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Abstract

When the relative velocity between the di�erent objects in a scene and the camera is

relative large � compared with the camera�s exposure time � in the resulting image

we have a distortion called motion blur� In the past� a lot of algorithms have been

proposed for estimating the relative velocity from one or� most of the time� more

images� The motion blur is generally considered an extra source of noise and is

eliminated� or is assumed nonexistent� Unlike most of these approaches� it is feasible

to estimate the Optical Flow map using only the information encoded in the motion

blur� This thesis presents an algorithm that estimates the velocity vector of an

image patch using the motion blur only� in two steps� The information used for

the estimation of the velocity vectors is extracted from the frequency domain� and

the most computationally expensive operation is the Fast Fourier Transform that

transforms the image from the spatial to the frequency domain� Consequently� the

complexity of the algorithm is bound by this operation into O�nlog�n		� The 
rst

step consists of using the response of a family of steerable 
lters applied on the log of

the Power Spectrum in order to calculate the orientation of the velocity vector� The

second step uses a technique called Cepstral Analysis� More precisely� the log power

spectrum is treated as another signal and we examine the Inverse Fourier Transform

of it in order to estimate the magnitude of the velocity vector� Experiments have

been conducted on arti
cially blurred images and with real world data� and an error

analysis on these results is also presented�
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R�esum�e

Lorsque la vitesse relative entre plusieurs objets dans une sc�ene et la cam�era est

�elev�ee � en comparaison avec le temps de pose � nous retrouvons dans l�image une

distorsion commun�ement appel�ee Flou de Mouvement�� Plusieurs algorithmes ont

�et�e cr�e�es a
n d�estimer la vitesse relative �a partir d�une ou de plusieurs images�

G�en�eralement le Flou de Mouvement� est consid�er�e comme une source de bruit que

nous devons �eliminer ou ignorer� Il est possible d� estimer le carte du Flot optique

en utilisant seulement l�information contenue dans le Flou de Mouvement�� Cette

th�ese pr�esente un algorithme qui d�etermine le vecteur vitesse d�une partie d�image

en utilisant le Flou de Mouvement� en deux �etapes� L�information fr�equentielle

est obtenue par une transform�ee de Fourier rapide� Ceci limite la complexit�e de

l�algorithme �a O�nlog�n		� La premi�ere �etape consiste �a utiliser le r�esultat d�une

famille de 
ltres adaptatifs sur le logarithme du spectre de puissance a
n de calculer

l�orientation du vecteur de vitesse� La deuxi�eme �etape utilise une technique nomm�ee

analyse cepstrale�� Dans ce cas le logarithme du spectre de puissance est consid�er�e

comme un signal que nous analysons par le biais d�une transform�ee de Fourier inverse

pour d�eterminer l�amplitude du vecteur de vitesse� Des exp�eriences ont �et�e r�ealis�ees

sur des images synth�etiques et sur des images r�eelles� Une analyse de l�erreur des

r�esultats obtenus est pr�esent�ee�
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Chapter �

Introduction

One of the fundamental problems in early Computer Vision is the measurement of

motion in an image� frequently called optical �ow� In many cases when a scene is

observed by a camera there exists motion� created either by the movement of the

camera or by the independent movement of objects in the scene� In both cases� the

goal is to assign a �D velocity vector to each visible point in the scene� such an

assignment is called the velocity map� In general it is impossible to infer from one

view the �D velocity map� however� most motion estimation algorithms calculate the

projection of the velocity map onto the imaging surface� A large number of di�erent

algorithms have been developed in order to solve this problem�

The problem of estimating the optical �ow has received much attention because

of its many di�erent applications� Tasks such as passive scene interpretation� image

segmentation� surface structure reconstruction� inference of egomotion� and active

navigation� all use optical �ow as input information�

Until now� most motion estimation algorithms considered optical �ow with dis�

placements of only a few pixels per frame� This approach limits the applications to

slower motions and fails to seriously address the issue of motion blur� moreover� it

works on images that are considered to be taken with in
nitely small exposure time�

�
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more or less in a stop and shoot� approach� which limits the real time applications�

Also� most of these algorithms work on a series of images by calculating the displace�

ment of every pixel from image to image� ignoring any information about motion that

exists within each single image�

In this thesis we have developed and evaluated a new approach to the problem of

visual motion estimation� The algorithm we have developed is based on interpreting

the cue of motion blur to estimate the optical �ow 
eld in a single image� A key

observation is that motion blur introduces a certain structure� a ripple� in the Fourier

transform that can be detected and quanti
ed using a modi
ed form of cepstral anal�

ysis� Unlike classical approaches to visual motion analysis that rely upon operators

tuned to speci
c spatial and temporal frequencies at speci
c orientations� our new

approach making use of all the information that can be gathered from a patch of the

image and is thus quite robust�

The 
rst step in our motion blur analysis is to compute the log power spectrum of

a local image patch� Motion blur leads to a tell�tale ripple� centred at the origin� with

orientation perpendicular to the orientation of the velocity vector� This orientation

can be reliably determined� even in the presence of noise� using a steerable second

Gaussian derivative 
lter� The magnitude of the velocity� which is related to the

period of the ripple� can then be determined by 
rst collapsing the log spectrum

data into a ��D vector� and then performing a second Fourier transform� to yield the

cepstrum� in which the magnitude of the velocity is clearly identi
ed by a negative

peak� The computational complexity of this algorithm is bounded by the Fast Fourier

Transform operation� which is O�n log n	� where n is the number of pixels in the image

patch� Applying this analysis throughout the image provides an estimation of the

complete optical �ow 
eld�

The structure of this thesis is as follows� In Chapter � we describe the problem of

motion estimation in general� review the work that has already been done� along with

a brief description of the major existing algorithms� then we analyse the problem
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as it exists with the appearance of motion blur� The solution to the optical �ow

estimation problem under the occurrence of blur is described in Chapter �� In addition

to the basic algorithm we analyse how the technique of zero padding can provide

more detailed information� and how we can eliminate the ringing e�ect by masking

the original image with a Gaussian window� In Chapter � we demonstrate results

from both arti
cially simulated motion and from real images� and we evaluate the

robustness of the algorithm� Finally� in Chapter �� conclusions and suggestions for

future developments are presented�

More concisely� the objective of this thesis is to develop a new algorithm that

produces the Optical Flow map of the scene using only the information that exist in

the motion blur of the image�



Chapter �

Background� Optical Flow and

Motion Blur

When a visual observer moves through an environment� or when objects move in front

of a stationary observer� the visual image of the scene changes over time� Analysis of

the movement or �ow of image structure on the image plane provides a cue to allow

the inference of observer or object motion�

This optical �ow problem is described below� along with the traditional approaches

to solving it� The importance of motion blur is also introduced� Although it has been

treated as noise by most optical �ow algorithms� it in fact carries information that

can be exploited�

��� Optical �ow

When Heraclitus said� ���� years ago� that� Everything �ows� everything moves� and

nothing stays�� � he made an observation on the tendency for change in nature� That

tendency re�ects also in the visual domain � if a visual system observes a scene for a

������ P��� ����� X����� ��� O�	�� M����

�
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long enough period of time� there are going to be notable changes� In most biological

visual systems� the analysis of motion is critical� interesting experiments have been

made with the visual system of the pigeon� rabbit� frog� �y� and more� Many insights

for machine vision have came out of these experiments� The psychophysical aspects

of motion information has been demonstrated by Ullman ���� and Marr ����� and

the use of this information has been demonstrated in computer vision by Horn and

Schunck ����� A lot of work has been done and di�erent approaches have been taken

in order to extract this information�

����� De�nition of the problem

First we are going to set the framework for the study of motion in a visual system�

When there exists relative motion between the camera and objects in the scene� there

appears corresponding changes in the received image�

P
1

2O

P
2

V
O

rO

rP

V
P

O
1

Imaging 

Plane
Object Motion

Image

Change

Focal Point

Figure ���� Motion correspondence � An object at point O� moves with velocity VO to

point O�� The corresponding image point P� moves on the image plane with velocity

VP to point P��
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The Motion Field is de
ned by assigning a �D vector to every point in the

image� corresponding to the projection of the equivalent velocity vector in the scene

����� If a point O� in the scene moves with a velocity �VO �see 
gure ���	 in time

�t is moving to the position O�� The equivalent image point P� is moving with a

proportional velocity �VP to the point P�� That means that we can have an image

I� taken at time t� and a di�erent image I� taken at t� � �t� the motion 
eld of the

image consists of the velocity vectors �VPi that exist for every point Pi of the image�

Now the relation between these factors are given in Horn ���� in equation ��� where

�Vp �
drp
dt
and �Vo �

dro
dt
and f � is the distance between the focal point and the image

plane�

�

f �
� rp �

�

ro � z
� ro ����	

During a period of time� the brightness of a speci
c pixel Pi�j could change� the

most obvious reason is the relative motion between the camera and the scene� al�

though changes in the shadows and in lighting could also be responsible� As Optical

Flow we de
ne that variation of the brightness patterns in the image ����� The prob�

lem of estimating the relative motion between the camera and the objects in the scene

is generally complex� The 
rst step of reconstructing the �D velocity vectors is to

derive the Motion Field from the Optical Flow� Note that there exist other cases� as

mentioned earlier� when the change in the image brightness is not due to the relative

motion� but due to other causes such as the situation when a light source is moving

changing the shadows in the image and the re�ectance from di�erent surfaces� In

such a case of course the Optical �ow is quite di�erent from the Motion 
eld �see for

example 
gure ���	�
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T1 T2

Figure ���� Optical Flow due to motion of the light source�

����� Previous work on traditional algorithms

Many algorithms have been developed since ���� when Horn and Schunck published

their well known paper ����� The di�erent algorithms can be divided into di�erent

groups according the principles of the method they use� the results they seek to get�

and the available input data� In this section I am going to give a brief overview for

the most commonly used algorithms�

Among the 
rst papers on machine motion estimation is the paper of Horn and

Schunck in ���� ����� The algorithm in this paper can be de
ned as a di�erential

method� it assumes that the brightness in any particular point in the scene is constant�

That shows in equation ���� where I is the image intensity�

dI

dt
� � ����	

By taking the 
rst order di�erentiation of equation ��� we have equation ��� where

vx �
dx
dt
and vy �

dy
dt

�I

�x
vx �

�I

�y
vy �

�I

�t
� � ����	
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From this equation is clear that we have two unknowns vx� vy and only one

constraint� In order to solve the problem� we need one more equation� which we

get by making one more assumption � the smoothness constraint � which is actually

used in most of the algorithms with some variations� If every pixel in the scene was

moving with its own velocity� the problem could prove almost unsolvable� but� as most

of the motion happens among rigid objects� there exists a set of pixels �belonging to

the same object	 that have a smoothly varying velocity� Therefore� one additional

constraint can be found by minimising the di�erences among the velocities in a small

patch of the image� In Horn and Schunck�s paper this is done by minimising the sum

of the squares of the Laplacian of vx� vy as given in equation ����

r�vx �
��vx
��x

�
��vx
��y

� r�vy �
��vy
��x

�
��vy
��y

����	

The quantity that we have to minimise is given in ����

Er �
X
�r�vx �r

�vy	 ����	

This paper started a whole category of algorithms named di�erential algorithms�

which are based on the concept of taking the derivative �
rst or second order	 of

the image intensity� and use one more constraint� Next I am going to present a few

survey papers that group together di�erent approaches to the optical �ow problem�

In ����� Aggarwal and Nandhakumar ��� present a review paper on the calculation

of the motion� In this paper they divide the methods used to solve the problem� into

two di�erent categories� the feature based methods and the optical �ow methods�

The feature based methods compute the velocities in the scene only in some areas

of the image where features �lines� points� edges	 have already been found� Although

this kind of method doesn�t give a continuous 
eld of the velocities in the scene it is

faster and can de
ne the velocity of an object by extrapolating from the velocities at

its boundary� In general� this approach assumes that that all the objects in the scene
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are rigid and their movement consists of a translation and a rotation� The algorithms

in this class try to de
ne the �D motion that exist in the scene based on a set of

features� therefore they use a set of lines and�or points that match during the series

of images and calculate the �D velocities� Variations exist considering the number of

features� and the number of consecutive images used� Usually� by solving the velocity

problem� this approach also computes the �D structure in the scene� There is also an

extension on this a class of algorithms that work with a series of binocular images�

