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Abstract— Our objective is to find a small set of images that
summarize a robot’s visual experience along a path. We present
a novel on-line algorithm for this task. This algorithm is based
on a new extension to the classical Secretaries Problem. We also
present an extension to the idea of Bayesian Surprise, which
we then use to measure the fitness of an image as a summary
image.

I. INTRODUCTION

Navigation summaries are specialization of video sum-
maries, where the focus is on video collected by a mobile
robot, on a specific trajectory. We are interested in finding a
few images that epitomize the visual information about the
part of the world, which was traversed by the robot. Figure
1 shows a schematic example of a navigation summary.

This problem is related to the Vacation Snapshot Prob-
lem[1], where a tourist is trying to capture the most inter-
esting observations of the journey, with a limited amount of
film. A robot surveying an area might be taking continuous
video as it is moving around, but the human monitoring
the data might only be interested in a few images, which
summarize what robot has seen; however, deciding which
images are surprising or interesting, and epitomize the visual
appearance of the world is highly context dependent.

A. Statistical versus Semantic Reasoning

Navigation summaries can broadly be classified into two
categories, based on how the decisions to choose summary
images are made. Images can be selected based on semantic
cues regarding scene content, prior knowledge of the ob-
server, and the exact context of the problem at hand; or
by purely statistical reasoning, where the focus is on the
information contained in the image, and previously selected
images. The latter approach is, however, more tractable.

In this paper we will focus on the task of compiling
navigation summaries based on statistical and information
theoretic tools.

B. Online versus Offline

Navigation summaries can either be made offline, once
the path traversal is over, or online. By online we mean that
the decision to include an image in the summary set is made
irrevocably, and immediately after it is acquired. For a mobile
robot collecting thousands of images continuously, an offline
algorithm comparing each image with every other image
can be prohibitively expensive. Apart from computational
cost, the ability to identify an image as being part of the

Fig. 1. An illustrated example of a navigation summary. The sequence
of images represent the observations made by a robot as it is traversing
a terrain. The dotted boxes indicates one possible choice of the summary
images.

summary has several applications. For example, consider the
task where we would like to drop a sensor node and take
additional measurements at characteristic regions of a terrain.
In that case, assuming each summary image represents a
different region of the terrain, the robot could drop a sensor
whenever a decision to include an image to the summary set
is made.

Consider the special case of this problem where we only
want one summary image, or want to drop only one sensor
node. We can formalize and abstract this as a game were
you are presented with a finite sequence of random numbers
from an unknown distribution and then the goal is to identify
the maximum number in this sequence. Here the maximum
number might correspond to the amount of information an
image has about the terrain, and hence maximizing it will
give us the most important image. This problem is known
as the Secretary Problem [2]. In this formulation, the task
is posed as one of making a choice to select and hire
irrevocably, the best secretary, with the interview score of the
candidates represented as a sequence of random numbers.

If we are allowed to go back to a previously rejected
sample(i.e. secretary), then our algorithm is trivial. We can
just go through all the samples, identify the maximum value,
and then in the end go back and choose the sample with the
maximum value. Hence, the main challenge in the problem
arises due to the fact that the decision made is irrevocable.

In this paper we will present an extension to the secretary
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problem, which can then be used to select not just one,
but several images that form a summary set; on-line. We
also present a scoring function based on generalization of
Bayesian Surprise, used to select the summary images.

II. PREVIOUS WORK

A. The Secretary Hiring Problem

The secretary problem has a long and varied history. Due
to its broad relevance to different domains, it has been
considered by different authors in several different contexts.
It is generally accepted that Dynkin [2] was the first one to
solve the problem formally. For an interesting discussion on
the origins of this problem see [3]. Here is a description
of the problem in its simplest form with the number of
secretaries k = 1 :
• You are given the task of hiring the best possible

candidate for the job of a secretary.
• There are n applicants who have signed up for the

interview.
• After interviewing each candidate you can rank them

relative to all other candidates seen so far.
• You must either hire or reject the candidate immediately

after the interview.
• You are not allowed to go back and hire a previously

rejected candidate.
A typical strategy would be to just observe the first r

candidates without accepting any, then find the highest score
among them, and then hire the first candidate with score
higher than that. This is known to be the provably optimal
strategy for this problem. The problem now is to select the
best value for r.

Let Φ(r) be the probability of successfully finding the
highest scoring candidate, when we set the training interval
to be r. We then have:

Φ(r) =
n∑

i=r+1

P (Si), (1)

where Si is the event that the ith candidate is the highest
scoring candidate, and that our algorithm did not select any
of the previous candidates. Hence we have:

Φ(r) =
n∑

i=r+1

1
n
· r

i− 1
(2)

≈ r

n

∫ n

r

1
i
dx (3)

=
r

n
(log n− log r). (4)

Now to optimize Φ(r), we set the derivative equal to 0:

d

dx
Φ(r) =

log n− log r

n
− 1

n
= 0 (5)

=⇒ r =
n

e
. (6)

Here 1/n is the probability that the ith candidate is the
highest scoring one, and r/(i− 1) is the probability none of
the previous candidates were selected.

