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Abstract

The problem of online sampling of data, can be seen as a
generalization of the classical secretary problem. The goal
is to maximize the probability of picking the k highest scor-
ing samples in our data, making the decision to select or re-
ject a sample on-line. We present a new and simple on-line
algorithm to optimally make this selection. We then apply
this algorithm to a sequence of images taken by a mobile
robot, with the goal of identifying the most interesting and
informative images.

1. Introduction

This paper considers how to identify good data samples
with a sensor, for example how to select landmarks with
a roving robot as it sees a series of images passing before
it. More pragmatically, if a robot system is reconstructing
a scalar or vector field over a sampling domain, how can it
select the best small set of samples?

Consider a game in which you are presented with a finite
sequence of random numbers and then your goal is to iden-
tify the maximum number in this sequence. You are only
allowed to make one selection, and you cannot go back and
select a previously rejected number. There is no statistical
information about the sequence available other than the size
of the sequence. This problem is popularly known as the
secretary problem, since the task can be posed as hiring the
best secretary, with the interview score of the candidates
represented as a sequence of random numbers. If we are al-
lowed to go back to a previously rejected sample, then our
algorithm is trivial. We can just go through all the samples,
identify the maximum value, and then in the end go back
and choose the sample with the maximum value. Hence, the
main twist in the problem arises due to the fact that when a
sample is presented we must make a decision to select it or

not immediately.
Of course, the problem of hiring a secretary serves as a

metaphor for any generic problem where one must perform
on-line data selection without revision: that is, one must se-
lect a sample from a stream of data without being able to
revise the decision. In particular, in the context of vision,
and specifically robotic vision, this is the problem we face
if a vehicle must select an image, or a set of measurements,
as it executes a sampling trajectory. The problem of mak-
ing an irrevocable decision to choose a sample relates to an
idealized problem, but it has many related analogues based
on bandwidth limitations, decision making or other factors.

In this paper we will discuss several variations on the
problem and pose an algorithmic solution. We then validate
it via a simple image acquisition task. Our main focus is
however on the problem of choosing a known number of
samples k such that the probability of them being the top k
samples in the entire sequence is maximal.

This problem definition and the related analysis and so-
lution strategies have application in a wide variety of fields
beyond vision and robotics, such as online auctions and
business resource allocation.

Consider the problem of having a robot estimate some
function of a 2-D landscape by deploying a fixed number
of static sensors. We would then like the robot to drop the
sensors at locations which give us maximum information.
Since a robot path is a 1-D line, we then discretize this path
and model the measurement at each point as a sample. If
we do not assume any statistical distribution for these mea-
surements(which is a safe assumption if our discretization is
coarse), we can then apply our multi-choice secretary algo-
rithm to identify the locations at which to drop the sensors.

To illustrate the effectiveness of our algorithm, we apply
our technique to the selection of images in a context where
the scoring function is an entropy-based measure used to
pick out the most informative images.

Another possible application could be to the Vacation
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Snapshot Problem [4]. Imagine that you are on vacation and
have only k photos remaining in your camera. You know
that you will be visiting n > k more interesting places in
the coming few days. How can you devise a strategy that
will maximize the probability of you getting photos of the
most interesting places from your trip? With an appropriate
interestingness detector, this could again be a direct appli-
cation of the secretaries problem.

2. The Secretary Problem

The secretary problem has a long and varied history. Due
to its broad relevance to different domains, it has been con-
sidered by different authors in several different contexts. It
is generally accepted that Dynkin [6] was the first one to
solve the problem formally. For an interesting discussion
on the origins of this problem see [7]. Here is a description
of the problem in its simplest form with k = 1 :

• You are given the task of hiring the best possible can-
didate for the job of a secretary.

• There are n applicants who have signed up for the in-
terview.

• After interviewing each candidate you can rank them
relative to all other candidates seen so far.

• You must either hire or reject the candidate immedi-
ately after the interview.

• You are not allowed to go back and hire a a previously
rejected candidate.

A typical strategy would be to just observe the first r can-
didates without accepting any, then find the highest score
among them, and then hire the first candidate with score
higher than that. This is known to be the optimal strategy
for this problem. The problem now is to select the best value
for r.