Optical �ow methods deal with velocities over the whole image� Many existing

methods are di�erential in nature� based on the work of Horn and Schunck� These

approaches usually have one of the following constraints� the smoothness constraint

�see earlier	� the restricted motion constraint �the change in brightness is a result of a

constrained motion	� or a homogeneity constraint �all the pixels in a speci
c region�

belonging in the same object� move with the same velocity	� Some algorithms use the

second order derivatives of the image� and others use iterative methods that moves

from a coarser estimation of the optical �ow to a 
ner one� There also exist algorithms

that use binocular image series in order to extract the �D structure and the �D

velocity 
eld of the scene� but they assume that the correspondence problem among

every stereo pair in the sequence is solved� In the absence of binocular correspondence�

other constraints can be used in order to compute the �D structure and velocity 
eld

of a scene from the optical �ow 
eld�

The main di�erences between these two types of approaches is that� the feature

based methods require the existence of a match of features among consecutive images

before the algorithm is applied � up to now� most of the algorithms have only give

partial solutions to this problem � while� the optical �ow methods don�t need any

feature correspondence to be established� Another di�erence is that optical �ow

techniques are very sensitive to noise and this make their application to the real

world situation di�cult�

The same division can be made in both biological and computer visual systems�
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experiments on biological systems have been shown by Ullman ����� Again the meth�

ods are divided into intensity based� or otherwise called Optical Flow methods� and

feature based� or otherwise called Token Matching methods� For the optical �ow

methods two di�erent kinds of approaches have been proposed� Correlation schemes

and Gradient schemes� In the 
rst case� the input of the two consecutive images is

compared after the 
rst image have been translated by d � vdt� di�erent variations

of this method have been proposed� The second case� called Gradient scheme� has

been found implemented in the retina� In that case� research from Hartline� Bar�

low and Ku er have shown that the retina cells behave like the di�erence of two

Gaussians� In other words the input image is convolved by the Laplacian of a Gaus�

sian and the response to that operation point out zero�crossings that corresponds to

sharp changes� This Gaussian behaves like a smoothing 
lter� and controls the size

of the operation� Consequently� at the position where an edge exists� the values of

the convolution increase according to the direction of the movement of the edge� The

output of a second biological 
lter that provides the time derivative on the results of

that convolution is going to provide also the direction and magnitude of the motion

����� Feature based approaches have been also proposed� From the experiments up to

now it seems that these approaches are valid and most probably coexist in biological

visual systems�

Vega�Riveros and Jabbour in ���� ���� take a similar approach into dividing the

algorithms� They consider two general categories� the 
rst one that calculates the

optical �ow based on a di�erential kind of algorithm� and the second which is more

general than the feature based approach and is based on pattern matching�

The di�erential methods are essentially based on the same idea as Horn and

Schunck�s paper ����� the optical 
eld is considered smooth and the same is assumed

for the motion� and the calculations are done by di�erentiating the images spatially

or according to time� There exists variations mainly in the constraints that are used

in order to solve the problem� In this category there exist also algorithms that are
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using the second derivative� this is done by extending the basic equation ��� into a

Taylor series up to the second order terms� This equation assures that a pixel Ix�y�t

at time t and position x� y after time dt in its new position have the same intensity�

I�x� y� t	 � I�x� vxdt� y � vydt� t� dt	 ����	

The feature identi
cation methods can be subdivided into more categories� mainly

according to what kind of features we are using and how we match them from frame

to frame� Methods that are using cross correlation are quite common in the literature

� this approach is using cross�correlation between two consecutive images in order to


nd the best match that gives the movement of a certain patch of the image� Other

algorithms detect the match that occurs for the biggest moving object ignoring the

motion of smaller objects� Another interesting but specialised kind of method is when

there exist a mathematical function that describes some aspects of the object and

then the algorithm tries to match that function into di�erent images and calculate

the displacement� In the category of feature identi
cation methods exists of course

the feature correspondence methods that appear in the Aggarwal and Nandhakumar

��� paper�

In ����� Barron� Fleet and Beauchemin ��� made a quantitative analysis of the

di�erent common algorithms that exist for solving the optical �ow problem� There are

four di�erent categories according to this analysis� one is the di�erential methods�

which starts with the Horn and Schunck algorithm� and continues with the Lucas

and Kanade algorithm and then the Uras� Girosi� Verri and Torre �which is a second

order derivative method	� The other category is the region based method where

a correlation type algorithm of Anandan is used which is iterative and calculates

the optical �ow from a coarser to a 
ner result� The third category is the energy�

based approach� which is using the output of special velocity tuned 
lters� usually

the calculations being transformed in the frequency space by the Fourier transform�
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these methods are also called frequency based � for example the algorithm of Heeger�

The last type of algorithm is based on the phase�based method� which calculates the

velocity by the behaviour of the phase of band�pass 
lter outputs� like the algorithm

presented by Fleet and Jepson�

In the next part I am going to present di�erent papers that explain more a certain

approach� or give better results than a previous algorithm due to a new idea�

In the di�erential framework� there is an approach that follows the same method

for solving a series of problems in vision �����This approach has been already used in

stereopsis and texture and is now applied into the optical �ow problem� The series

of images is convolved with a set of linear� separable� spatiotemporal 
lters similar

to those used in the previous vision problems� then the usual brightness constancy

constraint is applied and we get an over�determined system of equations from where

we can estimate the optical �ow using a robust total least square method� The

advantages of this approach are� 
rstly the ability to use the same set of 
lters

�applied only once	 and solve a series of problems � approach that seems compatible

with what happening in the biological visual systems� secondly the fact that the

application of the 
lters can be done in parallel and� therefore� have a fast solution�

In the di�erential approach the smoothness constraint presents a problem at the

boundary areas� This is due to the assumption that every pixel has a velocity similar

to its neighbours� assumption that holds only if all the pixels belong to the same

object� Also� the assumption that every point maintains the same brightness can

generate problems� Therefore� a study has been done by Black and Anandan ���

especially in order to deal with this outliers� In pursuing this goal they use a robust

statistical method� where di�erent kind of estimators are used in order to minimise

the error that outliers introduce�

Sometimes we need to calculate the optical �ow in a speci
c direction� in this

case a faster approach can be taken in order to calculate �D optical �ow� Although

the results are qualitative� this can be enough for primitive tasks as a time to crash
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detector ���� One method is to use a correlation scheme in one direction only� Con�

sequently� if the optical �ow is estimated along the horizontal and vertical axis� then

an approximation of the real motion can be extracted�

��� Motion Blur

In all the previously described approaches� a set of conditions have been assumed to

be true� Although statistical methods have been used in order to minimise the error

that is caused when these conditions fail� the algorithms are based on the assumption

that in general these conditions hold� Among these conditions are the assumption

that the pixels keep their brightness from one frame to the other having changed

their position only� also they consider every pixel to refer to a unique point in the

scene� In addition� the previously mentioned methods work on a series of consecutive

images �at least two	 in order to calculate the optical �ow� In the next section I am

going to analyse what happens when the motion is faster than a pixel per frame� and

what has already been done in using the motion blur�

����� Motion blur de�nition

When a changing scene is observed by a camera� all the classical algorithms assume

that it is possible to take pictures every �t instantly� that means that every picture

is taken with a dt � � exposure time� If that is not the case� then the exposure time

�dt � T 	 is large enough that di�erent points in the scene are moving far enough

and consequently their corresponding projections on the image plane travel several

pixels� Therefore� during the capture of an image� at any single image point� a certain

number of scene points is projected during the exposure time� each one contributing

to the 
nal brightness of the image point� this e�ect is clearly demonstrated in 
gure

���� More formally� during the exposure time T in front of the pixel Pi�j we could
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assume that they pass k scene points with brightness �C�� � �Ck	 respectively� then

the resulting brightness value for pixel Pi�j is given in equation ���� in the case of

continues movement the summation is replaced by integration� This holds in general

for every pixel that can see moving points in the scene� It is clear that the blurring

of the image exists only across the direction of the motion� this one dimensional blur

is called Motion Blur�

Pi�j �
�

k

kX
l��

Cl ����	

The result of motion blur is more obvious in the 
gure ��� where an image con�

sistent of random value pixels is shown in 
gure ���a and then the blurred image is

shown in 
gure ���b�
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Figure ���� Random noise image� and the same image blurred due to motion�

The motion blur can be described mathematically as the result of a linear 
lter

b�x� y	 � i�x� y	 � h�x� y	 where i is the theoretical image taken with an exposure

time Te � �� b the real blurred image and h the point spread function �PSF	� Given

an angle� � and the length d � Vo � Te� which is the number of scene points that
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a�ect a speci
c pixel� the point spread function of motion blur is given in equation

����

h�x� y	 �

���
��

�
d
� � � jxj � d � cos��	 y � sin��	 � d

�� otherwise

�������
����	

The focus of this thesis research is to formulate and evaluate methods for recover�

ing and interpreting motion blur� In practical terms� this mean computing accurate

estimates for the two parameters of the motion blur PSF� namely the length� d� and

the angle� !�� From these quantities� the relative velocity at this point can be easily

recovered knowing the exposure time� Moreover� in a lot of applications we simply

need this qualitative measure and not its exact value when� for example� we want to

deblur the image� or infer the egomotion�

����� Interpretation of the motion blur and previous work

Up to now� blurring due to motion was considered an additional source of noise�

Usually the traditional algorithms for motion estimation tried to ignore it� or recover

from it� Also� in many applications the blur in an image is a source of noise� and

techniques have been developed in order to remove it ����� ����� But� in the other

side� the motion blur is a structured noise and contains information that can be used�

Psychophysical experiments have been done in order to analyse the use of motion

blur by the human visual system and some approaches have been taken in order to

use it in machine vision systems� Moreover� by using the motion blur we can estimate

the optical �ow using only one image� In general� the use of motion blur belongs to

a group of methods that try to extract information from blurred images in order to

estimate the �D structure of the scene from out of focus blur or the optical �ow from

motion blur�

The experiments that have been done for the human visual system in order to

determine the in�uence of motion blur in human perception conclude that a deblur�
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ring mechanism must exist in order to distinguish features in a speci
c image ����

The human visual system can identify motions that vary from less than one to more

than ������� minutes of arc per second� apparently� it has been demonstrated that

not the same mechanism is used for all this broad spectrum of motions� For slower

motions� where the shapes barely move from cone to cone the model of Bonnet ����

Displacement Analysing System� is used� as the motion become faster Bonnet�s

Movingness Analyzing System� is stimulated� Finally at high speed motions where

the motion blur is more obvious� a third mechanism is used in parallel with the other

two� In high speed �ights for example� where jet pilots �ew just above the ground�

the motion blur is forming patterns that could be analysed in order to produce useful

information� in such cases a pattern recognition mechanism is activated� Experiments

have been done ���� that estimate the importance of di�erent parameters of motion

blur patterns in identifying the motion and aspects of the �D structure of the view�

ing surface� The parameters that were used in the experiments were� blur pattern

divergence� where the observers have to use the divergence in the blur lines in order

to extract the tilt of the viewed surface� and blur pattern curvature which appears

when there is a change in direction of move� The other parameter that is important

in the motion blur patterns is the blur pattern divergence change� which appears

when the observer change his velocity of climb or descent� The last parameter that

have been studied was blur pattern curvature change��

The issue of estimating the blur parameters has also been studied by the machine

vision community� usually� there exist two kinds of blur� the out of focus blur and the

motion blur� More speci
cally� the motion blur identi
cation� and consequently the

extraction of the motion blur parameters� has been studied mainly in order to deblur

the images for a series of applications� Also� most of the image restoration algorithms

of motion blurred images assume that the parameters of the PSF are already known�

and therefore there is no need for estimating them� Usually� in addition to the

motion blur� there are also other kinds of noise present in the image� so a more
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robust estimation of the motion blur parameters is needed� One approach� ��� which

is working for both motion and out�of�focus blur� is to proceed in two stages� First�

the degraded image is processed in order to improve the SNR and then the algorithm

that extracts the blur parameters is applied� This approach assumes a model for the

degraded image as given in equation ��� where g�i� j	 is the degraded image� f�i� j	

is the ideal image� h�i� j	 the PSF� and n�i� j	 additional noise�

g�i� j	 � f�i� j	 � h�i� j	 � n�i� j	 ����	

The h�i� j	 for the case of motion blur created by uniform motion across the X

axis is given in equation ����� The algorithm in ��� is developed only for this speci
c

case and therefore it is clear that equation ���� is just a sub�case of equation ��� that

we analyse at the de
nition of motion blur�

h�i� j	 �

���
��

�
d
� �d�� � i � d��� j � �

�� otherwise

�������
�����	

At this point we have to de
ne two tools that are essential for the further analysis

of the algorithms� The Fourier Transform � �FT	 F �u� v	 � Fff�x� y	g of a function

f�x� y	 is de
ned in equation ���� together with the Inverse Fourier Transform �IFT	

