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Abstract—In this paper we present the computer vision
component of a 6DOF pose estimation algorithm to be used
by an underwater robot. Our goal is to evaluate which feature
trackers enable us to accurately estimate the 3D positions of
features, as quickly as possible. To this end, we perform an
evaluation of available detectors, descriptors, and matching
schemes, over different underwater datasets. We are interested
in identifying combinations in this search space that are
suitable for use in structure from motion algorithms, and
more generally, vision-aided localization algorithms that use
a monocular camera. Our evaluation includes frame-by-frame
statistics of desired attributes, as well as measures of robustness
expressed as the length of tracked features. We compare the fit
of each combination based on the following attributes: number
of extracted keypoints per frame, length of feature tracks,
average tracking time per frame, number of false positive
matches between frames. Several datasets were used, collected
in different underwater locations and under different lighting
and visibility conditions.

Keywords-Underwater feature tracking; Sensor fusion; Map-
ping; State Estimation; Performance evaluation techniques;

I. INTRODUCTION

The task of localization is one of the fundamental prob-

lems in mobile robotics. It is particularly important in any

scenario where robots are required to exhibit autonomous

behavior, since many navigation and mapping algorithms

require, or benefit from, the existence of some prior belief

about the robot’s pose. In the underwater domain the prob-

lem of localization is particularly challenging as it is a GPS

denied, highly unstructured natural environment, without

man-made landmarks. This paper presents an overview of

a six degree of freedom (6DOF) state estimation algorithm

for an underwater vehicle, and in particular, it presents an

analysis of the computer vision components that it relies

on. The described algorithm combines measurements from

an Inertial Measurement Unit (IMU) sensor and a camera in

order to accurately track the pose of the vehicle. An essential

part of this algorithm is feature tracking using a monocular

camera, and estimation of 3D feature positions with respect

to the camera frame. Our goal in this paper is to evaluate

which feature detectors, descriptors, and matching strategies

are most suitable for integration with the rest of the state

estimation algorithm. While our focus is directed towards

this particular algorithm, our evaluation is sufficiently in-

formative for other closely related problems, such as visual

odometry and structure from motion.

Figure 1. The Aqua vehicle starting a dataset collection run

The target vehicle is a robot belonging to the Aqua

family [1] of amphibious robots; see Fig. 1. It is a six-legged

vehicle capable of reaching depths of 35 m in remotely-

controlled or autonomous operation. It is equipped with three

IEEE-1394 IIDC cameras and an IMU. One of the primary

uses of this vehicle is to conduct visual mapping over

coral reefs. The state estimation algorithm, first proposed

by Mourikis and Roumeliotis [2] uses visual input from a

downward-facing camera to correct the errors resulting from

the double integration of the IMU signal.

II. RELATED WORK

Corke et. al [3] presented experimental results of an un-

derwater robot performing stereo visual odometry using the

Harris feature detector and the normalized cross-correlation

similarity measure (ZNCC). They reported that, after outlier

rejection, 10 to 50 features were tracked from frame to

frame, and those were sufficient for the stereo reconstruction

of the robot’s 3D trajectory, which was a square of area 30m

by 30m.

Barfoot [4] described a 6DOF pose estimation technique,

adapted from FastSLAM 2.0 [5], whose input was the odom-

etry and stereo images of a terrestrial mobile robot. SIFT

features were used as observations in the filter and were

matched via best-bin-first search in a kd-tree. The author

demonstrated through field experiments that the proposed

approach led to 0.5% to 4% localization errors over distances

of 40-120 meters.
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Newcombe and Davison [6], as well as Klein and Mur-

ray [7], have presented online, accurate 3D reconstruction

of small environments using a monocular camera. Their

tracking system uses the FAST detector and performs search

along epipolar lines in order to find matching pixel neigh-

borhoods.

