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Abstract

This paper presents an algorithm for the estimation of
optical flow from a single, motion-blurred, color image. The
proposed algorithm is based on earlier work that estimated
the optical flow using the information from a single grey
scale image. By treating the three color channels separately
we improved the robustness of our approach. Since first
introduced, different groups have used similar techniques
of the original algorithm to estimate motion in a variety of
applications. Experimental results from natural as well as
artificially motion-blurred images are presented.

1 Introduction

In a scene observed by a camera, motion blur may be
produced from a combination of the movement of the cam-
era and of the independent motion of the objects in the
scene. In many cases, motion blur is regarded as undesir-
able noise that is to be removed to render a clearer image of
the observed scene. Despite being regarded as a nuisance to
the photographer, studies have shown that motion blur in an
image has some practical interest in one of the fundamen-
tal problems of computer vision —the measurement of the
apparent motion in an image, referred to as optical flow.

Estimating the motion blur parameters is useful for two
different reasons. First, having an accurate estimate of the
blurring parameters, image restoration in the form of de-
blurring can be achieved [9]. Second, by calculating the
optical flow from a single motion blurred image, motion
parameters for separate objects in the scene as well as ego-
motion can be inferred.

Different applications have been suggested to benefit
from the motion blur estimation. Traffic cameras can infer
the speed of passing vehicles using only the motion blur,
thus avoiding detectable active sensing, such as radar. The
motion blurred images can further be cleaned up to provide
evidence in the form of licence plate numbers.

A methodology for the detection and subsequent correc-
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Figure 1. Motion blurred image.
tion of the above mentioned blur is also of interest at the
consumer level. This is due to the proliferation of digital
and cell-phone cameras and their use, which often results in
motion blurred photos in badly lit areas. Another applica-
tion, linked to the availability of cell phone cameras, is the
digital recording of business cards [18].

The next section discusses related work. Section 3
presents a brief overview of the effect of motion blur on
images. In particular we discuss how motion blur appears
in the frequency domain. Our approach is described in Sec-
tion 4. A short description of the grey scale algorithm is
discussed together with our extension to color images. Ex-
perimental results are then presented in Section 5. In the last
section, we present conclusions and discuss future work.

2 Related work

The problem of estimating motion in a scene has re-
ceived a lot of attention due to its broad application. The
application of optical flow methods includes not only the
problem of inferring the apparent motion of an observer and
objects in the scene, but that of inferring the structure of
the objects and their corresponding environment [2]. This
was shown to have practical interest in image segmentation
[16], surface structure reconstruction, inference of egomo-
tion and active navigation [11], all of which require the op-
tical flow as input information.

To date, various methods for computing the optical flow
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have been proposed, the most widely used being differential
methods. The first global differential method, introduced in
1980 by Horn and Schunck, consists of optimizing a func-
tion based on residuals from the brightness constancy con-
straint and a regularization term expressing the expected
smoothness of the flow field [12]. There have been many
extensions of this method, mainly varying the constraints
used to solve the problem.

Global differential techniques have the advantage of
yielding dense flow fields, yet are not as robust to noise as
are local approaches such as the Lucas-Kanade method [15]
which regards image patches and an affine model for the
flow field. There have since been studies evaluating hybrid
approaches that attempt to combine the main advantages of
global and local approaches [3].

A drawback to the above mentioned traditional algo-
rithms is that optical flow is calculated using a series of
consecutive images under the assumption that pixels keep
their brightness from one frame to the other, having changed
their position only. That is, it is assumed that each image is
taken with an infinitely small exposure time. Thus blurring
due to motion within a frame is disregarded or treated as an
additional source of noise.

Instead of being considered a degradation that is to be
removed using one of the many deblurring methods devel-
oped [1], it has been shown that motion blur in an image
may have some practical interest in fundamental computer
vision problems, such as in the measurement of the optical
flow [19].