F��fF �u� v	g � f�x� y	 �see ����� ����	� The Fourier transform of h�i� j	 from equation

���� is shown in equation �����

F �u� v	 � Fff�x� y	g �
Z �

�

Z �

�
f�x� y	e���ux�vy�dxdy

f�x� y	 � F��fF �u� v	g�
�

���

Z �

�

Z �

�
F �u� v	e��ux�vy�dudv �����	

H�u� v	 �
sin��du	

�du
� sinc��du	 �����	

�For a more detailed analysis see section ���
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Another transform that can be used in analysing one image is the Cepstrum��

The de
nition is given by equation ����� where F�� is the Inverse Fourier Transform

�usually using the fast version of IFFT	� and F �u� v	 � Fff�x� y	g is the Fourier

Transform of f�x� y	 �as in equation ����	� The Cepstrum is the Fourier transforma�

tion of the log spectrum of an image� it is therefore a tool for analysing the frequency

domain of an image�

Cf�p�q	 � F��flog jF �u� v	jg �����	
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Figure ���� The Graphical representation of the sinc function

As from the Fourier Transform of the blur PSF h�u� v	 in equation ���� and its

graphical representation in 
gure ���� it is clear that H�u� v	 � sinc��du	 is a periodic

function with period T � �
d
� therefore every �

d
there exist a zero crossing� The

convolution operation in the frequency domain is transformed into the multiplication

of the two matrices� as a result the periodic function that is the Power Spectrum of

the blur PSF appears as a ripple in the Power Spectrum of the blurred image� this

ripple can be identi
ed by a negative peak in the Cepstrum domain� For a more

in�depth explanation refer to Chapter ��

�For a more detailed analysis see section ���
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Most recent work dealing with blur in images focuses on the problem of extract�

ing the blur parameters from a noisy image ���� The stage of noise reduction is

accomplished with a technique called Spectral Subtraction� which can be used com�

plementary to the divide and averaging technique� The main technique is to take

an estimation of the Fourier Transform of the noise and subtract it from the Fourier

Transform of the blurred image� sometimes di�erent estimations can exist for di�er�

ent parts of the image� As these algorithms deal only with uniform motion across

the X�axis only the line Cb�p� �	 is used� where Cb is the Cepstrum of the enhanced

image� In order to improve the robustness of the algorithm one more stage of 
ltering

is used to the �D signal Cb�p� �	� As only the negative candidates count� and they

are repeated periodically� a comb like 
lter is employed� This approach divides every

negative pulse with the root mean square �RMS	 of all the negative terms except the

ones that are in multiples of the index of this pulse�

The frequency domain also is used in another method ���� In that case the bis�

pectrum is used in order to 
nd the parameters of the blur PSF� Like in the previous

case� uniform motion across the X�axis is assumed and thus the problem is restrained

in the one dimension� In an other approach the Discrete Cosine Transform DCT is

used ����� In this case the same kind of movement is assumed and the use of DCT

instead of FT is preferred because of the assumption the DCT makes that the signal

is assumed to be at the boundaries even symmetric� instead of periodic as in Fourier

transform�



Chapter �

Algorithm for Analysis of Motion

Blur

In this chapter a new algorithm for extracting the parameters of motion blur in an

image is presented and analysed� The method that is developed here calculates the

optical �ow from independent relative motion between the camera and di�erent ob�

jects at the scene� For example� a situation as in 
gure ���� where three objects

A�B�D move with di�erent velocities �VA� �VB� �VD and a camera C moves with a ve�

locity �VC � is handled by assigning di�erent velocities in di�erent parts of the image�

In section ��� a brief outline of the algorithm is given� In the next section ����	

the application of the Fast Fourier Transform and di�erent techniques to improve

the results is going to be analysed� Consequently the role of the Steerable Filters

in feature extraction from the spatial frequency domain is discussed in section ����

The next section ��� deals with the transform of the �D signal to �D with the proper

normalisation� In section ��� the use of Cepstrum and the extraction of the length of

the velocity vector are demonstrated� Finally in section ��� a complexity analysis of

the algorithm is done�

��
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Figure ���� Independent motion between the camera and the objects in the scene

��� Outline of the algorithm

In order to calculate the optical �ow for a certain point we make use of an area

around it � this method needs only one frame taken with an exposure time �t where

the motion blur spans for more than a couple of pixels� as is the situation in a series of

applications� Therefore� in order to calculate the optical �ow of the whole image we

run the following described algorithm for a series of overlapping image segments� The

algorithm can be divided in two stages� 
rst there is the extraction of the orientation

of the velocity vector� and second the calculation of the magnitude of it�

In the 
rst stage there exists an optional step of preprocessing in order to have

better results with the initial Fourier Transform� Two methods can be used in this

step either separately or at the same time � zero padding� and masking with a Gaus�

sian window� The second step is the extraction of the orientation of the velocity

vector� this is done from the power spectrum of the image �taken by the Fourier

Transform	 by 
nding the maximum response in a set of Steerable Filters�

The second stage has also two steps� a preprocessing step where the �D Power

Spectrum of the image is collapsed in �D �at that point also a normalisation is per�

formed in order for the collapsed �D signal to have the format of a Power Spectrum	�



CHAPTER �� ALGORITHM FOR ANALYSIS OF MOTION BLUR ��

VELOCITY VECTOR CALCULATION

Magnitude OUT

Preprocessed Image Segment

Zero
Padding

log |FFT() |

Steerable

Filter 

Responce

Collapse

the Power

Spectrum

Power Spectrum

Cepstrum Local Minimum

1D Power Spectrum

Normalise

the 1D Signal

Orientation OUT

Image SegmentIN

Optional Preprocessing

Gaussian 
Masking

Orientation Extraction

2D to 1D Transformation

FindCalculate the

Magnitude Calculation

Cepstrum

1D Normalised

Power  Spectrum

Figure ���� The outline of the algorithm for calculating the Velocity Vector of a image

segment

and the second step where the application of the Cepstrum provides us with the

magnitude of the velocity vector�

The algorithm in 
gure ��� calculates the velocity vector for the pixel that is at

the middle of Image Segment� It could be run in parallel in order to calculate the

optical �ow in the whole image�
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��� Fourier Transform

The identi
cation of the direction of the motion blur is calculated in the frequency

domain� The 
rst step is the transformation of the image from the spatial to the

frequency domain through the Fourier Transform� In order to have lower computation

time the Fast Fourier Transform algorithm is applied� and for enhancing the features

the logarithm of the Power Spectrum is used�

����� FT de�nition and properties

One of the most used common transforms in Computer Vision and Image Processing

is the Fourier Transform �FT	� It is a well de
ned and a popular tool� as it has a lot of

useful properties� and is relatively quick to compute �see ����� ����� ����	� In equations

��� to ��� we have the continuous �D FT� the Discrete �D DFT and their Inverses

IFT� IDFT� The f�x� y	 represents a function in the Spatial domain �an image	� and

the Fourier Transform �F	 transfer it to the Spatial Frequency domain�

F �u� v	 � Fff�x� y	g �
Z ��

��

Z ��

��
f�x� y	e���ux�vy�dxdy ����	

F �h� j	 � Fff�k� l	g �
�

n

n��X
k��

n��X
l��

f�k� l	e�����kh�lj��n � � h� j � n� � ����	

f�x� y	 � F��fF �u� v	g �
�

���

Z ��

��

Z ��

��
F �u� v	e��ux�vy�dudv ����	

f�k� l	 � F��fF �h� j	g �
�

n

n��X
h��

n��X
j��

F �h� j	e����kh�lj��n � � k� l � n� � ����	

As it is obvious from the equations� the FT is almost symmetrical with its inverse

IFT� In order for the transformations to be possible a few conditions must apply�

for the continues case� f�x� y	 must be a piecewise continue function of real variables
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x� y� and having the left and right hand derivatives� in the discrete case� the main

assumption is that f�k� l	 is periodic�� Although an image f�x� y	 is a real function�

its transformation F �u� v	 is� in general� a complex one� consequently� we can de
ne

the Real and the Imaginary part of the FT as in equation ���� In a lot of situations

it is useful to have the FT expressed in terms of an exponential as in equation ���

with the magnitude jF j and the phase 	 de
ned in equations ���� ��� with the help of

the Real and Imaginary part� The magnitude jF �
� v	j is commonly called Fourier

spectrum and its square P �
� v	 � jF �
� v	j� is called Power spectrum or Spectral

Density� The 	�
� v	 is called the phase function�

Fff�x� y	g � F �
� v	 � R�
� v	 � �I�
� v	 ����	

F �
� v	 � jF �
� v	je�����v� ����	

jF �
� v	j �
q
R��
� v	 � I��
� v	 ����	

	�
� v	 � tan��f
I�
� v	

R�
� v	
g ����	

In a number of applications the Power Spectrum is used in order to identify

di�erent features� In a lot of images though� the Fourier Spectra decreases rapidly

and the features are not recognisable� therefore� another function is used in order

to amplify the signal � the logarithm of the Fourier Spectrum plus one �see equation

���	� This function have the property of keeping the zero values of the Fourier Spectra

zero� and at the same time magnify small di�erences�

L�
� v	 � log �� � jF �
� v	j	 ����	

One of the most common properties of FT is known as the convolution theorem

�see equation ����	� This theorem shows that the FT of a convolution of two functions

�This condition is responsible for the e�ects discussed in �����
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is equal to the product of the FT of the two functions� therefore a lot of functions that

are represented by a convolution in the spatial domain can be transformed to a simple

product of their FT in the frequency domain� Also� another of the basic properties of

FT that comes directly from its de
nition is linearity �see equation ����	�� Linearity

enables us to break down a complicated function into simple ones� with a well known

FT�

Fff�x� y	 � h�x� y	g � F�f�x� y		F�h�x� y		 � F �
� v	H�
� v	 �����	

Ff�f�x� y	 � �h�x� y	g � �F�f�x� y		 � �F�h�x� y		 � �F �
� v	� �H�
� v	 �����	

The computational cost of the Fourier Transform or its inverse in the discrete

case is O�n�	� Taking advantage of the separability property � which states that

in the �D FT we can perform 
rst the summation �or integration in the continues

case	 over the 
rst variable and then over the other independently � an algorithm

has been developed called Fast Fourier Transform FFT which calculates the FT �or

it�s inverse	 in time O�n log� n	 ����� For the rest of thesis the FFT and its inverse

IFFT are used��

����� FFT of a Blurred Image

An image blurred due to motion is usually represented by a linear system of a convo�

lution� g�x� y	 � f�x� y	 � h�x� y	 with h�x� y	 the convolution kernel that cause the

blur� Already at ��� the FFT of the blur PSF is de
ned for uniformal motion across

the x� axis �see equation ����	� In general� for an arbitrary direction of the motion

�For a proof of these two properties see 	
���
�The presentation of the Fourier Transform and its properties here was rather simple� and mainly

focused on the aspects that were used in this thesis� There exist a lot more properties of the Fourier

Transform� for a more extended analysis see the references�
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the FFT of the PSF is a ripple as shown in 
gure ���� clear in the case of horizontal

or vertical motion �see 
gure ���a	 or distorted slightly� � as is the case for a blur at

the ��� angle �see 
gure ���b	 where it is more the shape of an ellipse with the long

axis perpendicular to the direction of motion� In any case the Power Spectra of the

PSF of the motion blur is a ripple along the direction of the motion�
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Figure ���� The Power Spectrum of the PSF of horizontal �a	 and at ��� angle �b	

motion blur

In a motion blurred image� the FFT highlights some features in a way that makes

the extraction of the direction of the motion easier� This is mainly accomplished be�

cause of the convolution theorem �see equation ����	 which transform the convolution

of the image with the PSF of the motion blur into a simple product of their FT� For

example� if we have a random dot picture �see 
gure ���a	 blurred by a horizontal

motion �see 
gure ���b	� then the transformation into the frequency domain is going

