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Abstract—This paper presents a novel approach to modeling
curiosity in a mobile robot, which is useful for monitoring and
adaptive data collection tasks. We use ROST, a realtime topic
modeling framework to build a semantic perception model of
the environment, using which, we plan a path through the
locations in the world with high semantic information content.
We demonstrate the approach using the Aqua robot in a variety
of different scenarios, and find the robot be able to do tasks such
as coral reef inspection, diver following, and sea floor exploration,
without any prior training or preparation.

I. INTRODUCTION

Gaining knowledge about our environment is a never-ending
quest for humanity. Direct exploration by humans although
tempting, puts strong limitations on what can be explored.
Fortunately through the use of robotics, we can continue this
tradition of exploration, without putting human lives at risk.
Use of autonomous robots is especially required for space
and ocean exploration due to the inherent communication
bottlenecks which do not allow remote control of the vehicles
[1].

A simple approach for autonomous collection of environ-
ment data is to use space filling paths through the environment.
This, however is not ideal, because the amount of information
collected, associated with the different spatial phenomena, is
proportional to the spatial area covered by them. Underwater
this might mean that most of the data collected, only contains
observations of sand or rocks, and very occasionally we might
have a few samples corresponding to something interesting
such as thermal vents, marine life, or archeological sites. A
better strategy for collecting data is to have the robot behave
like an explorer, or a vacationing tourist; moving swiftly
over regions with familiar sights, while paying much more
attention, i.e., collecting more data when something novel
or interesting is in view. In this paper we describe such a
techniques, and demonstrate its functioning on an underwater
robot.

In our previous work we have presented ROST [12] a
realtime online topic modeling framework that can be used
by a robot for high level perception of its environment. In
[13], we showed that using ROST we can identify exploration
paths of high information gain that result in learning better
terrain models. In a continuation of our previous work, in this
paper we demonstrate the exploration system described in [13]
working on Aqua [10] amphibious robot.

Environment sensing is performed primarily through the
use of a wide angle camera mounted in front of the robot.

Fig. 1. The robot explores the environment by finding novel observations,
while building a topic model of its experience.

The image stream captured by the robot is processed by
ROST, which gives different parts of the image topic labels
that are representative of the high level scene constructs such
as corals, plants, diver and rocks. Low level visual patterns
that commonly occur together in space and time are more
likely to be given the same topic label. ROST uses Dirichlet
distributions to model the topic distribution in different spa-
tiotemporal regions of the video stream, and uses a real-time
Gibbs sampler to keep the topic model in a converged state.
Given the description of the current scene in topic space, the
robot then identifies the part of the scene with most novelty.
We use a winner-take-all strategy to determine this area of
attention with maximum information gain, and then navigate
the robot laterally in the direction of this point. To mitigate
the chances of the robot getting stuck in a local maxima, we
keep the robot speed constant, while only controlling the yaw.

II. RELATED WORK

In the following sections we briefly look at some common
variants of the exploration problem.

A. Coverage of Known Environments

If we have prior knowledge about the world then perhaps
the simplest form of exploration is coverage, where the goal
is to make the robot pass through every point in the given



spatial region of interest. If the space is free of obstacles,
then we can simply use a zig-zag path, sometimes known as
a boustrophedon path through to cover the world. In case of
known obstacles, Choset et al. [7] proposed boustrophedon
cell decomposition of the world such that each cell can be
covered by a simple boustrophedon path, and then given this
decomposition, plan a path through all the cells. This would
result in complete coverage.

Mannadiar and Rekleitis [19] later proposed splitting some
boustrophedon cells so that robot does not need to move
over previously covered cells, resulting in paths guaranteeing
optimal coverage. These paths have been extended for use
with the general class of non-holonomic robots such as aerial
vehicles [30].

B. Exploration for Improving Navigation

Navigating a robot through free space is a fundamental
problem in robotics. Yamauchi [31] defined exploration as
the “act of moving through an unknown environment while
building a map that can be used for subsequent navigation”.
Yamauchi’s proposed solution involved moving the robot
towards the frontier regions in the map, which were described
as the boundary between known free space and the uncharted
territories.