Let Φ(r) be the probability of successfully finding the
highest scoring candidate, when we set the training interval
to be r. We can then write Φ(r) as:

Φ(r) =
n∑

i=r+1

P (Si) (1)

where Si is the event that the ith candidate is the highest
scoring candidate, and that our algorithm did not select any
of the previous candidates. Hence we have:

Φ(r) =
n∑

i=r+1

1
n
· r

i− 1
(2)

=
r

n

n−1∑
i=r

1
i

(3)

Here 1/n is the probability that the ith candidate is the
highest scoring one, and r/(i − 1) is the probability none
of the previous candidates were selected. Φ(r) can be opti-
mized by optimizing the integral for which the above sum is
the Riemann approximation. Doing that we find that Φ(r)
is maximum when r = n/e, as n → ∞. A detailed proof
of this can be found in [5].

This problem can be generalized by allowing one to
choose several samples instead of just one. Several differ-
ent variants of the problem can then be posed. For example,
we can choose to maximize the expected sum of the scores
[9] [3] [2] , or maximize the probability that one of the se-
lected samples is the highest scoring one [10], or maximize
the probability that all k of the chosen samples are in fact
the top k highest scoring ones, and so on. If we assume
that each incoming random sample has different weights
and values associated with it, then this problem becomes
the knapsack secretary problem [1].

There are many other variants of this problem which ex-
ist in the literature. Freeman [8] reviews several of these
variants.

3. The Multiple Choice Secretary Problem

Although the single secretary problem is fairly well un-
derstood, the problem of hiring multiple secretaries (or the
problem of selecting a finite set of data samples) has several
variations and a less definitive algorithmic methodology for
a given problem domain.

For the case when the number of positions which need
to be filled is more than one (k > 1), there are several pos-
sible ways in which the above single secretary solution can
be generalized. In this paper we mainly focus on techniques
to optimize the selection of all top k highest scoring candi-
dates.

3.1. Previous Work

Kleinberg [9] suggested an algorithm to maximize the
expected sum of the scores of the candidates. The al-
gorithm works by splitting the candidates in two roughly
half intervals chosen randomly using a binomial distribution
B(n, 1/2) . We then recursively apply the classic(k = 1)
secretary algorithm to the first half of the candidates, choos-
ing l = bk/2c candidates. While doing this we also find the
lth highest scoring candidate from the first half and use this
as a fixed threshold to select the remaining candidates in the
second half.

Babaioff et al. [3], [2] suggest a simpler algorithm with
the same goal of maximizing the expected sum of the scores
of the selected candidates. The algorithm uses a sliding
threshold to choose the candidates in the following way:
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Algorithm: MaxExpectedScoreSum(({x1, .., xn}, k)

1. Find the top k scores in the first r = bn/ec candidates,
without selecting any. Call this list of thresholds, T =
{t1, .., tk}.

2. When a candidate with score higher than the minimum
score in T is encountered:

(a) Hire the candidate

(b) Remove the minimum score value from the set
T .

3. Continue with step 2 until the set T is empty, or all
positions have been filled, or all candidates have been
reviewed.

Note that both the algorithms above aim to maximize the
actual numerical score of candidates. This is different from
our goal of maximizing the probability of selecting the all
k highest scoring candidates. The algorithm we present in
this paper addresses the case when all of the top secretaries
are selected. It does not distinguish between the failed cases
of maybe only being able to select the top k − 1 secretaries
or no top ranking secretaries at all. The algorithm does not
try to maximize the expected sum of the scores.

4. Selecting Top-k Secretaries Using a Fixed
Threshold

We now present an approach where we use a single
threshold to optimally select the top k highest scoring can-
didates. The threshold is chosen as the maximum observed
score in the first r candidates. We would like r to be a func-
tion of k such that if k increases, then r decreases. We
compute r by maximizing the probability of success Φ(r),
where success is defined by the event that all of the top k
highest scoring candidates have been selected.