�Mainly because of numerical errors and the windowing e�ect� We have to take into account also

the fact that FT is a complex transformation and therefore it exist an imaginary part that is not

displayed here�
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to enhance some features� shaping the result mainly according to the FFT of the

motion blur PSF�
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Figure ���� RandomDot Image� and the same image blurred due to horizontal motion�
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Figure ���� Power Spectrum of the random image� and the PS of the blurred one�

It is obvious from 
gure ���� that the logarithm of the Power Spectrum of the

blurred image �see 
gure ���b	 has an easily recognisable shape of a ripple located

at the centre with its axis perpendicular to the direction of the blur� In the other

side the Power Spectra of the random dot image is completely unstructured� as can
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be seen in 
gure ���a� One more source of information that exists in the ripple is

the width of it� From the equation ���� the period of the ripple is equivalent to the

length of the motion blur PSF which is equivalent to the velocity of the motion for a

given exposure time�

����� Windowing e�ect

One of the properties of discrete Fourier Transform is that the signal is considered to

extend periodically to in
nity in each side� In the case where we have a 
nite signal

the FT assumes an in
nite periodic signal which consists of copies of the original

signal shifted� Another property is that any sudden change in the spatial domain

creates a response in the frequency domain� For example� assume that we have an

image �
gure ���a	 which is arti
cially blurred due to motion at ��� angle with the y�

axis �
gure ���b	� and we want to calculate the velocity at the point P ���� ��	 using a

����� window� In that case� we take the image patch around P ���� ��	 �
gure ���b	�

and apply the FFT� which as is considering the signal to be periodic and in
nite� and

it is going to repeat the �� � �� patch one next to the other �in 
gure ���c we could

see the repetition	� But� by doing this it is going to cause a sudden change at the

boundaries� which is going to appear in the FT later�

Another way to approach the problem is to consider what does it mean to take

only a patch of the image� this is equivalent to taking the whole image and masking

it with a window that has the value one at the �� � �� area of interest and zero

everywhere else �see equation ����	� As it is clear from the convolution theorem� such

an operation is going to transform into the frequency domain and the result is going

to be a�ected by the FT of the masking function�

m�x� y	 �

���
��
�� � � x� y � ��

�� otherwise

�������
�����	
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Figure ���� An image� the result of the motion blur� and a �� � �� patch repeated

periodically�

m�x� y	 �

���
��

e��x
��y��� ��� � x� y � ��

�� otherwise

�������
�����	

In order to extract only one part of the image di�erent masking functions can

be used ����� The more abrupt the change into the zero level� the more severe the

artifacts that are going to appear in the frequency domain� Also by masking the

original signal we want to keep it as much as possible unchanged� There exist a

lot of research in signal processing for the best masking function� Among the most

commonly used are the functions showing in table ����� the function f�n	 has the

illustrated type in the space ���M � ��� and � everywhere else �the functions are one

dimensional but they are easily transferred into two dimensions� as have been done for

the Gaussian in equation ����	� The graphical representation of the masking functions

and their Fourier Transform are shown in the graphs ���� the dense dots represents

the Rectangular windowing function� the continues line the Gaussian function� the

dot and dash is the graph of the Blackman function� the sparse dots display the

Hamming one� and the dashed line the Hanning function�
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f�n	 �

����������������������
���������������������

� Rectangular

e��
n�M��

�
�M����� �

�

� Gaussian

���� � ��� cos� ��n
M��	 � ���� cos�

��n
M��	� Blackman

���� � ���� cos� ��n
M��

	� Hamming

�
�

�
�� cos� ��n

M��
	
�
� Hanning

Where � � n �M � �

����������������������
��������������������	

�����	
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Figure ���� Di�erent masking functions �a	� and their Fourier Transform �b	

As is clear from 
gure ���b� the Rectangular function has a very strong artifact

which� because of its shape is called ringing e�ect� where all the remaining windowing

functions have approximately minimum ringing� In the algorithm that we use for

calculating the FFT� the �D Gaussian function is applied as can be seen in 
gure

���a� If we mask a ����� patch of the image �
gure ���b	 with the Gaussian window

the result is shown in 
gure ���c� Using this Gaussian masked window we have

the Power Spectrum as it appears in 
gure ���b� It is clear that when the Power
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Spectrum of the image is taken by using the Gaussian instead of the Rectangular

window masking �as in 
gure ���a	 most of the artifacts disappear�

�a� �b� �c�

Figure ���� A Gaussian Window �a	� a �� � �� patch of the blurred image �b	� the
same patch masked with the Gaussian function �c	�

�a� �b�

Figure ���� The Fourier Transform of the image patch with the Square windowing
function �a	� and with the Gaussian one�

����� Zero padding

Another technique used to improve the e�ciency of the FFT is called Zero Padding

����� In the continues case� �see equation ���	 the FT covers continuously all the
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�D space� in the discrete case although� �see equation ���	 the FT of a function is

having as many samples as the function that it transforms� For example if we have

an ���� ��� image and we take its FT� then the result is going to be also ���� ����

In order to get a more �optically	 detailed frequency image� we could add zeros at

the end of the signal� in both dimensions� �see equation ����	� and take the Fourier

Transform after� This increases the sampling rate of the FT� at the same time as the

size of the signal increases the computation time is also increases� therefore although

we could add as many zeros as we want at the end of the signal we always have to

take into account the time constraint�

PaddedImg�x� y	 �

���
��

Img�x� y	� � � x� y � ���

�� ��� � x� y � ���

�������
�����	

We have to mention that the addition of zeros at the end of the signal does not

add any extra information and therefore the FFT of the zero padded image does not

carry more information� But as there are more samples� the features in the frequency

domain are more clear� and their interpolation is much easier� As in most of the

natural images the DC response is much larger than the rest ���� this rises some

additional problems in the application of the zero padding technique� because the

DC value introduce a sinc like ripple quite strong that make the identi
cation of the

motion blur direction harder� One way to reduce that artifact is to zero the mean

of the image� If the mean value of the image is zero we get much more presentable

results� therefore in the algorithm we subtract each pixel by the mean value of the

image and then we zero padd the image �see equation ����	�

PaddedImg�x� y	 �

���
��

Img�x� y	�Mean�Img	� � � x� y � ���

�� ��� � x� y � ���

�������
�����	

In the Figure ���� we have the Fourier Transforms of the same part of a blurred

image with and without the zero padding� In 
gure ����a the FFT of a ��� �� part
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Figure ����� The Fourier Transform of� �a	 an image patch� �b	 an Zero Padded

image patch� �c	 a Zero Padded� Gaussian Masked� image patch

of a blurred image is displayed� in ����a the same patch has been zero padded up to

�������� and it is quite clear that a lot more details can be seen� Unfortunately� the

ringing e�ect is also magni
ed by the zero padding� In order to get better results�


rst we mask the �� � �� part with a Gaussian window of the same size� and then

we zero padd it into ���� ���� the FFT of the Gaussian masked� zero padded image

can be seen in image ����c� In order to compare it� the FFT of the Gaussian masked

image patch is presented in 
gure ���b�

��� Steerable Filters

The next step in the algorithm is to extract the direction of the motion� As we have

seen in the previous section� the Power Spectrum of the blurred image is characterised

by a central ripple that goes across the direction of the motion� In order to extract

this orientation a linear 
lter is applied� more speci
cally the second derivative of a

two dimensional Gaussian is used� In 
gure ����a we could see the second derivative
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of the Gaussian along the x�axis �G�
� �

��G
�x�
		 if we 
lter the Power Spectrum of a

blurred image with G�
� we are going to get maximum response when the ripple is

across the x�axis as it is in 
gure ���b� Therefore� in order to extract the orientation

of the ripple� we have to 
nd the angle  in which the 
lter of the second derivative

of a Gaussian � oriented at that angle �G�
�	 � is going to give the highest response�

The calculation of oriented 
lters has been a 
eld of interest in Computer Vision

and Image Processing research ����� In a lot of cases it is necessary to know the

orientation at which a 
lter is going to give maximum response� or to be able to

construct a 
lter at a speci
c angle� it has been proven that there exist families of


lters that are possible to be constructed based only on the responses of a minimum

set of basic 
lters� In order to 
nd the highest response of an oriented 
lter we could

apply the same 
lter at di�erent angles� changing the orientation by a d up until

all possible angles are covered� unfortunately� this is going to be time consuming�

because every time we apply a 
lter n�n it costs O�n�	 computations� Another way

is to construct the response at every possible angle based on the response of a small

set of orientations� This can be done for certain types of 
lters by applying them in a

few selected angles and then take the responses and interpolate among them in order

to get the wanted angle� Filters that can be constructed as a linear combination of a

few basis 
lters are called steerable� The functions that combine the basis 
lters are

called interpolation functions�

Fortunately the second derivative of the Gaussian G�
� belongs to such a family

����� and we can calculate its response at any angle  based on the responses of the

three basis �lters as shown in the left column of the table ���� in equation ���� we

could see the calculation� in table ��� at the right we could see the three interpolation

functions that are used�

�The dark area has the highest value and the bright the lowest
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RG�
� � ka�	RG�a � kb�	RG�b � kc�	RG�c �����	

G�a � ��������x� � �	e��x
��y�� ka�	 � cos��	

G�b � �����xye��x
��y�� kb�	 � �� cos�	 sin�	

G�c � ��������y� � �	e��x
��y�� kc�	 � sin

��	

Table ���� The three basis �lters and their interpolation functions
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Figure ����� The three masks used in the Steerable Filter calculation�

In 
gure ���� we have the pictures of the three basis �lters as we use them in the

algorithm for processing a �� � �� patch of the Power Spectrum� They are �� � ��

windows centred at zero with values at ���� ���

Assuming a ����� patch of the image� we take the logarithm of the Fourier Spec�

trum �FImg	
� then we calculate the response for each of the basis �lters G�a� G�b� G�c

�If we have use zero padding then the size of the Fourier Spectrum is larger�
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with the FImg �see equations ����� ����� ����	� and after that we use these responses

RG�a� RG�b� RG�c to calculate the responses for all the di�erent orientation in the

space ���� ����� with a step of �� using the equation ����� 
nding the maximum that

corresponds to the correct orientation� The computation cost in this stage for an

n� n image patch is O�n�	�

RG�a �

�X

x�y��

G�a�x� y	FImg�x� y	 �����	

RG�a �

�X

x�y��

G�b�x� y	FImg�x� y	 �����	

RG�c �

�X

x�y��

G�c�x� y	FImg�x� y	 �����	
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Figure ����� A zero padded image patch� its Fourier Spectrum� and then the Fourier
Spectrum collapsed

To sum up� assume we have a random dot picture� arti
cially blurred at a ���

angle with a magnitude of �� pixels� this is a quite simple situation and without the

presence of any noise� If we take an image patch �� � �� and we try to calculate

the optical �ow vector we have seen up to now the following steps� 
rst we zero

padd the image �up to ��� � ���� 
gure ����a	 then we take the logarithm of the

Fourier Spectrum �
gure ����b	 on which we apply the steerable 
lters to extract the
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orientation of the blur� which turns to be ���� in order to avoid distortions at the

border values we take only the central �� � �� part of the Fourier Spectrum� In the

next section we are going to see how and why we have to preprocess the signal in

order to extract the magnitude of the optical �ow vector�

��� Transform the Fourier Spectrum into �D

After we have calculated the orientation of the optical �ow vector� the next step is

to extract its magnitude� Unfortunately� the di�erent artifacts that appear in the

Fourier Spectrum of the blurred image make it really di�cult to distinguish the size

of the ripple and consequently the length of the blur� The artifacts are due to two

reasons� one is the windowing e�ect� which exist even after the use of a Gaussian

masking window� and the second is that the Fourier Transform of an unblurred image

has already a certain structure that in a lot of cases changes the appearance of the

motion blur ripple� Moreover� the magnitude is a scalar value� therefore it can be

extracted by an �D signal� The main idea is to create an �D signal that is an

approximation of the Fourier Spectrum transformed from �D into �D�

����� Collapse the Fourier Spectrum

In order to collapse the Fourier Spectrum we have to project every pixel into the

line that passes through the origin with the same orientation as the motion blur� As

can be seen in 
gure ����a a pixel P�x�y	 in the image is going to be orthogonally

projected into the line � � that passes through the origin O at an angle  with the

x�axis � at the point P��x� y	 at distance d from the origin� The main task here is to

calculate the distance d from the origin O� By applying the de
nition of the sin and

cos in the 
gure ����a we have that the distance d � x cos�	 � y sin�	�
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d � x cos�	 � y sin�	 �����	