If we have an inverse sensor model of the range sensor, it
is possible to compute locations in the world which would
maximize the utility of the sensor reading in resolving ob-
stacle position and shape. Grabowski [14] proposed such an
exploration strategy where the goal is to maximize the under-
standing of obstacles rather than the exposure to free space. In
this approach, the robot identifies the location with next best
view in space where a sonar sensor reading would have the
greatest utility in improving the quality of representation of
an obstacle.

If there is no external localizer available to the robot, then
it is desirable that robot explores, maps and localizes in the
environment at the same time. Sim, Dudek and Roy [24] take
the approach of finding trajectories at each step that explore
new regions while minimizing the localization uncertainty of
the robot as it re-enters a previously mapped region.

Bourgault [5] and Stachniss [28] have proposed an explo-
ration strategy which uses gradient ascent to move the robot
towards areas of high entropy which would maximize map
information gain, while still keeping the robot localized.

Kollar and Roy [18], [17] formulated the exploration prob-
lem as a constrained optimization problem, where the goal is to
find a path that maximizes map accuracy with the constraint of
complete map coverage. To do this the algorithm first identifies
the locations in the map that are essential for coverage, and
then uses these locations to constraint the trajectory that
maximizes map accuracy.

C. Exploration for Monitoring Spatiotemporal Phenomenon

In underwater and aerial environments, obstacle avoidance
and map building tasks are typically not of primary concern.

Binney [3] has described an exploration technique to op-
timize the monitoring spatiotemporal phenomena by taking
advantage of the submodularity of the objective function.
Bender [2] has proposed a Gaussian process based exploration
technique for benthic environments, which uses an experiment
specific utility function. Das et al. [8] have presented tech-
niques to autonomously observe oceanographic features in the
open ocean. Hollinger et al. [16] have studied the problem of
autonomously studying underwater ship hulls by maximizing
the accuracy of sonar data stream. Smith et al. [26] have looked
at computing robot trajectories which maximize information
gained, while minimizing the deviation from the planned path.

III. REALTIME TOPIC MODELING OF SPATIOTEMPORAL
DATA

Given the quantized observations (words) and their location,
we would like to compute the posterior distribution of the cor-
responding topic labels at this location that are representative
of the underlying cause responsible for emitting the words.
Let w be the observed word at location x. We assume the
following generative process for these observation words:

1) Word distribution for each topic k:

φk ∼ Dirichlet(β)

2) Topic distribution for words at location x :

θx ∼ Dirichlet(α)

3) Topic label for w:

z ∼ Discrete(θx)

4) Word label:
w ∼ Discrete(φz)

where y ∼ Y implies that random variable y is sampled from
distribution Y , and z is the topic label for the word observation
w. Each topic is modeled by distribution φk over V possible
word in the observation vocabulary.

φk(v) ∝ nvk + β, (1)

where nvk is the number of times we have observed word v
taking topic label k, and β is the Dirichlet prior hyperparame-
ter. Topic model Φ = {φk} is a K×V matrix that encodes the
global topic description information shared by all locations.

The main difference between this generative process and the
generative process of words in a text document as proposed by
Latent Dirichlet Allocation (LDA)[4] is in step 2. The context
of words in LDA are modeled by the topic distribution of
the document, which is independent of other documents in
the corpora. We relax this assumption and instead propose
the context of an observation word to be defined by the
topic distribution of its spatiotemporal neighborhood. This is
achieved via the use of a kernel. Topic distribution at location
x is thus defined as:
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Fig. 2. Each cell shown corresponds to a spatiotemporal bucket containing all
the observation from that region. We refine the topic label for an observation
word by taking into account the spatiotemporal context (shown in orange) of
the observation.

θx(k) ∝

(∑
y

K(x− y)nky

)
+ α, (2)

where K(·) is our kernel, α is the Dirichlet prior hyperam-
eter, nky is the number of times we have observed topic k at
location y.