Let Sk
i be the event that with the selection of the ith can-

didate, we have succeeded. We can then write :

Φk(r) = P (Success) (4)
= P (S1 ∪ . . . ∪ Sn) (5)
= P (Sr+k ∪ . . . ∪ Sn) (6)

We can ignore the first r candidates since those candi-
dates are never selected as per our algorithm definition, and
then we can ignore the next k−1 candidates since its impos-
sible to select k candidates from k− 1 possibilities. Analo-
gous to Equation 2, we can then write Φk(r) as:

Φk(r) =
n∑

i=r+k

P (Sk
i ) (7)

=
n∑

i=r+k

k

n
· r

i− 1
·

(
i− r − 1

k − 1

)
(

n
k − 1

) (8)

=
k

n
· r(

n
k − 1

) · n−1∑
i=r+k+1

(
i− r
k − 1

)
i

(9)

Lets look at the three components of Equation 8. The first
term: k/n is the probability that the ith candidate is one
of the top k candidates. The second term: r/(i − 1) is
the probability that none of the previous candidates were
the last of the top k selected candidates. These two terms
are similar to the two terms in Equation 2. The third term:(

i− r − 1
k − 1

)
/

(
n

k − 1

)
is the probability that all of

the remaining k − 1 candidates have been selected. Com-
bining these terms we get the probability of the event that
we selected the ith candidate, and with that we have suc-
cessfully selected all top k candidates.

Figure 1 shows a plot of Φk(r) for different values of k.

Figure 1. Probability of success in select-
ing all top-k highest scoring candidates as
a function of the training interval r, for fixed
threshold solution.

4.1. Optimal Training Interval

Let r̂ be the values of r for which the probability of suc-
cess Φk(r) is maximum. Numerically finding the maximas
for n = 1000, and k = 1..20, and then fitting a curve to
these points, we found an expression for r̂ as n → ∞, and
k →∞:

r̂(k) =
n

ke1/k
(10)

Figure 2 shows a plot of this function along with the ac-
tual data points used for fittings for . Simplicity of this ex-
pression and accuracy of its fit with the data gives us a hint
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Figure 2. Optimal training interval as a func-
tion of number of secretaries k, for fixed
threshold solution.

towards its correctness. Due to lack of time, a formal proof
was not attempted in this paper.

With an expression for the optimal training interval r̂(k),
we can now summarize our algorithm. Let xi be the score
of the ith candidate.

Algorithm: Top-k({x1, .., xn}, k)

1. Let r = b n
ke1/k c be the observation or training interval.

2. Find threshold t = Max({x1, .., xr}).

3. Select each candidate from the interval {r + 1, .., n}
with score higher than the threshold till we select k
candidates or we run out of candidates.

4.2. Probability of Success

In the algorithm above, we are maximizing the probabil-
ity of successfully finding out top-k candidates. We now
try to find an expression for this. Let Φ̂(k) be the maximal
probability of success for a given k value. We then have:

Φ̂(k) = Φk(r̂(k)) (11)

We again numerically compute Φk(r̂(k)) for k = 1..10 and
fit a curve to these points to get an expression for Φ̂(k) as
n→∞, and k →∞:

Φ̂(k) =
1
ek

(12)

Figure 3 shows a plot of this function along with the data
points used for fitting.

With this algorithm in hand, we are able to select data
samples, and in particular images, from a data stream ob-
served by a camera or robot. In the next section we examine
the experimental performance of this approach.

Figure 3. Optimal probability of success as a
function of number of secretaries k, for the
fixed threshold solution.

5. Experiments

5.1. Simulations

In the following section we compare the performance of
our fixed threshold algorithm, with the Babaioff et. al.’s
sliding threshold algorithm. Our judging criterion is the
probability of selecting the top k highest scoring candidates.

We use a simulation such that for n = 100 candi-
dates, we generate a random permutation of score ranks
and then run each algorithm with this data set. For each
k = {1, .., 10}, we run the simulation 10000 times to get an
expected probability of success.

Figure 4 shows the results of this simulation in terms of
the actual probability of success in selecting the k highest-
scoring candidates. These results indicate a good agreement
between our theoretical predications and the empirical re-
sults of the method. In addition, it confirms that the fixed
threshold algorithm has superior performance. Clearly, as
the number of samples being selected from a finite universe
of data increases, the problem finding precisely the opti-
mum samples becomes more and more difficult.