Pε (x,y)
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Figure ����� Collapsing the �D data into �D along the orientation of the blur� and
the Fourier Spectrum of picture ����a

Since we work in the discrete space� the distance d has to be digitised� That means

that every pixel P �x� y	 as it is mapped into a position P��d	 along the direction of

the blur� it is going to a�ect in fact two values into the �D signal P��bdc	� P��bdc��	�

More speci
cally� assume that the pixel P �x� y	 is mapped at the distance d � ��� so

it is going to contribute ��" of its value at P���	 and ��" at P���	� That way the

mapping is muchmore accurate than by simply assigning the whole value of each pixel

into one position in the �D signal� Another issue that we have to take into account

is the distribution of the pixels along the line� The Fourier spectrum is calculated in

a square window� therefore the number of pixels that a�ect the central part is much

larger than the number of pixels that a�ect the two ends� In order to have a uniform

distribution� when we do the mapping of the pixels we assign in each position of the
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signal two values� the pixel value and a weight depending on the amount this pixel is

contributing� In the end we normalise the �D signal by dividing it by its accumulated

weight� The collapse of the ��� � ��� Fourier spectrum of 
gure ����b is a ���� �D

signal and can be seen in 
gure ����b�

����� Normalisation of the data

One of the properties of Fourier Transform is symmetry� that means that a signal of

n samples� is symmetrical around n
� � �� For example� for a signal P that has values

at �� � � � ����� the value P ��	 and P ���	 are unique and then P ��� � i	 � P ��� � i	

for i in �� � � � ���� Unfortunately when we collapse the �D Fourier spectrum into �D

this condition does not hold� First of all small numerical and round o� errors appear�

second� the di�erent artifacts that are due to the ringing e�ect and also due to the

features of the Fourier spectrum of the unblurred image aren�t symmetrical around

the direction of the motion blur� third� the weighting process contributes some more

round o� errors into the newly created �D signal� In order to achieve better results

we average the values of the �D signal with respect to the symmetry property� More

speci
cally� the value P���	 and P��
n
� ��	 are kept the same� and then for the rest of

the values the equation ���� is used�

P��
n

�
� � � i	 � P��

n

�
� � � i	

�
P��

n
� � � � i	 � P��

n
� � � � i	

�
� � i �

n

�
� � �����	

As can be seen in 
gure ����a the values at the borders are not as important as

in the middle� therefore in order to achieve better results we keep only the central

part of the signal� The next step is to shift in time in order to have the exact shape

of the Fourier Transform� The result can been seen in 
gure ����b�

�n is usually a power of ��
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Figure ����� The collapsed Fourier Spectrum normalised� and then shifted only the
central part�

��� Cepstrum

In order to proceed to the next step� which is the calculation of the magnitude� a

new tool needs to be de
ned� The power spectrum of an image is a signal by itself�

therefore di�erent features that appear in it can be extracted using classical signal

processing techniques� such as edge extraction� Fourier Transform 
ltering� and so on�

In order to identify the ripple that appears in the image a technique called cepstral

analysis is used�

����� De�nition of the Cepstrum

Di�erent de
nitions have been given for the Cepstrum depending on the di�erent

application that was used� The most common de
nition of the Cepstrum � can be

seen at equation ����� where F �
� v	 is the Fourier Transform of a function f�x� y	

���������� In other words� it is the Inverse Fourier Transform of the logarithm of

the Fourier Transform of the signal� The Cepstrum calculated by equation ���� is a

�Cepstrum is a juxtaposition of letters for the word Spectrum
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complex function� if we want to have only the real part then instead of the F �
� v	 we

take its magnitude jF �
� v	j �which is the case in this algorithm	 as in equation �����

For the sake of simplicity� a more general de
nition is given in Eqn� ���� ���� where

the Z�transform is used� In this case the Cepstrum of an �D signal is the Z�transform

of the natural logarithm of the Z�transform of the original �D signal

Cepff�x� y	g � F��flog �F �
� v		g �����	

Cepff�x� y	g � F��flog �� � jF �
� v	j	g �����	

cx�n	 �
�

��j

Z
lnX�z	zn��dz �����	

The cepstrum has been found useful in a whole set of di�erent applications� In

one dimensional signal processing it has been used in speech recognition for echo

detection� also early in image processing it has been used in nonlinear 
ltering for

image enhancement ����� where the logarithm of the Fourier Transform is amplifying

the information in the Frequency domain and the inverse Fourier Transform is used

to 
lter certain features� Another application in which it has been used is passive

Stereopsis ����� More speci
cally� in Monocular Stereopsis we take a picture with a

camera with two pinholes� creating therefore an echo in the image� as the echo is

extended across the x�axis we could process each line as an �D signal and detect the

echo � which is equivalent to the disparity � using the Cepstrum� Finally another

area where the Cepstral analysis has been used is in Optical Flow estimation when

the motion is known to be uniform across the X�axis and the only unknown is the

magnitude of the velocity vector ���� As we have see in section ����� the Fourier

transform of the motion blur PSF is of the form of a sinc ripple therefore it can be

easily identi
ed by the �D Cepstrum�

�This denition can be also easily extended into �D�
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����� Calculation of the Cepstrum

As we see in the previous sections we have transformed the logarithm of the Power

Spectrum of the blurred image into an �D signal� This new signal has approximately

the shape of a sinc ripple � distortions exist due to noise� windowing e�ect� and

the process of collapsing the signal itself� The real part of the Cepstrum is used

in order to estimate the length of the ripple� which is in fact the magnitude of the

velocity vector� The signal we have is an arti
cial average signal of the logarithm of

the Power Spectrum of the image� This has the advantage that the features in the

Power Spectrum that were there due to the unblurred image have been cancelled out�

leaving as a prominent characteristic the e�ect of the motion blur� As the �D signal

is collapsed across the direction of the motion it simulates a motion blur created by

uniform movement across the x�axis and has the appearance of the sinc� sinx
x
� as can

be seen easily by comparing the 
gures ����a � the collapsed signal� and 
gure ����

� the graphical representation of the sinc function�
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Figure ����� The Graphical representation of the sinc function
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����� Information extraction from the Cepstrum

In this algorithm we assume that the velocities are bounded between � to �� pixels

per frame� Such an upper limit is logical as the ripple can not be identi
ed if is

larger� with the use of a window as small as ��� ��� After the calculation of the �D

Cepstrum we search for a negative peak among the values in the interval ���������
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Figure ����� The Cepstrum of the image patch of image ����a

As can be seen from the plot in image ����� the 
rst 
ve values are heavily

in�uenced by the DC value of the cepstrum and therefore unable to give us a robust

answer� consequently this method works for exposure times that produce a blurred

image� There is no noise reduction or validation at this point� although di�erent

techniques have been proposed in order to makemore robust the magnitude extraction

����

��� Complexity analysis of the algorithm

The previously described algorithm calculates the velocity vector for a point I�x� y	

making use of the information at the n � n image patch around it� usually� the size

of the image segment n is a power of two� the most common sizes being n � ��
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or n � ���� Therefore� for an N � n � n image segment the algorithm works in

the stages� The Gaussian Masking which is O�N	� and the Zero Padding�� which

is O�N	� by just creating the new image patch� Then the most computationally

expensive part is the Fourier Transform� which takes O�N logN	��� The next step is

the calculation of the maximum response for the steerable 
lters this is three times

the application of the basis 
lters O�N	 and then O��	 for calculating the correct

angle� The collapsing of the Power Spectrum from �D into �D is linear� therefore the

cost is again O�N	 and the normalisation is O�n	� The last step of the calculation

of the magnitude of the velocity vector is the Inverse Fourier Transform of the �D

signal which has O�n log n	 computational cost� Finding the negative peak in the

space �������� is again constant�

As can be seen from the previous analysis for an image patch with a sizeN � n�n

the computational cost is O�N log �N		� In order to calculate the optical �ow of

a motion blurred image m � m in grid every � pixels with a window n � n we

have to apply the algorithm M � m�n
	

� m�n
	
times� therefore� the general cost is

O�MfN log �N	g	� One of the advantages is that the algorithm could be run in

parallel for every velocity vector as there is no need of sharing intermediate results�

Also it is easy to develop a hardware implementation of the algorithm� as the most

complicated step is the calculation of the Fourier Transform�

�	usually doubles the size from N � n� n to N � � �n� �n

��From now on we assume N to be the size of the zero padded segment�
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Experimental Results

In this chapter� the new motion blur algorithm developed in Chapter � will be anal�

ysed by evaluating its performance on several experiments involving blurred images

of various kinds� There exist two categories of input data that we are using� The


rst category consists of stationary images� natural or arti
cially created� that we

arti
cially blur by simulating the results of motion blur� in the second category� are

real images taken by a camera with the existence of relative motion between the

camera and the scene� The data from the 
rst category give us the ability to check

the validity of our results and perform error measurements� while the images from

the second category are ensuring that the algorithm is working on real world data� In

the last part of this chapter an error analysis is performed� on the arti
cially blurred

images for which the exact results are already known� For the images from the real

world only a qualitative analysis is possible as we don�t know the correct values before

hand�

��
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��� Arti�cial data

Two images have been used in this section� each one of them having di�erent prop�

erties� The 
rst one �
gure ���a	 is a real image taken by a stationary camera� which

has a whole set of di�erent features such as smooth surfaces� edges� and highly tex�

tured areas� with size ������� pixels� The second one �
gure ���b	 is a random noise

picture� having the same size with the previous one� This image is rich in texture�

As we discussed in the previous chapter the algorithm is more e�ective when there

exist a lot of texture� this is quite obvious in the results we get� where there exist

more incorrect estimations at the places where there are smooth surfaces�
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Figure ���� Two arti
cially blurred images �a	 a natural image �b	 a random noise
image�

Both images have been blurred with the same kernel� The motion is assumed to

be at a direction of ����� angle with the x�axis �or ����	 and with a length of ��

pixels� In order to create the arti
cial blur we convolve the image with a kernel as

in table ���� In real world the blur is created before the digitisation� therefore the

points that contribute to the 
nal value of the pixel exist in a straight line� When
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we try to reproduce the same results in the discrete space and we use an arbitrary

angle� we have similar results to the aliasing� In other words� if we digitise the line

into discrete steps with sudden changes� then we have a stair�case e�ect� In order to

avoid that� the table is created by using the technique of antialiasing lines� as can

be seen in table ��� where the pixels are weighted according to their distance to the

abstract� line�

� � � � � � � � � � � � �

� ��� � ��� � � � � � � � � �

� � ��� � ��� � � � � � � � �

� � ��� � ��� � � � � � � � �

� � � ��� � ��� � � � � � � �

� � � � ��� � ��� � � � � � �

� � � � � ��� � ��� � � � � �

� � � � � ��� � ��� � � � � �

� � � � � � ��� � ��� � � � �

� � � � � � � ��� � ��� � � �

� � � � � � � ��� � ��� � � �

� � � � � � � � ��� � ��� � �

� � � � � � � � � � � � �

Table ���� The convolution matrix for the motion blur� using antialising lines�

In the next pages we are going to present the Optical Flow maps for the previous

two images �
gure ��� a and b	� using di�erent con
gurations for the calculations�

in the following set of images the left one �a	 represents the natural image� and the

right one �b	 represents the random noise image� In the 
rst set of images �
gure ���	

we use a �� � �� window for every velocity vector we calculate � leaving therefore a

�� pixel border around the image where we can not estimate the Optical Flow� We

calculate the Optical Flow in a grid that has a density of ten pixels� and we zero pad

every window up to ��� � ���� As can be seen in image ���a� the orientation of the
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velocity is calculated correctly in most of the places� there exist of set of incorrect

estimations in the area of the lower rows especially between �� to ��� at the x�axis�

corresponding to the presence of the areas that are characterised as smooth surfaces�

The magnitude of the velocity is more or less uniform� The Optical Flow of the

random noise image �
gure ���b	 presents a uniform orientation estimation� there are

not any areas where we have results that deviate from the correct direction� However�

the magnitude estimation is not satisfactory� a fact which is mainly due to the size of

the window� which is not big enough so we could have enough data at the frequency

domain in order to calculate the cepstrum�
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Figure ���� The Optical Flow of the two arti
cially blurred images using a �� � ��
window with a step of �� pixels� only with zero padding

For the next pair of 
gures ����	 a bigger window is used� in this case a ���� ���

window� The same conditions as in the previous experiment were kept � a �� pixel

dense grid is used and the transformation to the frequency domain in done by using

simple zero padding that transforms the window from ��� � ��� into ��� � ����

That way� although a big part of the image stays unfortunately without any velocity
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estimations� a more robust Optical Flow map is calculated� In the left map �
gure

���a	 that represents the Optical Flow of the natural image� the estimation of the

orientation is mostly accurate� and there are only a few incorrect estimations for the

magnitude� this is mainly due to the bigger size which gives us much more data to

extrapolate the results� In the velocity map of the random noise image �
gure ���b	

we could see that the orientation is also correctly calculated although some incorrect

results exists in the magnitude estimation�
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Figure ���� The Optical Flow of the two arti
cially blurred images using a ���� ���
window with a step of �� pixels� only with zero padding

In order to get better results and to eliminate the ringing e�ect� a Gaussian

window is used for masking before we proceed into the velocity vector estimation�

The next 
gure ����	 presents the Optical Flow maps created by using a �� � ��

window which is masked with a �D Gaussian window �of the same size	 and then zero

padded up to ��� � ���� As can be seen in 
gure ���a� the Gaussian masking causes

an improvement into the orientation estimation by eliminating the ringing e�ect�

but it interferes with the magnitude extraction from the cepstrum� Considering the
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random noise image� the Optical Flow estimation is robust as far as it concerns the

orientation but in the magnitude estimation some incorrect results are still present�

The estimations are improved considerably by using an even bigger window� As it

is obvious from 
gure ��� the results are much more accurate� In the Optical Flow

map of 
gure ���a the orientation is correct and there is only a small neighbourhood

where there is a miscalculation of the magnitude� Almost the same is true for the

random noise image which its Optical Flow map is presented in ���b�
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Figure ���� The Optical Flow of the two arti
cially blurred images using a �� � ��
window with a step of �� pixels� with zero padding and Gaussian masking

To sum up the results from the simulated blurred images� we have to highlight

some points� First of all the blur that was chosen was completely random� a blur

at ��� with length �� pixels has no regularity and therefore the construction of it

creates some numerical errors� As it is going to be clear from Optical Flow maps of

the natural images� the results are more robust� Secondly� di�erent areas of the image

respond better in di�erent approaches� for example in certain areas the ringing e�ect

is dominant compared to the blurred image signal� and in others simply the zero
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Figure ���� The Optical Flow of the two arti
cially blurred images using a ���� ���
window with a step of �� pixels� with zero padding and Gaussian masking

pad is enough� In the next section we are going to demonstrate how the algorithm

works on data taken with a camera from the real world� We are going to come back to

arti
cially blurred images in the third section where we are going to do a quantitative

error analysis of the results�

��� Natural data

The images in this case have been taken by a camera and immediately digitised into

the computer� In order to have controlled motion between the camera and the scene

the following setup was used� a camera was mounted on a base pointing downwards�

and a plane �created by cardboard	 with random dots on top of it was used as the

main object in the scene� We moved the plane in di�erent directions� sometimes

having small objects on it� with a speed high enough to produce motion blur with

the preset exposure time of the camera� The setup can be seen at the drawing in


gure ���� in this case the plane is falling simply by its weight� During the di�erent
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motions a frame grabber has been used to freeze the image into the computer� the

speed was fast enough so that the picture is blurred and the Optical Flow map can

be calculated� In the following part we are going to see blurred images created by

di�erent motions and their equivalent Optical Flow map� The format� for economy

of space� consists of three di�erent blurred images� labelled �A	� �B	� �C	 in one


gure� and their respectively Optical Flow maps in a second 
gure� following the

same labelling� In all the experiments the same con
gurations have been used� we

calculate the Optical Flow on a grid which was dense ������ using a ����� window�

The patch of the blurred image was masked 
rst with a Gaussian window �to avoid

the ringing e�ect	 and then zero padded up to ��� � ����

C

V

Figure ���� The camera setup with the plane falling downwards�

The 
rst set of images is shown in 
gure ���� The 
rst image ���A has been

created by moving the plane in parallel with the y�axis with a steady and relative

small velocity� the algorithm has correctly estimated the orientation of the velocity

almost everywhere� as can be seen in the Optical Flow map in 
gure ���A� The

accuracy of the magnitude estimation is not clear� although if we compare it with the
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next image some qualitative results can be drawn� The second image� ���B� is created

again with a steady velocity parallel to the y�axis� this time at a higher speed� fact

which is easily noticeable by the length of the blur� Again the Optical Flow map� in


gure ���B� has an accurate estimation of the orientation and also gives an average

bigger magnitude for the velocity vectors� By comparing these two cases it is obvious

that the orientation estimation is correct and also the magnitude estimation shows

the di�erence between di�erent speeds� The third image ���C is created completely

di�erently� the random�dot decorated plane is left to fall free under the camera and

during that fall we take a snapshot� As can be seen from the blur lines the focus

of expansion is at the middle of the left side� and indeed the algorithm gives the

same results� In the Optical Flow map �
gure ���C	 we could see the velocity vectors

pointing at the point of expansion and have a gradually decreasing magnitude as they

reach that point�

The next set of images� created with free fall away from the camera� appears in


gure ���� The 
rst image ���A is taken very shortly after the fall begun� with the

focus of expansion at the centre of the image� this is easily identi
ed by the pixels

at the centre where there is almost no blur at all and the size of the random dots

relatively big compared with the dots in the other images� Accurately enough� the

map of the Optical Flow in 
gure ����A shows the velocity vectors to converge in the

middle where again their magnitude decreases� The middle image ����B	 was also

created by a falling plane� but this time the centre of expansion is at the left side in the

lower part� and the blur is not big as the random dots are almost distinguishable� In

fact� the velocity vectors in 
gure ����B are not very big and they correctly show the

point of expansion� The third image is created di�erently� it involves again uniform

motion across a line� although this time the angle with x�axis is almost at ���� This

image shows us that the algorithm can calculate the velocity vectors at an arbitrary

angle� The Optical Flow map as presented in 
gure ����C describes correctly the

orientation with correct magnitude in majority�
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Figure ���� Three Images with motion blur

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

(A) (B) (C)

Figure ���� The Optical Flow map of the previous images using a �� � �� window
with a step of �� pixels� with zero padding and Gaussian masking
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Figure ���� Three Images with motion blur
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Figure ����� The Optical Flow map of the previous images using a �� � �� window
with a step of �� pixels� with zero padding and Gaussian masking
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In the next set of images� some objects are placed on top of the random dot plane�

Again uniform motion parallel to the y�axis was used� but this time four small objects

were placed onto the plane� in order to see how they are going to a�ect the estimation

of the velocity map� In 
gure ����A we could see the 
rst image� where two circular

pieces of cork appear in the upper part� the corner of a rectangle at the middle of

the right side� and a small box in the middle of the lower part� In the Optical Flow

map in 
gure ����A we could see the disturbance in the estimation that was caused

by the lack of texture in these places� especially in the lower middle part� Exactly

where the small box is in the blurred image� the velocity map shows a deviation

at the orientation towards the right and the magnitude is incorrectly small� similar

but smaller disturbance exist at the right side at the middle where the corner of the

rectangle appears� The reason of this disturbance is also the lack of texture at these

points� The same results appear also in the second image �
gure ����B	 where the

snapshot was taken when the objects were translated towards the low left part of the

image compared with the ����A� Again in the Optical Flow map �
gure ����B	 the

velocity vectors are correctly calculated� except of the lower�left part of the image

where the small box appears� The third image of this set presents a di�erent kind

of motion� In this case �
gure ����C	 the random dot plane was rotated bellow the

camera creating a galaxy� like pattern� The centre of rotation is located at the

right side of the image slightly lower than the middle� The Optical Flow map �
gure

����C	 presents these results locating correctly the centre of rotation� assigning a very

small magnitude to it� and arranging the velocity vectors circularly around it�

The third set of images have two more images created by rotational motion� but

also an image created with a completely di�erent setup� The 
rst image �
gure

����A	 was created by moving the camera by hand horizontally across a self full of

books and binders� The image is rotated by ��� due to the way Matlab is handling

the images� taking that into account� the spiral binding of some of the books is quite

obvious� Also the lighting of the scene was low and therefore some of the features
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didn�t appear� in addition it is quite notable the lack of texture in a lot of the areas�

In spite of these problems the velocity vectors in majority have the correct orientation

and approximately the same magnitude� �
gure ����A	 results that agree with the

blurred image� The last two images are created as before by rotating the random�dot

plane under the camera� The middle image �
gure ����B	 is created by spinning

the plane in high speed and that�s how we get some almost continues blur lines� the

centre of rotation is at the upper right part� In 
gure ����B we could see the velocity

vectors having the proper orientation� and a rather big magnitude� The last instance�

����C� is taken with the plane considerably close to the camera and with a smaller

rotation speed� the centre of rotation is at the upper left corner� and at that point the

pixels are rather discrete� A smooth Optical Flow map is presented in 
gure ����C

with the vectors having the correct orientation� circular around the upper left corner

where the centre of rotation is� and with an almost constant magnitude�

There is a need to see the restrictions of this algorithm as well as its advantages�

As we have already seen� the more information we have� e�g� more texture� or bigger

window� the better the results� this introduces some constraints� First of all in a real

world application� the texture we have in a certain image is given� this can change

by examining the image at di�erent scales� as for example� a carpet could be seen as

a smooth gray surface� but if we zoom in we could have a very intricate pattern� In

any case� if the texture is not enough we could not detect the motion� this is to be

expected as any biological system has the same limitations� For example� if a uniform

surface is moving and we could not detect any features then we could not infer the

motion�

The second condition refers to the window size and has two side e�ects that ask for

contradicting solutions� First� of all if the orientation of the velocity vector changes

� as it is the case in rotation or free fall in the previously described examples� or in

the simple case that inside the same window we have two or more objects moving to

di�erent directions � then there isn�t one unique blur pattern to dominate the shape
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Figure ����� Three Images with motion blur
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Figure ����� The Optical Flow map of the previous images using a �� � �� window
with a step of �� pixels� with zero padding and Gaussian masking
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Figure ����� Three Images with motion blur

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

(A) (B) (C)

Figure ����� The Optical Flow map of the previous images using a �� � �� window
with a step of �� pixels� with zero padding and Gaussian masking
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of the Power Spectrum� For such a case we have to use an appropriate window size�

that assures approximately the same orientation of the motion blur for the entire

window� In such a case the window size has an upper limit� This condition comes

in contrast with the second side�e�ect� If the motion blur length is big enough then

it is not possible to have an approximate representation of the motion blur ripple in

the frequency domain� as we could see at most one or two periods of the ripple� and

therefore it would not be possible to infer accurately the magnitude of the motion

blur� The previously described problems show that the algorithm can not be used

blindly� Also in a lot of cases� although an approximation of the Optical Flow map

is obtained� we could not have accuracy� this makes the algorithm unsuitable for

applications such as complete deblurring� which needs an accurate estimation of the

motion blur PSF in order to restore the image� but it could still work on partial

recovery of the image and also in a series of other applications such as inference of

egomotion� time to crash estimation� moving obstacle detections and so on� where a

sparser set of estimations is needed� In the next section we are going to use some

arti
cially blurred images in order to measure the error in the estimated Optical Flow

map�

��� Error analysis

Every velocity vector �in the Optical Flow map	 consists of two numbers� the ori�

entation which is given as the angle with the x�axis in degrees� and the magnitude

measured in pixels� Therefore� the error analysis we are going to do� measures the

errors created in these two estimations� The magnitude estimation follows the orien�

tation estimation� using the calculated angle in order to compress the Power Spectrum

from �D into �D� consequently if there exist an error in the orientation of the vector�

this is going to propagate into the measurement of the magnitude� in order to avoid

that� we also calculate the errors of the magnitude assuming a correct angle estima�
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tion� The error estimations that are presented in the following pages were created

using the following methods� the Optical Flow maps were created on a grid with a

density of ten pixels� and every velocity vector was created using two di�erent sizes

for the processing window� �so� we could see the improvement when we use more

information �larger window size� for the calculations	� The 
rst column in every

di�erent method represents a window size of ��� �� pixels and the second ���� ���

pixels� There were 
ve di�erent variations of the algorithm that were applied� The


rst variation �columns one and two	 makes use of the complete algorithm with all

the preprocessing stages� �Gaussian Masking and Zero Padding	� and it is the most

computationally expensive� The second variation �columns three and four	 is using

only Zero Padding� while the third one �columns 
ve and six	 is using only Gaussian