A. Approximating Neighborhoods using Cells

The generative process defined above models the clustering
behavior of observations from a natural scene well, but is dif-
ficult to implement because it requires us to keep track of the
neighborhood topic distribution for every observation word,
which is computationally infeasible for any large dataset. For
the special case when our kernel is a uniform distribution over
a finite region, we can assume a cells decomposition of the
world, and approximate the topic distribution around a location
by summing over topic distribution of cells in and around the
location.

Let the world be decomposed into C cells, in which each
cell c ∈ C is connected to its neighboring cells G(c) ⊆ C.
Let c(x) be the cell that contains points x. In this paper we
only experiment with grid decomposition of the world where
each cell is connected to its four nearest neighbors. However,
the general idea presented here are applicable to any other
topological decomposition of spacetime.

Topic distribution around x can then be approximated using
cells as:

θx(k) ∝

 ∑
c′∈G(c(x))

nkc′

+ α (3)

Due to this approximation, the following properties emerge:
1) θx = θy if c(x) = c(y), i.e., all the points in a cell share

the same neighborhood topic distribution.
2) topic distribution of the neighborhood is computed by

summing over topic distribution of the neighboring cells
rather than individual points.

We take advantage of these properties while doing inference
in realtime.

B. Realtime Inference using Gibbs Sampling

Given a word observation wi, and its location xi, and its
neighborhood Gi = G(c(xi)), we use a Gibbs sampler to
assign a new topic label to the word, by sampling from the
posterior topic distribution:

P(zi = k|wi = v, xi) ∝
nvk,−i + β∑V

v=1(nvk,−i + β)
·

nkGi,−i + α∑K
k=1(nkGi,−i + α)

,

(4)

where nwk,−i counts the number of words of type w in topic
k, excluding the current word wi, and nkGi,−i is the number of
words with topic label k in neighborhood Gi, excluding the
current word wi, and α, β are the Dirichlet hyper-parameters.
Note that for a neighborhood size of 0, and the above Gibbs
sampler is equivalent to the LDA Gibbs sampler proposed by
Griffiths et al.[15], where each cell corresponds to a document.

After each new observation, we only have a constant amount
of time to do topic label refinement, hence, any online re-
finement algorithm that has computational complexity which
increases with new data [27], [6], is not applicable. Hence
we must use a refinement strategy that only partially updates
the topic labels after each time step while still ensuring the
labels from the last observation have converged. Given the
cellular decomposition of the data, we do this by randomly
picking cells by sampling from a distribution which favors
recent observations, and then refining the topic labels for the
words within. To ensure that the topic labels for the last
observation have converged, at each time step, for each of
the R iterations, with constant probability τ we refine the
last observation, and with probability (1 − τ) refine another
observation picked randomly with probability proportional to
its age.

This strategy ensure that each observation is refined for at
least τR number of times, and as a result all observations
have topic labels which have converged. This strategy is hence
suitable for use in long-running real-time systems. Empirically,
we found τ = 0.5 to work well in most cases, however on
faster machines, τ could be set to a lower value, which would
encourage better globally optimal topic labels. Algorithm 1
summarizes the proposed realtime topic refinement strategy.

IV. CURIOSITY BASED EXPLORATION

Assume a cellular decomposition of the world, with C cells,
the goal then is to plan a continuous path P ⊆ C, which allows
us to learn the topic model Φ = {φk} that best describes the
world by labeling each observation at each location with a
representative topic label.

At time t, let the robot be in cell pt = c, and let G(c) =
{gi} be the set of cells in its neighborhood. We would like to
compute a weight value for each gi, such that the probability
of the robot taking a step in this direction is proportional to
this weight.

P(pt+1 = gi) ∝ weight(gi). (5)



while true do
while no new observation do

a ∼ Bernoulli(τ)
if a == 0 then

(*pick the cell from the last timestep*)
t← T

else
(*pick a cell with probability proportional to its
timestamp*)
t ∼ P(t = j) ∝ j, 1 ≤ j ≤ T

end
foreach word (wi, xi) in ct do

(*update the topic label for word in the
observation *)
zi ∼ P(zi = k|wi = v, xi)

end
end
T ← T + 1
Add new observed words to their corresponding cells.

end
Algorithm 1: Keep topic labels up-to-date as new obser-
vations arrive.