The landscape of performance evaluations of feature

detectors and descriptors is certainly rich, as there has

been extensive related work in trying to experimentally

assess the degree of invariance of said detectors to affine

transformations. For example, Mikolajczyk and Schmid [8]

compared the following detectors: Harris corners, Harris-

Laplace, Hessian-Laplace, Harris-Affine and Hessian-Affine,

based on their repeatability, in other words, their ability

to consistently detect the same keypoints in two differ-

ent images of the same scene. As for feature descrip-

tors, their evaluation included SIFT [9], Gradient Location

and Orientation Histogram (GLOH), cross-correlation of

neighborhood pixel values, PCA-SIFT, moment invariants,

shape context, steerable filters, spin images, and differential

invariants. Some of these descriptors are low dimensional

while others are high. The evaluation criterion they used

in their experimental setup was precision and recall of

feature matches, where a ‘true‘ match was defined as having

small vector distance between the corresponding descriptors.

Their dataset included scenes that had different lighting and

geometric transformations, however, the images were not

successive video frames of the same scene, and they did not

capture underwater environments. The main conclusion of

the above work was that the high dimensional detectors, like

GLOH and SIFT were robust and most distinctive, regardless

of the detector used.

Closely related to our work is the quantitative comparison

of feature extractors for visual SLAM done by Klippenstein

and Zhang [10]. Their experimental methodology included

comparison of precision and recall curves of the Harris cor-

ner detector, the Kanade-Lucas-Tomasi (KLT) tracker [11],

and the SIFT detector. Their conclusion was that all detectors

could be tuned to perform well for visual SLAM, but in

particular, the KLT tracker was better suited for image

sequences with small baseline, compared to SIFT.

III. 6DOF STATE ESTIMATION OF AN AUTONOMOUS

UNDERWATER VEHICLE

The localization algorithm [2], [12] used is based on

the extended Kalman filter (EKF) formulation. It integrates

IMU measurements [13], thus providing direct (but noisy)

estimates of vehicle dynamics. Furthermore, by performing

feature correspondence it estimates motion parameters, and

obtains constraints, from the camera data, thereby correcting

the drifting IMU integration estimates; see Fig. 2 for a

schematic of the algorithm. The innovation of this algorithm

is that the state contains the latest pose of the IMU and

a list of m camera poses, instead of the vehicle pose and

the detected feature positions. As such, this approach does

not suffer from the dimensionality explosion common to

traditional SLAM algorithms. More formally, the state vector

that we want to estimate is the following:

x =
[

qIG bg vGI ba pGI qC1

G pGC1
... qCm

G pGCm

]

(1)

where qIG is the quaternion that expresses the rotation from

a global frame of reference to the IMU frame, which is

attached on the robot 1, vGI is the velocity, and pGI is the

position of the IMU frame in coordinates of the global

frame. bg and ba are the bias vectors of the gyroscope

and the accelerometer, respectively. The pairs {qCi

G pGCi
}

represent the transformations between the global frame and

the ith camera frame. The number m of such transformations

embedded in the state vector is bounded above for practical

purposes, and because features are expected to be tracked in

a relatively small number of images.

The main idea behind fusing information from these two

sources is that, provided we are able to track features in

the world and correctly estimate their 3D position with

respect to the camera, we can sufficiently correct the drifting

IMU pose estimates, which are obtained by integration;

More specifically, the above vector will be modified in three

phases: (i) The propagation phase, where IMU measure-

ments are integrated so as to predict the IMU pose. (ii)

The augmentation phase, which occurs when an image is

recorded. The transformation from the global frame to the

camera frame is appended to the right of the state vector. (iii)

The update phase, which occurs whenever a feature track

terminates. Then we can estimate its 3D position and correct

the state vector, specifically the IMU integration drift, based

on the constraints set by the motion of the feature.

In this paper we focus our attention on (iii), and in

particular, on the vision component of the system. Our goal

is to evaluate which detectors, descriptors, and matching

strategies enable us to estimate the 3D positions of features,

as quickly and accurately as possible, using a monocular

camera. We aim to use this estimator in underwater envi-

ronments, which are generally more challenging than most

of their indoor counterparts for the following reasons:

(a) They are prone to rapid changes in lighting conditions.