In 1981, a series of psychophysical studies suggested
that the human visual system [10] is able to process infor-
mation about motion blur in order to infer information about
objects in the scene. This has motivated the development of
algorithms that take advantage of information encoded in
the motion blur. This motivation, in conjunction with the
use of a deblurring mechanism to distinguish features in a
specific image, gave rise to a novel approach for obtaining
information about motion in an image.

In 1995, an algorithm for extracting the parameters of
motion blur in a single image in order to compute the optical
flow was presented by Rekleitis. His approach relies heavily
on the information present in the frequency domain. In par-
ticular, it exploits the key observation that motion blur in-
troduces a ripple in the Fourier transform [19], from which
we may extract information about the magnitude and ori-
entation of the velocity vector given an image patch. This
algorithm can be used in a stand-alone manner or to com-
plement previous algorithms to address the issue of motion
blur in a sequence of frames instead of merely ignoring it.

There has since been research that builds on the ideas of
using information from motion blur. In 1996, Chen et al.
presented a computational model that attempts to emulate
the behavior of the human visual system in order to use it

in machine vision systems [5]. Further research on the hu-
man visual system carried out in 1999 by Geisler explores
another potential neural mechanism for resolving motion
orientation, which uses a spatial signal known as “motion
streak” created by a fast enough moving localized image
feature [8].

Aside from in-depth studies of the human visual sys-
tem, other methods for identifying motion blur parameters
from a single blurred image have been developed. In 1997,
Yitzhaky and Kopeika developed a method for characteriz-
ing the point spread function of the blur. Their identification
method bases itself on the concept that image characteristics
along the direction of motion are different from characteris-
tics in other directions [20].

There has also been research examining the usefulness
and limitations of Rekleitis’ approach of estimating blur pa-
rameters, which has been adapted in 2005 by Qi et al. to en-
hance optical character recognition (OCR) in blurred text.
Rekleitis’ algorithm has been shown to work for most blur
orientations and extents. However the average error estima-
tion of blur extent was shown to be quite large, not making it
suitable for OCR. Qi et al. thus adopt a different threshold-
ing technique in blur orientation estimation and further es-
timate motion parameters due to uniform acceleration [18].

The use of motion blur has also had an increasing num-
ber of applications in areas such as real-time ball-tracking
systems in live sports programs [7], in vehicle speed de-
tection [14], in object depth recovery [4], as well as in the
estimation of motion for a tracking vision system [13].

3 Motion Blur

As mentioned previously, most motion estimation algo-
rithms infer optical flow by considering a sequence of im-
ages. In addition, they assume that pixels maintain their
brightness in subsequent frames, their positions being the
only thing that changes. That is, they assume that each im-
age is acquired with a very small exposure time. But if this
does not happen to be the case, then with a somewhat large
exposure time, different points traveling in the scene cause
their corresponding projections on the image plane to affect
several pixels. Hence in the capturing of any single point, a
number of scene points get projected onto the image plane
during the time of exposure, each of them contributing to
the final color and brightness of the image point.

More formally, the motion blur can be described as the
effect of applying the linear filter:

B(z,y) = I(z,y) * h(z,y) )

where B is the blurred image, I is the image taken with
exposure time 7T, = 0, and A is the convolution kernel:
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Figure 2. (a) A color Image of random noise.
(b) The power spectrum of (a). (c) The same
image affected by an artificial motion blur. (d)
The power spectrum of the motion blurred
image.

0 <|z| <d cos(a) y = d sin(«)
otherwise
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where « is the angle of the motion that caused the blur, and
d = V, T, is the number of scene points that affect a specific
pixel. Given the convolution kernel, we can also produce
artificially blurred images, which can serve as ground truth
to test our approach.

In the frequency domain the convolution described in Eq.
1 results in the multiplication of the Fourier transform of
image I times the Fourier transform of the convolution ker-
nel h. It has been shown [19] that one prominent character-
istic of the convolution kernel in the frequency domain is a
ripple that extends perpendicular to the direction of the blur;
cf. Fig. 2d. This ripple is thus used to detect the direction
of the blur. In the most favorable case the observed scene
consists of random noise, as in Fig. 2a. In that case the
Fourier of the non-blurred image has no prominent struc-
ture, cf. Fig. 2b, and the detection of the optical flow is
very easy. Clearly when there is structure in the scene, the
optical flow detection is more challenging. The following
section presents an outline of the proposed algorithm.