When there is no location information present we propose
a weight function that biases the next step towards the cell
which has high topic perplexity.

weight(gi) = TopicPerplexity(gi) (6)

= exp

(
−
∑W

i logP(zi = k|P )

W

)
. (7)

To compute topic perplexity of the words observed in gi,
we first compute topic labels zi for these observed words by
sampling them from the distribution in Eq. 4, without adding
these words to the topic model. These temporary topic labels
are then used to compute the perplexity of gi in topic space.

When there is location of the robot is known, we add a
repulsion term to the weight function, which prevents the robot
from being stuck in a local maxima.

weight(gi) =
TopicPerplexity(gi)∑

j nj/d
2(pt, gj)

. (8)

Here nj is the number of times we have visited cell gj , and
d(pt, gj) is the Euclidean distance between these two cells.

V. IMPLEMENTATION

A. Robot Platform

Aqua [10] is an amphibious six legged robot capable of
autonomous operations. Although vehicles like Dorado [23]
and Hugin [20] are extremely capable for long distance and
deep water exploration, Aqua’s propulsion is based on six
flippers that can provide motion in five degrees of freedom
is most suitable for tasks requiring high maneuverability, such
as coral reef exploration. By using a novel combination of

gaits, the Aqua can move at various speeds while maintaining
its orientation, despite external disturbances [11], [21].

Aqua is equipped with four cameras: a fish-eye camera in
the front for environment awareness, a pair of stereo cameras
in the front for depth perception, and a back camera. It is
possible to take downward-looking images via the use of a
mirror mount.

Aqua is also capable of walking on land, and through the use
of a recently designed flippers [9] can perform both swimming
and walking using the same set of flippers.

B. Visual Words

For modeling visual data observed by the robot, instead
of text words, we use three different kinds of visual words:
Oriented BRIEF (ORB) [22] based visual words [25] that
describing local visual features, texton words [29] in Lab color
space to describe texture properties of a region, and pixel hue
words.

To generate an ORB word vocabulary, we first extract
features from an unrelated dataset1, with high visual diversity.
These features are then clustered using the k-means algorithm,
with V = 5000 clusters corresponding to the desired vocabu-
lary size. The cluster centers of these V clusters represent the
visual words in the vocabulary. We use ORB instead of SURF
or SIFT because these descriptors are binary, and the distance
between two feature vectors can hence be computed by taking
the Hamming distance between the bit strings, which can be
done very efficiently using XOR operations.

We computed texton words by computing Gabor filter
response for 4 different scales, 4 different orientations, and
2 different color channels, for a total of 32 dimensions. Then,
similar to ORB words, we clustered these texton features into
1000 clusters to generate a vocabulary.

Apart from ORB and texton words, we also use “pixel
color words” to represent the average color around a spatial
region. We use 1000 pixel color words per image, distributed
uniformly over the image.

VI. RESULTS

A. Simulated Exploration on a 2D Map

To validate our claim that the proposed approach would
result in collection of more information, we experimented with
simulated exploration on a 2D map of a coral reef, shown
in Fig. 3(a). The 2560x2560 pixel map was decomposed into
square cells of width 32 pixels. We computed exploration paths
of varying length, with 20 different random restart locations
for different exploration algorithms. Each time step was fixed
at 200 milliseconds to allow the topic model to converge.
While observing a cell we only use randomly chosen 25% of
the word observations in that cell to better simulate repeated
observations at the same location.