Masking for the ringing e�ect� The fourth method �columns seven and eight	 has no

preprocessing at all� and all the calculations were applied at the raw data from the

blurred image� Finally the last two columns present error estimations for the magni�

tude assuming correct orientation calculation� For every experiment �each variation

with each size	 there exist ten error measurements that are presented � in di�erent

rows� The 
rst 
ve error estimations measure deviations from the correct angle� the


rst is the mean value of the total number of errors in the angle estimation� which

helps us to see how far from the correct orientation the general estimation points�

As the mean value sum up the errors� negative and positive errors average into zero�

therefore the mean of the absolute error is estimated in the second row� and gives

a measure of the absolute error� The third row presents the Standard Deviation�

and the fourth and 
fth rows the maximum and minimum error respectively� as the

error measurements are positive and negative these two estimations present the two

larger errors in each direction �clockwise and counter�clockwise	� All the angle error

measurements are estimated in degrees� The following 
ve rows have the same error

�The last variation with given orientation naturally doesn�t have any angle error estimation�
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estimations but this time for the magnitude of the velocity vectors measured in pixels�

The 
rst two tables ���� ��� have the error estimations for the blurred images

presented in 
gure ���a�b� In order to examine the in�uence of numerical errors

inserted by the blurring processes �the use of an antialiasing line	 the two images �

the natural image and the random noise pattern � are blurred with a diagonal line

�the �� � �� identity matrix	 and an error analysis is presented in tables ���� ����

ERROR Gaussian Padded Zero Padding Gaussian Masking No Preprocessing Known angle

Estimations 
�p ���p 
�p ���p 
�p ���p 
�p ���p 
�p ���p

Mean angle �

� ��
�� �
�� �
�� �
�� ��
	� �
�� �
�� � �

Mean kanglek �

� �

� �
�� �
�� �
�� �
�� 	
	� �

� � �

S� Dev� angle �
�� �
�� �
�� �
�� �
�� �
� �
�� �
	� � �

Max angle �	� 
� �� � �	� 
� ��� �� � �

Min angle ���� �
� ���� ��� ��	� ��� ���� ��� � �

Mean length ���� �	� �
�
 ���� ���� �	�� �	�� �
�� ���� �
��

Mean klengthk 	�� 
�� ��� ��� 	�	 	� 
�� ��� 	�
 
��

S� Dev� length ��� ��	 ��
 ��� ��� ��� ��� ��� ��� ���

Max length �	 �	 �	 � �� �� �	 �� �� 

Min length �� �� �� �� �� �� �� �� �� ��

Table ���� Error Estimation for the blurred image of 
gure ���a� the vectors were

estimated every �� pixels� For a more detailed description of the table refer to the

beginning of the section

The error estimations of the 
gure ���a are given in table ���� The qualitative
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observations that were made in section ��� can be veri
ed here� As can be seen�

in general the orientation is estimated much more robustly than the magnitude� In

average� the error is as small as one tenth of a degree �not possible to detect	 and at

most two degrees� when a small window ��� �� with only zero padding was used� an

improvement is also clearly detectable when we use a bigger window in every method�

The same results hold when we take the average of the absolute error� this time� as

we take into account every deviation from the correct orientation� the average error

is higher but it still stays in acceptable levels having as maximum error ��� degrees�

with no preprocessing and a relative small window� The standard deviation is small

in almost all the cases� As far as it concerns extreme values of error� we have a

positive deviation up to twenty three degrees �large number but rather rare as can

be seen from the Optical �ow maps in section ���� which is also appears in the worst

situation of no preprocessing and with the use of a small window�	 Rather interesting

in the table is the decrease of extreme errors with the use of a larger window� for

example the complete algorithm goes from ���� for a �� � �� window to ��� for

a ��� � ��� window� and similar results hold for the rest of the variations� The

magnitude errors are higher� but that is to be expected from the Optical Flow maps

presented in the section ���� When we could not 
nd a negative peak that signals the

length of the ripple usually the algorithm picks the lowest value� which is the starting

value �� pixels in this con
guration	� that way the minimum length error is �� pixels

for all the cases� Although in average we don�t have a major improvement when the

orientation is given �this is due to the lowest possible estimation of �� pixels that

still exist	 the maximum error decreases from �� pixels to � pixels for a ��� � ���

window� and from �� pixels to �� pixels for a �� � �� window�

Another way to see the distribution of errors is presented in 
gure ����� We have

created the error maps for di�erent cases by displaying the error estimations that

were used to construct table ���� The images ����a�b�c were created with a �� � ��

window� where the images ����d�e�f were created with a ���� ��� window� The 
rst
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Figure ����� The Error Map for the image ���a for the orientation �a�d	� the magni�
tude �b�e	� and the magnitude with given the orientation �c�e	� with a ����� window
�a�b�c	 and with a ������� window �d�e�f	� Darker areas indicate larger relative error

column �����a�d	 has the errors in the orientation calculated with using the complete

algorithm� the middle images �����b�e	 display the magnitude error estimated by the

same algorithm� while the last column �����c�f	 presents the magnitude errors when

the orientation is given� The absolute value of the errors was used� with white for

zero error� and black for the highest error value� also we have to mention that the

black represents a di�erent error value for each image and therefore� comparisons

between di�erent images based on the gray values can not be done� In order to

analyse the error results we have to compare the areas in the error maps with the

blurred images presented in ���a� In the 
rst image we could see that the general

error level is low with a high peak in two neighbouring areas� and by comparing
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these areas to the blurred image it is obvious that they are the places with minimum

texture and therefore not enough information� the same holds for the error map of the

larger window 
gure ����d� The magnitude error maps that are presented next have

a more random distribution of errors� mainly gray �by checking the table with the

average values�	 due to the inability to estimate the magnitude in some positions and

assigning the minimum value �� to them� some peak results appear here also� and

it is easily distinguishable where there are due to an orientation�estimation failure

�by comparing with the error map in next column	 and where there are not� An

improvement is obvious from the small to the large window� where in the ��� � ���

window the bigger error is due to the error in the orientation estimation�

The error estimations for the random noise image �
gure ���b	 are given in table

���� Once again an analysis of the table con
rms the observations from the Optical

Flow maps in section ��� for the ���b blurred image� Also� a comparison between

table ��� and table ��� highlights the importance of texture in the extraction of optical

�ow from the motion blur� In calculating the orientation of the motion blur the same

improvement as before can be seen with the use of a bigger window� although� as

the image is full of texture �random values	� there is not much improvement with

the use of di�erent preprocessing techniques� In general the average error �absolute	

holds about ���� to �� for the small window and from �� to ���� for the large� such

error values are not optically detectable in the image� However� when it comes to

the extreme values� we have a rather big improvement as they decrease from ��� for

the image in 
gure ���a with no preprocessing and with the small window� down to

��� maximum when we use only zero padding and the ��� �� window� considerably

more is the improvement for the negative di�erences� where from ���� for the natural

image as worst case we improve to ���� for the random noise one� In general the

extreme errors are radically reduced in the textured image because there exist no

places with uniform surfaces and not enough information� In the calculation of the

magnitude again we have some improvement� but not as much as in the orientation�
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ERROR Gaussian Padded Zero Padding Gaussian Masking No Preprocessing Known angle

Estimations 
�p ���p 
�p ���p 
�p ���p 
�p ���p 
�p ���p

Mean angle �
�� �
�� �
�� �
�� �
�� �

� �

� �
� � �

Mean kanglek �
�� �
�� �
�� �
	� �
�� �
�� �
	� �
�� � �

S� Dev� angle �
	� �
�� �
�� �
�� �

� �
	� �
�� �
�� � �

Max angle ��� 	� ��� ��� ��� 	� ��� �� � �

Min angle ��� ��� �� �	� ���� ��� ��� ��� � �

Mean length ���� ���	 ���� ���� ���� ���� ���	 ��	 ���� �	��

Mean klengthk ��� 	�� ��� 
�
 	�� 
�� 	�
 
�� ��
 
��

S� Dev� length ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Max length �
 �� �� �� �� �� �� �� �	 �	

Min length �� �� �� �� �� �� �� �� �� ��

Table ���� Error Estimation for the blurred image of 
gure ���b� the vectors were

estimated every �� pixels� For a more detailed description of the table refer to the

beginning of the section
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This is most probably due to numerical errors like the ones that have been analysed

in chapter three� In general the absolute error is smaller compared to the natural

image in 
gure ���b� The results can be better if we use some methods to discard

estimations that are not valid� which is here the major cause of error�

In order to analyse the error estimations of the algorithm without the complication

of the numerical errors that occur during the simulation of the motion blur �as much

as possible	� and under good conditions� we create two more blurred images� This

time the orientation of the blur is at a ���� angle with the x�axis and it has a

magnitude of �� pixels� this way we don�t use a simulation of antialiasing lines but

the �� � �� identity matrix which is a matrix �� � ��� with zero everywhere� except

at the diagonal where it has the value �
�

� ������� In 
gure ����a� b� we present

these two blurred images� they are produced by the same original images as the ones

used for the images in 
gure ���a�b but this time we use a di�erent blur kernel�
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Figure ����� Two arti
cially motion�blurred images �a	 a natural image �b	 a random
noise image� with the motion blur diagonal and with a magnitude of �� pixels�

For the 
rst image ����a� the error estimations are presented in table ���� Doing
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ERROR Gaussian Padded Zero Padding Gaussian Masking No Preprocessing Known angle

Estimations 
�p ���p 
�p ���p 
�p ���p 
�p ���p 
�p ���p

Mean angle ����� ����� ���� ���� ����� ����� ����� ����� � �

Mean kanglek ��	� ���� ���� ���� ��� ��� ���� ���� � �

S� Dev� angle ��� ��
� ��� ��	� ���� ��
� ���� ��	� � �

Max angle ��� �� ��� 	� ��� �� ��� �� � �

Min angle ��	� �	� ���� �� ��
� �
� ��� ���� � �

Mean length ���� ���	 ���� ���
 ��
 ���� ��� ���� ��� �

Mean klengthk ��� �� ��� ��� ��� ��� �� ��� ��� �

S� Dev� length ��� ��� �� ��� ��
 ��� ��� ��� ��� �

Max length �� �� �� 
 �� �� �� �� �� �

Min length ��� �� ��� ��� ��� �� ��� ��� � �

Table ���� Error Estimation for the blurred image of 
gure ����a� the vectors were

estimated every �� pixels� For a more detailed description of the table refer to the

beginning of the section
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a crude comparison with the error estimations for the blurred image at 
gure ���a�

some interesting results for the algorithm can be extracted� The estimation of the

orientation does not present any major improvementmainly because the average error

is rather small� but almost everywhere there exist a small improvement� There exists

a noticeable improvement at the extreme error values especially for the use of the

small window ��� � ��	� where we have an improvement from ���� down to ����

for the use of the complete algorithm and from ���� down to ���� for Gaussian

Masking only� It is clear that the Gaussian Masking is not as important as the zero

padding for the calculation of the orientation for the small window� Overall� with

no preprocessing at all� the estimation of the angle is worse than in any other case�

but it is still at an acceptable error level� The magnitude estimation� which is much

more sensitive to additive errors� presents a much more remarkable improvement �

here the need for enough information and for the use of 
ltering in order to suppress

the ringing e�ect are obvious� The average absolute error diminishes from ��� to ���

with the use of a ���� ��� window instead of a ��� ��� For the complete algorithm�

if we use a small window and no zero padding� the results are completely wrong� with

an average absolute error of ��� pixels� Extreme values are lower bounded by ���

when no negative peak is found� and it is remarkable that with the use of a large

window and Gaussian Masking we don�t reach this boundary and we get a minimum

of ��� Finally when the orientation is known for a large window� we have an absolute

success� which shows that the compression and the use of the cepstrum calculate the

correct answer�

Comparing the error results for this image with the error estimation we got for

the image ���a� help us to highlight some points� First� as noted earlier� the im�

provement is obvious from ��� pixels for a large window and the application of the

complete algorithm we decreases to ��� pixels for the same setting� and also� even

without that for the same setting� Also� even when we used zero padding only� the

maximum absolute error we get is ��� for a �� � �� window� Second� the size of
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the window is important� because when there isn�t enough information� even if we

know exactly the direction on which we need to compress the Power Spectrum� it

is rather di�cult to get completely correct answers� Third� if the artifacts from the

simulation are stronger than the blur ripple� even with given the orientation� the

magnitude estimation is not error free� Finally� in order to improve the results� an

iterative algorithm that estimates the value of the orientation by taking into account

the value of the neighbours can be used� and if there exists a minimum error for the

orientation an improvement to the magnitude estimation would be also achieved�

The last table� ���� contains the error estimations for the random noise image

blurred across the diagonal� with a magnitude of �� pixels as presented in 
gure

����b� The conditions in this case are rather good� as the image is full of texture and

the arti
cial blur has minimum side e�ects� As can be seen from a simple comparison

with the previous tables� we have the best results as far as it concerns the estimation

of the orientation of the motion blur� The average absolute error in orientation is