The canonical example that illustrates this is the presence

of caustic patterns, which are due to refraction, and the

non-uniform reflection, and penetration of light when it

transitions from air to the rippling surface of the water.

(b) They often have limited visibility. This is due to

many factors, some of which include light scattering from

suspended plankton and other matter, which cause blurring

and “snow effects”. Another reason involves the incident

1Recall that quaternions provide a well-behaved parameterization of
rotation. We are following the JPL formulation of quaternions; see [13],
[14]
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detection parameters were fixed for all experiments, so that

all combinations are treated in the same way.

A. Underwater Camera And IMU Datasets

We rely on 3 different datasets of synchronized camera

and IMU input in order to conduct our evaluation. The

datasets represent distinct underwater environments that

are relatively feature rich, and have been recorded under

varying illumination conditions. All datasets were recorded

at approximately 10 meters depth. The frame rate of the

downward-looking camera was set at 15Hz and each image

is (after undistortion and cropping) 870 × 520 pixels. The

camera is a PointGrey Dragonfly Hi-Color 1024×768 pixels.

The IMU sensor we used was a MicroStrain 3DM-GX1, and

its sampling rate was set at 50Hz. Both sensors are on board

of one of the Aqua family of amphibious robots [1]. More

specifically:

Figure 4. Sample images from each dataset

Dataset1 features a straight 30 meter-long trajectory,

where the robot moves at approximately 0.2 meters/sec

forward, while preserving its depth. The sea bottom is mostly

flat, and the robot moves about 2 meters over it. A white

30 meter-long tape has been placed on the bottom, both to

provide ground truth for distance travelled, and to facilitate

the straight line trajectory. Its 2600 greyscale camera frames

were collected in approximately 3 minutes.

Dataset2 is an L-shaped trajectory, where the robot goes

straight for about 7 meters, turns left, and then continues

straight for about 3 meters, while preserving depth. Again,

the sea bottom is mostly flat, and the robot moves about

2 meters over it, at speed 0.3 meters/sec. The difference

compared to Dataset1 is that in this case we have placed

ARToolKit [22] tags on the sea bottom, in order to be

able to get estimates of relative rotations and translations

between the robot and the tags, which will be useful as

ground truth when we try to estimate the 3D positions of

the features tracked. Its 600 greyscale images were collected

in approximately 45 seconds.
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Figure 5. Distribution of feature track lengths for two representative
combinations. The figure on the left shows the length distribution for the
SURF detector, and Approximate Nearest Neighbor matching. The one on
the right shows it for the FAST detector, matched by the normalized cross-
correlation score.

Dataset3 features a remotely controlled trajectory over a

coral reef, where the robot moves for 20 seconds at speed

0.2m/s. It is the most feature-rich and blur-free among the

datasets we have used, it consists of 300 images and it differs

from the previous two datasets in that the robot changes

depth.

B. Feature Track Lengths

The distribution of feature track lengths is shown in Fig. 5,

and it is a decaying curve for all combinations. The SURF

detector seems to track most features for an average of 5

camera frames, and it is virtually unable to do it for more

than 25 frames, using Approximate Nearest Neighbors as

the matching method. From the datasets we observed that,

given the almost constant forward velocity of the robot, each

feature is visible in the camera’s field of view for about 25

frames. This means that the combination mentioned above

can normally track approximately 1/5th of the real trajectory

of a feature. Fig. 6 shows that this tracking is very accurate.

C. False Positives

Figure 6 demonstrates the difference in accuracy between

the combinations involving SURF, and all the rest. Match-

ing FAST keypoints with the normalized cross-correlation

similarity score results in as many as 9% false matches,

while the same quantity appears to be 5% for SURF. This

difference is pronounced when the image has motion blur,

since the normalized cross-correlation similarity measure

does not take into account image intensity gradients of any

sort, so one should apply very aggressive outlier detection

schemes when using it.