B. The Multiple Choice Secretary Problem

For the case when the number of positions which need to
be filled is more than one (k > 1), there are several possible
ways in which the above single secretary solution can be
generalized.

Kleinberg [4] suggested an algorithm to maximize the
expected sum of the scores of the candidates. The algorithm
works by splitting the candidates into two roughly equal
intervals, where the boundary is chosen randomly using a
binomial distribution B(n, 1/2) . We then recursively apply
the classic(k = 1) secretary algorithm to the first half of the
candidates, choosing l = bk/2c candidates. While doing this
we also find the lth highest scoring candidate from the first
half and use this as a fixed threshold to select the remaining
candidates in the second half.

Babaioff et al. [5], [6] suggest a simpler algorithm with
the same goal of maximizing the expected sum of the scores
of the selected candidates. A sliding threshold to choose the
candidates. Algorithm 1 describes this approach.

Find the top k scores in the first r = bn/ec candidates,
without selecting any. Call this list of thresholds,
T = {t1, .., tk}.
foreach remaining candidate (xr+1, · · · , xn) do

if candidate has score higher than the minimum
score in T then

Hire the candidate.
Remove the minimum value from the set T .

end
if T is empty then

break
end

end
Algorithm 1: MaxExpectedSumScores({x1, .., xn}, k)

Note that both Klenberg and Babaioff algorithms, are
optimal in maximizing the sum of candidate scores. However,
they assumes that the scoring function does not depend
on the what has already been selected. Hence using these
algorithms to select our summary images will only provide
an optimal expected case solution when all images are
statistically independent and do not share any information.
This is typically not true. For example, images adjacent in
time are bound to be quite similar. In Section III-A, we will
present a new algorithm which does not have this deficiency.

There are several other variants of this problem which exist
in the literature. Freeman [9] reviews some of these variants.

C. Video Summaries

Most of the existing work related to the problem of
navigation summaries is in fact on the more general problem
of video summarization.

The most familiar and commonplace method for sum-
marizing video is to subsample in temporal domain (i.e.
viewing while fast forwarding). This approach works well
for limited compression rates, but is rarely used for speeds
above 32 times real-time. Moreover, the approach works well
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for manually crafted (commercial) video where the length of
time that a topic remains on-screen in generally proportional
to its importance.

Smith and Kanade looked at producing video “skims” by
depicting statistical summaries of video content accompa-
nied by selected audio extracts [10]. That work employed
the TFIDF (Term Frequency/Inverse Document Frequency)
metaphor from text document indexing to index the audio
data in a video stream. They used color histograms for
video segmentation in the temporal domain. In that work,
subsystems were also used to detect text captions and human
frontal head views, in order to place emphasis on content
that was particularly important in the context of summarizing
television footage.

In related work, Ngo, Ma ana Zhang cluster video frames
based on an motion model and then used normalized cuts
to segment the resulting proximity graph, and represent each
cluster by an exemplar [12]. The motion model was based
on MPEG motion vectors. A skim was produced that reduce
the video length by up to 90 per cent by retaining the frames
that made the largest contribution to the successive changes
in the image or audio content.

In the work of Gong and Liu [14], video skims are
produced based on a selection of key-frames with high
information content. The accomplished by projection into a
subspace that computed with respect to color histograms of
a set of 9 (3x3) sub-windows that cover each input frames.
This estimate is produced by computing a singular value
decomposition over video sequence to estimate both the
average frame, and the distance of each from the Eigenspace
defined by the SVD. The distinctiveness of a frame is
then computed by measuring its distance from the mean
of the average frame in the SVD subspace, and this pro-
vides a criterion for selecting key-frames. While acceptable
video summaries are reported, the authors suggest that the
technique has shortcomings when color information is not
distinctive enough.

In [15], Ju et al. considered the task of summarizing
videos of a specific context, in this case, videos of confer-
ence presentations. Takeuchi et al. in [16] produced video
summaries using a set of a-priori manually classified images.

Related to this problem is the problem of clustering images
that depict the same environmental structure, albeit from
different vantage points [18]. That work directly compares
all n2 images in the video sequence with one another using
wide-baseline stereo methods. While the results of such
an approach appear somewhat promising, the computational
cost for a full video sequence are prohibitive.

III. APPROACH

A. Algorigthm Overview

Our objective is to find a small set of images that sum-
marize a robot’s visual experience along a path. We are
presented with a stream of images taken by the robot and
after observing each image, we must make an irrevocable
decision accepting or rejecting the image as a summary
image.