���� at worst� which is as low as the best in every other case� Where the best result in

average error is ����� which is unnoticeable� If we check the average error� which gives

us an estimation on how well the resulting motion vectors approximate the general

motion� we see an error of ���� which is simply unnoticeable� Moreover� when we

check the extreme error values� they are also much lower than the previous ones� with

an average ��� �counterclockwise	 and as small as ��� for the complete algorithm

and the use of a large window� for the positive values �clockwise	 the smallest is ��

with at most a ��� for small window and no Gaussian masking to control the ringing

e�ect� Overall� we could say that the full algorithm with a proper window size gives

minimal errors when enough information is given� The improvement continues also in

the magnitude estimation� With a ��� � ��� window size the average absolute error

stays close to zero ��� � ��� pixels� while for a small window and zero padding �so

enough information can be used	 it is ��� pixels� The extreme values are accordingly

small� ��� � pixels for the complete algorithm and a large window and similar values
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ERROR Gaussian Padded Zero Padding Gaussian Masking No Preprocessing Known angle

Estimations 
�p ���p 
�p ���p 
�p ���p 
�p ���p 
�p ���p

Mean angle ��	� ��	� ���� ��	� ��
� ��	� ���� ���� � �

Mean kanglek ��� ��� ���� ���� ���� ���� ���� ���� � �

S� Dev� angle ��	� ���� ���� ���� ��	� ���� ���� ���� � �

Max angle 
� �� ��� 
� �� �� �� 	� � �

Min angle �
� ��� �� �
� ��� ��� ��� �	� � �

Mean length ��� ��� ���
 ���� ��� ���� 	�� ��� � �

Mean klengthk ��� ��� ��� ��� �� ��� �� ��� � �

S� Dev� length ��
 ��	 ��	 ��
 ��� ��� ��� ��� � �

Max length  � ��  �� � �� 
 � �

Min length ��� �� ��� ��� ��� �	 ��� �� � �

Table ���� Error Estimation for the blurred image of 
gure ����b� the vectors were

estimated every �� pixels� For a more detailed description of the table refer to the

beginning of the section
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for the rest of the cases� It is worth noting that� given the correct orientation� even

the �� � �� window gives completely correct results�

To sum up� the results from the error analysis demonstrate the major properties

of the algorithm developed� When it is used with the appropriate data� the algorithm

estimates the Optical Flow map quite accurately� To get meaningful results certain

conditions have to be true� in the window that is used there must exist enough

information in the blur in order to produce the characteristic ripple in the frequency

domain� and the size of the window must be large enough so a few periods of the

ripple appear and not just one� which would make the ripple undetectable�
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Conclusions

Whenever there is relative motion between a camera and objects in a visual scene� the

camera�s image of the scene is blurred� When the relative velocity is large enough�

this motion blur can be quite signi
cant�

Most visual motion estimation algorithms developed up to now treat motion blur

as just one more source of noise� Most typically� these approaches either ignore

motion blur� or assume a restricted situation in which camera and object velocities

are relatively small�

In this thesis� a new approach to dealing with motion blur is formulated and

evaluated experimentally� An algorithm is presented for computing the optical �ow

from a single motion�blurred image� The algorithm makes use of the information

present in the structure imposed on the image by the motion blur�

The algorithm can be considered as operating in two steps� For each patch of the

image� the direction of motion is 
rst determined and then the speed in that direction

is recovered� The algorithm operates in the frequency domain where it exploits the

fact that motion blur introduces a characteristic ripple in the power spectrum� The

orientation of these ripples in the �D power spectrum is perpendicular to the direction

of the motion blur� A key element of the algorithm developed in this thesis is the

��
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robust and e�cient identi
cation of the orientation of these ripples by making use

of steerable �lters� In experimental results� the orientation of motion blur is often

recovered to within just a few degrees�

Once an accurate estimate of the oriention of the motion blur is known� the speed

of motion� or the spatial extent of the blur� can be computed using a modi
ed form

of cepstral analysis� The 
rst step in this procedure is to collapse the �D log power

spectrum into a �D signal along the line indicating the direction of motion� The

frequency of the ripple in the resulting �D signal can be identi
ed by taking a further

Fourier Transform and locating a negative peak�

This algorithm has been implemented and evaluated experimentally using arti
�

cial and natural images� It has the advantage of exploiting information in a motion�

blurred image that traditional motion analysis methods have tended to ignore� It has

the added advantage of providing an optical �ow map from a single image� instead

of a sequence of images� The algorithm also lends itself easily to e�cient parallel

implementation�

There are some limitations for the applicability of this algorithm that are worth

noting� Most importantly� the algorithm depends on the presence of texture in the

image� since the blur in a region with homogenous brightness is undetectable� The

magnitude of motion blur that can be detected is limited by the size of the image

patch being analyzed� Also� if the motion blur is too small� on the order of just a few

pixels� it becomes indistinguishable from other small�scale features� such as texture�

noise� or out�of�focus blur�

In the following section� suggestions are made for application of this work� along

with directions for future research in this area�
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��� Future Goals

There are a number of directions that future developments could follow� Among the

most obvious ones is the extension of the algorithm to deal with true colour pictures�

Another is a parallel implementation of the algorithm which would improve its speed

up to a point that it would be possible to run in almost real time for a whole image�

That would make possible the use of the algorithm for extracting the Optical Flow

from a moving camera on the �y� for navigational purposes�

More research on the windowing e�ect and the artifacts that it produces could lead

into the application of knowledge intensive 
lters in order to reduce its side�e�ects�

Also� the assumption that the image is noise free was made throughout this thesis� but

future developments of the algorithm will have to take into account the noise factor

and ensure the robustness of the algorithm in a noisy environment� One possible

solution could be to pre
lter the image in order to eliminate the noise� Another is to

take into account the characteristic of the noise in the frequency domain and adapt

the steerable 
lters and the cepstral analysis accordingly�

An open 
eld of research is the adaptation of the algorithm according to the

applications in which it could be used� Application speci
c issues should be addressed

such as speed versus accuracy� acceptable error levels� and others� Incorporating

the algorithm into a mobile robot architecture for self navigational purposes is one

application� in that case it is important to update the optical �ow 
eld fast in order

to get a general idea of the egomotion and also to identify moving objects that could

present a threat for the robot� while the accuracy is not as important� Another

application� with the opposite requirements� is the restoration of an image corrupted

by motion blur� The image is taken with an inappropriate large exposure time� for

example a security camera takes a shot of a speeding car� and the goal is to clean the

picture� In that case there is no time constraint� but we need to 
nd precisely the

motion blur parameters in order to reconstruct the motion blur convolution matrix
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and perform a deconvolution to restore the image�

In conclusion� the algorithm developed could be useful in a wide range of appli�

cations� providing the Optical Flow map where traditional algorithms fail�



Bibliography

��� J� K� Aggarwal and N� Nandhakumar� On the computation of motion from
sequences of images�a review� Proceedings of the IEEE� ����	��������� August
�����

��� Nicola Ancona and Tomaso Poggio� Optical �ow from �d correlation� pages
�������� IEEE� �����

��� Charles H� Anderson� Blur into focus� Nature� ������������ February �����

��� J� L� Barron� D� J� Fleet� and S� S� Beauchemin� Performance of optical �ow
techniques� International Journal on Computer Vision� ����	������� �����

��� Michael J� Black and P� Anandan� A framework for the robust estimation of
optical �ow� pages �������� IEEE� �����

��� C� Bonnet� Visual motion detection models�features and frequency� Perception�
���������� �����

��� Michael M� Chang� Murat A� Tekalp� and Tanju A� Erdem� Blur identi
cation
using the bispectrum� IEEE Transactions on Signal Processing� �����	������
����� Octomber �����

��� R� Fabian and D� Malah� Robust identi
cation of motion and out�of�focus blur
parameters from blurred and noisy images� CVGIP� Graphical Models and Image

Processing� ����	��������� September �����

��� D� J� Field� Relations between the statistics of natural images and the response
properties oo cortical cells� J� Optical Society of America� A ����	�����������
�����

���� William T� Freeman and Edward H� Adelson� The design and use of steer�
able 
lters� IEEE Transactions on Pattern Analysis and Machine Intelligence�
����	��������� September �����

���� R� C� Gonzalez and Wood� Digital Image Processing� Addison�Wesley� Reading�
MA�� �����

��



BIBLIOGRAPHY ��

���� Thomas L� Harrington and Marcia K� Harrington� Perception of motion using
blur pattern information in the moderate and high�velocity domains of vision�
Acta Psychologica� ����������� �����

���� Berthold K� P� Horn and Brian G� Schunck� Determining optical �ow� Technical
report� Massachusetts Institute of Technology� �����

���� Berthold Klaus Paul Horn� Robot Vision� MIT Press� McGraw�Hill� �����

���� David G� Lamb� Passive monocular range imaging with a multiple aperture cam�
era� Master�s thesis� Department of Electrical Engineering� McGill University�
Montreal� August �����

���� Jae S� Lim� Two�Dimensional Signal and Image Processing� Prentice�Hall� En�
glewood Cli�s� NJ� �����

���� D� Marr� Vision� Freeman� New York� �����

���� Wayne Niblack� An Introduction to Digital Image Processing� Prentice�Hall
International� Englewood Cli�s� NJ� �����

���� William K� Pratt� Digital Image Processing� John Wiley # Sons� Inc�� �����

���� John G� Proakis and Dimitris G� Manolakis� Digital Signal Processing� Macmil�
lan Publishing Company� ��� Third Avenue� New York� New York ������ second
edition� �����

���� Shimon Ullman� The interpetation of visual motion� Technical report� Mas�
sachusetts Institute of Technology� �����

���� Shimon Ullman� Analysis of visual motion by biological and computer systems�
In Firschein Oscar Fischler A� Martin� editor� Readings in Computer Vision�
chapter Recovering Scene Geometry� pages �������� Morgan Kaufmann Pub�
lishers� Inc�� �� First Street� Los Altos� California ������ �����

���� J� F� Vega�Riveros and K� Jabbour� Review of motion analysis techniques� IEE
Proceedings� �����	��������� December �����

���� Joseph Weber and Jitendra Malik� Robust computation of optical �ow in a multi�
scale di�erential framework� In International Conference in Computer Vision�
pages ������ �����

���� Yasuo Yoshida� Kazuyochi Horiike� and Kazuhiro Fujita� Parameter estimation
of uniform image blur using dct� IEICE Trans� Fundamentals� E����	�����������
July �����



List of Abbreviations

DCT� Discrete Cosine Transform

DFT� Discrete Fourier Transform

FT� Fourier Transform

FFT� Fast Fourier Transform

IFT� Inverse Fourier Transform

IFFT� Inverse Fast Fourier Transform

PSF� Point Spred Function

RMS� Root Mean Square
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