrators were available to allocate additional virtual
memory required by Altera for compilation at all hours of the
night.

VII. REFERENCES

{1] D.A. Panerson. J.L. Hennessy, Computer Architecture A Quantitative
Approach. San Francisco: Morgan Kaufmann Publishers, Inc.. 1996

[2] D.A. Pamerson, LL. Hennessy., Computer Organization end Design

The Hardware/Sofrware Inierface San Francisco: Morgan Kaufmann

Publishers. Inc.. 1994

P.J. Ashenden The Designer’s Guide 10 YHDL San Francisco: Morgan

Kaufmans Publishers, Inc., 1996

131