We first consider the easier offline version of the problem,
where we are allowed to choose our summary images after
doing all the pairwise comparison of the images. If we
assume that each selected image covers information about
some fraction of the input images and the trajectory, then this
problem is reduces to an instance of the Set Cover problem,
which is known to be NP-hard [19]. Hence we are motivated
to look for approximate solutions.

Algorithm 2 presents a greedy approach to this problem.
Here k is the number of desired images in the summary
set, X is the set of input images, and S is the current
set of summary images. The scoring function Score(X|S),
computes a fitness score of the given image X , given the
previously selected set of summary images S. In Section
IV, we will present an information theory based scoring
function, optimizing the summaries for information gain.
This algorithm has O(N2) computational complexity in
number of images in the input set (|X |).

if k = 0 then
return S

end
Xmax ← argmax

X∈X
Score(X|S)

S ← S ∪ {Xmax}
X ← X \ {Xmax}
return SummarizeOffline(k − 1,X ,S)

Algorithm 2: SummarizeOffline(k,X ,S)

Algorithm 3 is on-line algorithm, which approximates the
results of the greedy off-line algorithm presented above. Here
t is the current time, Xt is the latest image acquired by the
robot, k is the approximate number of images we want in the
summary, n is constant and represents the total number of
images we are expecting to see in this run, and S is the set
of currently selected summary images. The algorithm first
decides on an observation interval (t, tobs), where it find the
threshold score vthreshold. After that, the first image which
exceeds this threshold is chosen. It then recursively calls
itself to process future images.

if t > n or k = 0 then
return S

end
tobs ← t + r(k, n− t)
vthreshold ← max {Score(Xt|S), · · · ,Score(Xtobs |S)}
t← tobs

repeat
t← t + 1

until Score(Xt|S) ≥ vthreshold or t ≥ n
S ← S ∪ {Xt}
return SummarizeOnline(t + 1, k − 1, n,S)

Algorithm 3: SummarizeOnline(t, k, n,S)

Apart from the scoring function Score(X|S), perfor-
mance of this algorithm mainly depends on the observation
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interval function r(k, n), which decides on how many im-
ages to observer, before starting the selection process. We
use analysis similar to the the classical Secretaries Hiring
problem, to compute the optimal value for this observation
interval.

B. Top k Secretaries Using Fixed Threshold

Our goal now is to compute the observation interval, which
maximizes the probability of finding the k highest scoring
images. We will present the approach as an extension to
the classical secretaries problem discussed in Section II-A,
where a single threshold is used to optimally select the top
k highest scoring candidates. The threshold is set to be the
maximum observed score in the first r candidates. We would
like r to be a function of k, the number of secretaries we
want, such that if k increases, then r decreases. We can
compute optimal value for r by maximizing the probability
of success Φ(r), where success is defined by the event that
all of the top k highest scoring candidates have been selected.

Let Ji be the event that with the selection of the ith
candidate, we have succeeded. We can then write :

Φk(r) = P (Success) (7)
= P (∪n

i=1Ji) (8)
= P (∪n

i=r+kJi) (9)

We ignore the first r candidates since those candidates are
never selected as per our algorithm definition, and then we
can ignore the next k − 1 candidates since its impossible to
select k candidates from k − 1 possibilities. Analogous to
Equation 2, we can then write Φk(r) as:

Φk(r) =
n∑

i=r+k

P (Ji) (10)

=
n∑

i=r+k

k

n
· r

i− 1
·
(
i−r−1
k−1

)(
n

k−1

) (11)

=
k

n
· r(

n
k−1

) · n−1∑
i=r+k+1

(
i−r
k−1

)
i

, (12)

where
(
n
k

)
is the binomial coefficient. Lets us examine the

three components of Equation 11. The first term: k/n is
the probability that the ith candidate is one of the top k
candidates. The second term: r/(i − 1) is the probability
that none of the previous candidates were the last of the top
k selected candidates. These two terms are similar to the two
terms in Equation 2. The third term:

(
i−r−1
k−1

)
/
(

n
k−1

)
is the

probability that all of the remaining k − 1 candidates have
been selected. Combining these terms we get the probability
of the event that we have successfully selected last of the
top k candidates.

C. Optimal Training Interval

Let r̂ be the values of r for which the probability of suc-
cess Φk(r) is maximum. We computed the r̂ for n = 1000,

and k = 1 · · · 20. We approximate this in closed form as:

r̂(k) ≈ n

ke1/k
(13)

Fig. 2. Optimal training interval as a function of number of secretaries k,
for n = 1000 secretaries. The dots represent the actual training interval,
and we found that the function r̂(k) = n/ke1/k , represented by the curve
above, is a good approximation of these points.

