
COMP 417: Assignment 1
Occupancy Grid Mapping

This assignment will focus on getting familiar with Player/Stage robotics environment,
and then using it to write mapping programs. Player provides an abstraction layer for
different kind of robots and sensors. Stage provides a simulated world and simulated sensors,
using which a program written for player can be run as a simulation. See the player stage
website1 for more information, documentation, tutorials, and installation instructions.

The file randomwalk.cc, provided with this assignment demonstrates the use of some of
the functions which might be useful in doing this assignment. Simply run make to compile
the code. Running the program involves two steps. First, run player with the configuration
file for one of the worlds, which have been provided.

$ player triangle.cfg

This will start the simulation environemnt. Now, open another terminal window and run
your program:
$ make

$./randomwalk

Q1. Simple Mapping (30pts)

Write a program called simpleMap, which builds the map in the following way: Start with
an empty map represented by an array of integers, each representing a 0.05m × 0.5m cell
on the map. Each cell Ci holds a binary value 1 or 0, indicating the occupancy of that
cell. Mark a cell as occupied if falls in the middle of a sonar cone’s arc. Generate the path
taken by the robot using a simple random walk. You are encouraged to use the code from
randomwalk.cc. Run the program for the duration you see fit for each map.

Q2. Occupancy Grids with Bayesian Updates(55pts)

In this section, we will explore the occupancy grid algorithm, which improves upon the above
algorithm by taking into account a sensor model.

1http://playerstage.sourceforge.net

1

We would like to model the occupancy probability P{Ci = occ} = P{Ci}, and the
probability that the cell is not empty P{Ci = empty} = 1 − P{Ci} , for each cell Ci in the
world. Normally this is implemented as log odds ratio.

Let zt = {z1, · · · , zt} be all the sonar measurements, and xt = {x1, · · · , xt} be the robot
pose till time t. Our goal is to then compute the log odds ratio at time t:

lt,i = log
P{Ci|zt,xt}

1− P{Ci|zt,xt}
.. (1)

Using Bayes filtering, we can recursively compute log odds ratio from the estimates in
the previous step using the following expression:

lt+1,i = lt,i + log
P{Ci|zt, xt}

1− P{Ci|zt, xt}
− l0. (2)

Here l0 is a constant and represents the prior occupancy as a log odds ratio.

l0 = log
P{Ci}

1− P{Ci}
(3)

Without any information, we can assume that a cell is equally likely to be occupied or
be empty, and set l0 = 0.

The function fism(Ci, zt, xt) = P{Ci|zt, xt} = P{Ci = occ|zt, xt} is sometimes referred
to as the inverse sensor model. It returns the probability that a cell is occupied, given a
robot pose xt, and sensor reading zt. We would like this function to assign cells within the
sensor cone a low occupancy probability, while the cells on the arc of the cone should be
assigned a high probability. A simple way to model this function is to use some constant
values pocc > 0.5 and pfree < 0.5 for these two cases. All cells outside the cone should return
0.5, corresponding to unknown, or equally likely probability.

Tasks:

1. What is the range of value which li can take? (5pts)

2. Given li, how can you compute P{Ci}? (5pts)

3. Derive the update equation 2 starting from the equation 1. (10pts)

4. Implement a program called occMap, which uses Bayes filtering to compute log odds
ratio li for each cell. The program should take an argument indicating how long
(in seconds) to run the program in simulation time. The path of the robot should
be generated using a random walk. Use cells of size 0.05m × 0.05m. Use a simple
piecewise function for the inverse sensor model. Choose appropriate values for pocc and
pfree. Show the log odds ratio for the worlds provided. (30pts)

5. Given log odds ratio li for each cell, how can we come up with a binary map of the
world, where every cell is either occupied or empty? Generate and show the binary
maps for the worlds provided. (5pts).

2

Q3: Mapping with Real Sonar Data (15pts)

The file slothSonarData.dat contains sonar data from a real sonar sensors equipped robot.
Each line corresponds to a sonar reading, and the columns are (in order): robotX(in cm),
robotY(in cm), robotθ(in degrees), sonarRange(in cm), sonarθ(in degrees).

Tasks:

1. Modify the simpleMap and occMap programs to work with this data, and show the
resulting maps. (5pts)

2. Discuss the differences between player stage simulation data, and the real data. What
artifacts do you see in the real data, which are not visible in the simulated data. (5pts)

3. Compare and contrast the maps generated by occMap and simpleMap programs. (5pts)

Note/Tips:

• There are 16 sonars mounted on the simulated player-stage robot. The first reading
corresponds to the sonar on the left side of the robot. Subsequent readings are in
clockwise direction.

• Probably the simplest way to output the result is by writing maps to an image file in
PGM file format. See http://netpbm.sourceforge.net/doc/pgm.html for specifications.
PGM files can be read by programs like gimp and be converted to other image formats.
However, feel free to use any other method you may seem fit to present the maps.

• Submit uncompiled code, and a PDF file containing all the answers and generated
maps proving that your code works.

• Run the program for a time you see suitable for the worlds.

3