5.2. Optimal Image Data Sampling

We are particularly interested in the problem of select-
ing sample images acquired from a robot, such that it can
automatically identify the most informative locations in the
world, for the purpose of placing static sensor nodes. To
explore this idea further, we assume to have a robot (such
as AQUA [11]), equipped with a camera and a set of k de-
ployable static sensor nodes. As the robot moves around in
the world, it takes visual measurements once every few sec-
onds, and then gives each measurement a score. The goal
then is to identify the highest scoring sites online, so that
the sensors can be deployed.
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Figure 4. Result of simulation comparing
probability of successfully choosing all of
the top-k highest scoring candidates out of
a total of n = 100. Not that the curve cor-
responding to the fixed threshold algorithm
(solid line) is same as Figure 3. We see that
our fixed threshold algorithm performs con-
sistently better.

For the purpose of this experiment, we use a very sim-
ple pixel entropy based measurement score. The score of
a measurement image was defined as sum of pixel entropy
for each of its RGB channels. This simple metric should in
principal favor images with more colors than those which
don’t have as many colors. To do this, for each color chan-
nel, we computed an intensity histogram with 32 bins, and
then computed its total entropy.

We used a data set consisting of 336 images of a coral
reef, collected by swimming on top of it with a camera
pointing downwards. The images have a mean score of
9.00687, and variance of 1.57866. Figure 5 shows a few
images from our data set, and Figure 6 and 7 show the scat-
ter plot and histogram of their scores.

We ran our fixed threshold algorithm with k = 6,
so that we get six or less images. Our algorithm only
managed to return two images, however these two images
were the two highest scoring images in our data set with
score (pixel entropy) of 12.4692 and 12.4398 respectively.
The optimal solution in this case is the five images with
scores {11.72, 12.06, 12.20, 12.32, 12.44, 12.47} (see Fig-
ure 8).Our algorithm selects only two of the images because
the third-highest scoring image happens to fall quite early in
the sequence and hence is chosen as our threshold.

Inverting the sequence of images in our data set gives us
a new data set without changing the temporal structure of
the sequence. Hence, for the purpose of experimentation,
we run our algorithm on the inverted sequence of images
from the coral reef data set. This time we got six high scor-
ing images (Figure 10), out of which three exist in the actual

Figure 5. Coral Reef Data-set. Six randomly
chosen images from the total of 336 images
in the coral reef data set, along with the his-
togram and scatter plot of the scores.

top six highest scoring images as seen in Figure 8.
Figure 9 shows these selected images. It is interesting to

see that the algorithm picked out images of the swimmer as
the highest scoring images.

6. Discussion

In this paper we have discussed the problem of online
sampling, which can be seen as a generalization of the clas-
sical secretary problem. We have presented a new and sim-
ple problem definition and associated algorithm which opti-
mally chooses the k highest scoring samples in our data set,
online. As far as we know this is the first work which deals
with this version of the generalized secretary problem.

Our work demonstrates the relevance and utility of the
secretary problem to robotic sampling. As a sample appli-
cation, we applied our fixed threshold algorithm to the va-
cation snapshot problem, producing a solution which works
online. Although we used a very simple scoring function,
this simple module can be replaced with more complex ones
to get better results.

The secretary algorithms discussed in this paper are only
optimal when there is no prior information about the scores,
and there is no correlation between the scores of neighbor-
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Figure 6. Histogram of the image scores in
the coral reef data set.

Figure 7. Scatter plot of image scores in the
coral reef data set.

ing samples. For the problem of selecting sample images by
a mobile robot, normally the neighboring samples will have
some correlation. In practice these correlations are very
hard to model or predict. For example in the presence of
occlusion boundaries close to the camera, successive frames
can be essentially uncorrelated. Our algorithm thus can be
regraded as dealing with the worst case scenario.

In addition when the video sequence is subsample at a
low frame rate, any existing correlation is likely to be dras-
tically decreased. For the purpose of selecting images that
give most amount of information about the world, we would
ideally like our samples to not only be highly informative,
but also be independent with no mutual information be-
tween each other. We hope to deal with these issues in our
future work.

Figure 8. Top 6 highest scoring images in
the coral reef data set, with scores of {11.72,
12.06, 12.20, 12.32, 12.44, 12.47 }
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