Figure 3 shows a plot of this approximation.
We can hence use this expression to set the observation

interval in the algorithm described in Sec. 3. This will allow
us to exploit this method in practice.

IV. SCORING FUNCTION

We would like our set of summary images to be chosen
in such a way that they minimize the surprise in observing
any of the other images.

A. Bayesian Surprise
Itti and Baldi [21] formally define surprise in terms of

difference between posterior and prior beliefs about the
world. Let our prior hypothesis H of the world be defined
using the probability distribution P (H). When a new data
observation D is made, it can be called surprising if the
posterior distribution P (H|D) is significantly different from
the prior distribution P (H). One of the best ways to compare
these distributions is using relative entropy or Kullback-
Leibler(KL) divergence [22], which measure the information
gain. We can then define surprise R as:

R(D,H) = dKL(P (H|D)||P (H)) (14)

B. Set Theoretic Surprise
Bayesian surprise measures the distance using KL di-

vergence, between two distributions: P (H|D) and P (H).
We propose modeling our prior and posterior using a
set of distributions, where P (H) is replaced by the set
{P (H)}H∈H, and posterior P (H|D) is replaced by the set
{P (H+)}H+∈H∪{D}. We would now like to measure the
distance between these two sets. Hausdorff metric provides
a natural way to compute distance between two such sets. It
defines this distance d as the maximum distance of a set to
the nearest point in the other set:

d(A,B) = max
a∈A

min
b∈B

d(a, b). (15)
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Hence taking Hausdorff distance between our sets of pos-
terior and prior hypothesis, where distance is KL divergence,
we define Set Theoretic Surprise R∗ as:

R∗(D,H) = d(H ∪ {D},H) (16)
= max

H+∈H∪D
min
H∈H

dKL(P (H+)‖P (H))(17)

= min
H∈H

dKL(P (D)‖P (H)). (18)

Applying this problem to our task of selecting summary
images, we model the hypothesis using the set of selected
images. Score of an image representing its suitability as a
summary image, given a set of already selected summary
images can then be defined as:

Score(X|S) = max
S+∈S∪X

min
S∈S

dKL(P (S+)‖P (S))(19)

= min
S∈S

dKL(P (X)‖P (S)), (20)

where X is image whose score we would like to calculate,
P (·) defines the distribution of image features, and S is an
image from the set of selected images S. In this paper we
used a simple pixel color histogram as the image features.

V. RESULTS AND DISCUSSION

We tested our algorithm on several data sets, four of
which are shown here. Each set used in this paper contains
64 images, and we want 8 samples from each set. Note
that the offline algorithm we have described in this paper
is guaranteed to give us 8 images. However, the online
algorithm does not, because if in an iteration no images are
found exceeding the threshold, then none are selected.

We tested our algorithm on three different types of terrains
data.

Figure 5 show images from the street view data sets. We
show the images selected by the online algorithm, and for
comparison also show the 8 images returned by the offline
algorithm. We see that 4/5 images in the online summary are
part of the offline summary.

Figure 4 shows images from a simulated Martian analogue
environment. We see that both the online and offline algo-
rithms capture the visual appearance of the terrain well.

Overall we find the selections made by our algorithms
clearly capture the diversity of the image types in input
sample set.

VI. CONCLUSION AND FUTURE WORK

In this paper we looked at the problem of automatic
generation of navigation summaries. A navigation summary
is a small set of images, which capture the visual experience
of a mobile robot, as it traverses a path. Or contribution
to solving this problem is focused in two areas. Firstly we
present a new extension to the classical secretaries problem,
and use it to formulate a new online algorithm to build
navigation summaries. Secondly, we present a generalization
to concept of Bayesian Surprise, and then use it to pick the
summary set.

In future we hope to improve our scoring function by
considering more features. Some of these features could be

a) Input Set:

b) Off-line Summary:

c) On-line Summary:

Fig. 3. Mars Dataset. a) 64 images acquired from the Mars Analogue Site
operated by the Canadian Space Agency. b) Result of running the off-line
algorithm. c) Result of running the on-line algorithm. We see good coverage
of the variance in appearance of the terrain in both the off-line and on-line
summaries.

explicitly defined, and be problem dependent; for example
features like human faces. We also plan on looking at
other statistical features which are problem independent;
for example, frequency of different kind of textures in the
images, or SIFT or SURF or MSER features.
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a) Input set:

b) Offline summary:
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Fig. 4. Street View Dataset 1. a) 64 images from our street view data
set. b) Result of running the off-line summary algorithm, requesting eight
summary images. Here the first image corresponds to the mean appearance
of the scene. c) Result of running the on-line summary algorithm. We see
that 4/5 images in the selected set are either same or similar to the off-line
selection set.
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