4 Optical Flow Estimation

In order to apply our algorithm to color images we treat
the three color channels (red, green, and blue) as individual
grey scale images. The optical flow is estimated in each

color channel using the algorithm proposed in [19] and the
results are combined to form the final optical flow estimates.

4.1 Windowing and Zero-Padding

A significant source of error is the well studied ringing
effect. When we take the Fourier transform of an image
patch, the abrupt transition results in artifacts in the fre-
quency domain. To mitigate the ringing effect, each image
patch is masked using a 2D Gaussian function. Then, to in-
crease the frequency resolution of the Fourier transform, the
masked image patch, originally of size NV, is zero-padded to
size 2IN. However, if the patch pixel values are much larger,
the blur is then harder to detect, thus the difference between
the pixel value and the mean of the patch is zero-padded
instead [17].

4.2 Orientation Estimation

As seen earlier, the power spectrum of the blurred im-
age is characterized by a central ripple that goes across the
direction of the motion. In order to extract this orienta-
tion we treat the power spectra as an image and a linear
filter is applied in order to identify the orientation of the
ripple. More specifically the second derivative of a two di-
mensional Gaussian is used. The second derivative of the
Gaussian along the x-axis is G§ = %27(2;. In order to extract
the orientation of the ripple, we have to find the angle 6 for
which the response of the second derivative of a Gaussian
filter — oriented at that angle (Gg) — is maximum. Fortu-
nately, the second derivative of the Gaussian G belongs to
a family of filters called “steerable filters” [6], whose re-
sponse can be calculate at any angle 6 based only on the
responses of three basis filters.

The response of the second derivative of the Gaussian
at an angle 6 (RGY) is given in equation 3. The set of the
three basis filters is shown in the left column of the table 1
and in the right column we could see the three interpolation
functions that are used.

RGY = ka(0) RG24 + ku(0) RG2p + ke(0)RGae  (3)

4.3 Cepstral Analysis

If only one line of the blurred image is taken (across the
direction of the motion) then the blurred signal is equiva-
lent to the convolution of the unblurred signal by the step
function which in the frequency domain is transformed into
the sinc function (sinc(z) = 2£)_ The period of the sinc
pulse is equivalent to the length of the step function, which
is in turn equivalent to the velocity magnitude. If we take
the Fourier transform of the sinc function, its period appears
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Gaa = 0.921(222 — 1)e* | kq(0) = cos?(0)

Gop = 1.843zyet ky(0) = —2cos(0) sin(0)

Goe = 0.921(2y% — 1)e | ke(6) = sin*(0)

p=—(z+y?)

Table 1. The three basis filters and their interpo-
lation functions

(a) (b)

Figure 3. (a) The collapsed power spectrum
of Fig. 2d. (b) The power spectrum of the
collapsed power spectrum.

as a negative peak. To improve robustness, we compute the
magnitude of the velocity by using a 1D projection of the
power spectra onto the line across the velocity vector orien-
tation that passes through the origin.

To approximate the 1D signal, the power spectra is col-
lapsed from 2D into 1D. The resulting signal also takes on
the shape of the sinc function, because the ripple caused by
the motion blur is the dominant feature; cf. Fig. 2d. Ev-
ery pixel P(x,y) in the power spectra is mapped into the line
that passes through the origin O at an angle 6 with the x-
axis equal to the orientation of the motion, and at distance
d = x cos(0) + ysin(). The Fourier transform of the sinc
function is almost identical in shape to the one that appears
when we take the Fourier transform of the collapsed spec-
trum cf. Fig. 3a,b.

4.4 Color Image Optical Flow Estimation

The results from the three color channels are combined
as a weighted sum. Currently, there is a binary decision
to select if a channel contributes based on the response of
the steerable filters. If the difference between the maximum
and the minimum response of the steerable filter is not sig-
nificant, then the flow estimate from that channel for the
specific location is not considered. All the estimates that
are above a threshold then are weighted equally.