We compared the proposed curiosity driven exploration with
two other exploration algorithms: Brownian motion, which is

1We used the documentary movie Baraka(1992) for extracting visual
feature, because of its rich visuals from many different contexts



(a) Terrain map (b) Brownian path

(c) Stochastic coverage paths (d) Curiosity path (proposed)

Fig. 3. Examples of different exploration paths of length 640 steps. Points on the paths are colored colored according to the topic labels of the words
observed at that location. (a) Map used for the simulated exploration experiment. (b) A typical brownian motion exploration path with minimal coverage. (c)
A typical stochastic coverage exploration path. We see that these paths are likely to encounter much more diversity of terrain. (d) A typical curiosity driven
exploration path. We see that unlike stochastic coverage the proposed algorithm collects more data at locations where there is more information, such as the
circled region containing corals.
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Fig. 4. Information gained in topic space, as a function of path length.

equivalent to setting the weight function in Eq. 8 to a constant
value, implying no bias towards any neighbor; and stochastic
coverage, which is equivalent to setting topic perplexity in
Eq. 8 to 1, implying attraction solely towards previously
unvisited location while ignoring their content.

Fig. 3 shows typical paths from these three exploration
algorithms. We see that the proposed curiosity based algorithm
favors locations with high information content, which in this
case correspond to locations with corals. Given these explo-
ration paths, we computed the amount of information gained,
measured as Shannon entropy of the topic labels observed
along the exploration path. In 4 we show this information gain
for the three approaches and varying path lengths. We see that
the proposed technique performs significanly better than other



techniques for all path lengths.

B. Underwater Exploration using Aqua

We implemented the proposed curiosity modeling system
on Aqua amphibious robot, and tested it in many different
underwater scenarios, three of which are shown in the video
attachment2. In this video we see the robot exploring its
environment from two different points of view. We split the
observed image into 8x4 cells. We color the cells in robot’s
view with blue, and change the opacity based on the perplexity
score. A cell marked with more opaque blue circle has higher
topic perplexity score, and the cell with the highest score is
marked with a red color. Figure 5 shows some examples of
these high perplexity regions in observed images by the robot.
For all our experiments, we fixed the number of topics to
K = 64, and set Dirichlet hyper-parameters α = 0.1, β = 0.1,
refinement bias τ = 0.5. The system was set to run at 4Hz.,
giving each image a processing time of 250ms.

The three scenarios which we show in the video are:
1) Exploring a coral head: In this trial, we started the robot

near a coral head surrounded by monotonous sand. We
see that the robot quickly gets attracted towards the coral
head, and continues to bounce around over this structure
while staying away from sand. We see the effect of
curiosity decay variable γ, as the robot is successfully
able to return back to the coral head several times after
going over the much less interesting sandy regions.

2) Interaction with a diver Although our goal was to study
the robot as it would interact with a fish, due to lack of
cooperation with the fish, we were forced to conduct the
experiment with a scuba diver instead. We see that as
soon as the diver is in robot’s view, it is the singular
source of curiosity for the robot. We see the robot
following the diver around, and hovering over the diver
when he has stopped moving.

3) Exploring the ocean floor In this trial, we started the
robot near the ocean floor, which was sparsely populated
with sea plants and corals. We see the robot manages to
keep its focus on sea life, while not wasting time over
sand.

Overall we see that although the behavior of the robot is
purely statistically defined, it results in collecting more data
about perceptually interesting things in the scene.

VII. CONCLUSION

We have presented the idea of a curiosity driven robot,
which plans a path that aims to maximize the information
gained in semantic space. We used ROST topic modeling
framework to describe the observations semantically in real-
time, and then at each time step moved in the direction of
the neighboring location with the highest information content.
Empirically we showed that the proposed exploration results in
collecting significantly more information compared to spatial
coverage or brownian motion. In an an underwater scenario,

2http://cim.mcgill.ca/∼yogesh/publications/crv2014 video.mp4

this corresponds to more observations of rare corals. We imple-
mented the approach on Aqua underwater robot, and found the
emergent behavior to resemble an intelligent life form. In the
video demonstrating we showed the behavior of the robot in a
variety of situations such as: inspecting coral reefs, exploring
sea floor, and following divers, without changing any system
parameters. The fact that the same technique can be used in
many different scenarios to do different tasks is encouraging.
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