D. 3D Feature Position Estimation

Offline processing of the ARToolKit tags that we placed

underwater on the bottom of the experiment area, showed

that the robot was swimming approximately 2.5 meters over

the bottom, mostly parallel to it, so we will treat that as
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Figure 6. Average ratio of false positive matches / all matches. High
value implies matching that is prone to outliers. SURF feature matching,
and Shi-Tomasi features matched with ZNCC appear to be overall the most
robust. All detectors did well on datasets 2 and 3, which were not blurry.
FAST and CenSurE were more prone to outliers on Dataset2, which had
the highest motion blur.
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Figure 7. Distribution of estimated feature depths from the first camera
frame in which they were seen.

ground truth for the depth of each feature. After removing

outlier paths using the epipolar constraints implied by Eq.

(10), we rejected 3D feature position estimates that were

outside the field of view of the robot, less than 0.5 meters

or more than 10 meters away from the robot. The distribution

of depths from the camera frame, for the remaining inliers is

shown in Fig. 7, which suggests that the majority of inliers

had depths that fell in the [1, 4] meter range.

E. Running Time

We compared the average time spent on keypoint ex-

traction and matching, normalized by the total number of

keypoints processed. The results were obtained on an Intel

Pentium Core 2 Duo at 1.6GHz and 4GB of RAM. The

OpenCV C++ library implementations were used for each

detector, descriptor and matching scheme. The results in

Fig. 8(a) clearly show that SURF and the Shi-Tomasi

detector spend approximately 1 millisecond on each feature,

while CenSurE spends 3 milliseconds. The latter is most

likely due to the fact that CenSurE computes keypoints

at all scales. Fig. 8(b) depicts a very significant differ-

ence between the running times of Approximate Nearest

Neighbor matching through either randomized kd-trees or

K-means, and normalized-cross correlation matching. This

is not surprising, as the latter has complexity O(nm) where

n,m are the number of features extracted from the previous

and the current image, respectively. On the other hand, kd-

trees are constructed in O(nlogn) and queried in O(logm).
Therefore, if real-time processing of images is a requirement,

limiting the number of features extracted by the detectors

becomes necessary.
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Figure 8. (a) Average feature extraction times per feature. CenSurE is the
slowest among the detectors that we evaluated. (b) Average feature matching
times per feature. The normalized cross-correlation similarity score (ZNCC)
is computed by a brute force comparison of all possible feature pairs, hence
it requires more computation time than Approximate Nearest Neighbors.
The time spent on computing the fundamental matrix is not included in
these matching times.

F. State Estimation

Figure 9 presents two illustrative examples of the state

estimation algorithm applied to Dataset3, in one case using

the SURF detector adjusted so that it detects approximately

500-600 features per image, and in the other case using the

the Shi-Tomasi detector, tuned so that it detects approxi-

mately 200-300 features. Less than half of those features

were matched from frame to frame, yet the robot’s trajectory

was reproduced at 1Hz camera frame rate for SURF and 3Hz

frame rate for Shi-Tomasi. The estimated trajectory and 3D

structure of the coral is shown in Fig. 9.
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Figure 9. (a) Estimated trajectory for Dataset3, using SURF and Approximate Nearest Neighbor matching. (b) 3D coral structure, estimated via Eq. (8)
along with the trajectory. (c) Estimated trajectory for Dataset3, using Shi-Tomasi features and ZNCC matching. (d) 3D coral structure

V. CONCLUSION

We performed an evaluation of combinations of different

feature detectors, descriptors and matching strategies for

the purposes of evaluating their suitability for our state

estimation algorithm, which we want to use in underwater

environments, in full 6DOF motion. We tested these combi-

nations based on four criteria of interest: length of feature

tracks, running time, false positive matches, and overall

ability to facilitate estimation of 3D positions of feature from

the camera frame. We used three underwater datasets that:

(a) are representative of the environments that we want to run

this algorithm in, (b) have sufficient lighting and motion blur

variations, and (c) provided us with some notion of ground

truth. The main conclusion of our evaluation is that the most

suitable combination for real-time processing would involve

either SURF keypoints matched via Approximate Nearest

Neighbor search, or Shi-Tomasi features matched via ZNCC.

On the other hand, the FAST and CenSurE detectors were

shown to be inaccurate in image sequences with high levels

of motion blur.
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