5 Experimental Results

The proposed algorithm was tested in a variety of syn-
thetic and naturally blurred images. The first results pre-
sented show the effect of using two different motions along
the red and the green channels. A random dot image was
used in order to maximize the effect of the motion blur.
If the response of the steerable filter was found to be non-
significant for a pixel, then its flow vector was not displayed
in the flow map. Figure 4a shows the color blurred image.
Distinct directions of motion are clear, vertical in the red
channel, and horizontal in the green channel. Figure 4b
presents a grey scale version of the same image; and Fig.
4c presents the optical flow estimated from the grey scale
image. As expected no significant motion was detected.
Figures 4d-f contains the optical flow estimated in the three
color channels. Distinct motion was detected along the di-
rection of blur for the red and green channels. Although this
example presented a most favorable case, it showcases the
importance of detecting motion blur along different colors.

The next experiments used natural images that were
blurred due to camera motion. The first image was taken
from the back of a moving train; cf. Fig. 5. The area be-
tween the train tracks closer to the camera was moving the
fastest and thus was the most blurred. As can be seen from
the estimates using the three color channels Fig. 5a-c in sev-
eral positions there was no estimate. By using a weighted
sum of the estimates we were able to recover most of the
optical flow; cf. Fig. 5d.

The second photograph was taken by panning the cam-
era following the motion of a group of bicycle riders; cf.
Fig. 5. Due to the camera motion the background was uni-
formly blurred while the bicycles and their drivers are not.
It is worth noting that the wheels of the bicycles were more
blurred and this was estimated by our approach. Due to the
size of the sub-window used, some of these contained more
than one motion. Figure 5a-c show the optical flow calcula-
tions from three color channels; while Fig. 5d presents the
cumulative results.

6 Conclusions

From the qualitative results presented above, the optical
flow was successfully estimated using a single blurred im-
age instead of the traditional sequence of images. The pro-
posed algorithm can be used in a stand-alone manner or can
be used to complement previous algorithms. The original
algorithm was extended to work with color images taking
advantage of the often redundant information that exist in
the three color channels.

One possible future direction is to employ the different
flow estimates for different colored objects as an additional
clue to object detection.
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Figure 4. (a) A color image artificially blurred. (b) Grey scale representation of (a). (c) The optical
flow estimated from the grey scale image. (d) Optical flow from red channel. (e) Optical flow from

green channel. (f) Optical flow from blue channel.

With regard to extending the algorithm to work with
RGB images, we have a few open questions at hand. Be-
cause we end up with three different optical flow maps as a
result of applying the original algorithm to the three chan-
nels, this allows us to detect different motion directions. We
ask the question as to whether different objects can become
segmented according to their color channel and whether this
leads to applications in object detection.

Another interesting problem would be to investigate the
effect of different color spaces in the optical flow estima-
tion. For example using the YUV or HSV color spaces as
opposed to RGB. Perhaps this would give us a different per-
spective on the effect of color, and may or may not be used
in conjunction with the RGB results in order to facilitate the
detection of objects according to their color channels.

Chromatic aberrations in digital images is another area
where the proposed technique can find applications. As the
different channels are affected differently, the optical flow
estimates could potentially identify the discrepancy and im-
prove end results.

Other goals include completing the process of filtering
outliers. We have yet to determine whether carrying out the
filtering before or after combining the flow maps will yield
more accurate results, if at all.
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Optical Flow, Red Channel
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Optical Flow, Green Channel
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Figure 5. (a) Optical flow from red channel. (b) Optical flow from green channel. (¢) Optical flow from
blue channel. (d) Optical flow from combining information from the three color channels.
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Optical Flow, Red Channel
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Figure 6. (a) Optical flow from red channel. (b) Optical flow from green channel. (c) Optical flow from
blue channel. (d) Optical flow from combining information from the three color channels.
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