Goal: To recover the trace, tangent and curvature fields.

Tangent field:  $(x(s), y(s)) \rightarrow (x'(s), y'(s))$ 

Curvature field:  $(x(s), y(s)) \rightarrow (x''(s), y''(s))$ 

Discretization of Orientation:

 $\theta_{\lambda}$  is the discrete orientation,  $\lambda=1,...,m$ 



$$\theta_{\lambda} - \pi/2m \le \theta^* \le \theta_{\lambda} + \pi/2m$$

Let the certainty of tangent with orientation  $\theta_{\lambda}$  at position  $(x_i, y_i)$  be:

$$p_i(\lambda) \in [0,1] \text{ for } i = 1,...,n; \lambda = 1,...,m$$

The orientation certainty vector is given by:

$$\hat{p}_i = [p_i(1), p_i(2), ..., p_i(m)]$$

Associate to each orientation vector element  $p_i(\lambda)$  a discrete measure of curvature  $\kappa_i(\lambda)$ .

Trace of Curve?

Singularities?



## Stage 1: Measurement

Convolution with linear operators to obtain initial tangent estimates at each position and orientation.

$$G(x,y) = LSF(x) \cdot e^{-y^2/\sigma_y^2}$$
  

$$LSF(x) = e^{-x^2/\sigma_1^2} - Be^{-x^2/\sigma_2^2} + Ce^{-x^2/\sigma_3^2}$$

## Stage 2: Interpretation

Threshold to find strongest convolutions?

Tangent  $\lambda$  is cocircular to tangent  $\lambda'$  iff  $\Gamma(\theta, \theta_t) = \Gamma(\theta_t, \theta')$  for some  $\theta, \theta', \theta_t$ .

Range of 
$$\theta$$
 is  $(\theta_{\lambda} - \epsilon/2, \theta_{\lambda} + \epsilon/2)$   
Range of  $\theta'$  is  $(\theta_{\lambda'} - \epsilon/2, \theta_{\lambda'} + \epsilon/2)$   
Range of  $\theta_t$  is  $(\theta_{ij} - \alpha, \theta_{ij} + \alpha)$ 

Discrete Cocircularity Condition:

$$|\Gamma(\theta_{\lambda}, \theta_{ij}) - \Gamma(\theta_{ij}, \theta_{\lambda'})| < \epsilon + 2\alpha$$

Measurement stage consists of convolutions against "line detectors".

With  $\theta_{\lambda i}$  the orientation of the operator at position  $(x_i, y_i)$ , the **normalized** convolutions

$$\{p_i(\lambda), i = 1, ..., n; \lambda = 1, ..., m\}, 0 \le p_i(\lambda) \le 1$$

provide an estimate of the "confidence" in tangent  $\lambda$  at position i.

Cocircularity support for tangent  $\lambda$  at position i:

$$s_i(\lambda) = \sum_{j=1}^{n} \sum_{\lambda'=1}^{m} r_{ij}(\lambda, \lambda') p_j(\lambda')$$

where  $r_{ij}(\lambda, \lambda') = c_{ij}(\lambda, \lambda')$ , the cocircularity coefficient.

Partition the neighborhood support set about tangent A into a discrete set of curvature classes  $\mathcal{K}_k(A), k = 1, ..., K$ .

If tangent A is cocircular to B and A is cocircular to C and B, C belong to the **same curvature class** with respect to A, then B is cocircular to C.

Revised cocircularity support function:

$$s_i(\lambda) = \max_{k=1,K} \sum_{j=1}^{n} \sum_{\lambda'=1}^{m} r_{ij}^k(\lambda, \lambda') p_j(\lambda')$$

where  $r_{ij}(\lambda, \lambda') = c_{ij}(\lambda, \lambda').K_{ij}^{k}(\lambda, \lambda').$ 

$$K_{ij}^{k}(\lambda, \lambda') = 1$$
 if  $\rho_{\min}^{k} \le \hat{\rho}_{ij}(\lambda) \le \rho_{\max}^{k}$   
= 0 otherwise.



$$\hat{\rho}_{ij}(\lambda) = \frac{d_{ij}}{2Sin(|\Gamma(\theta_l, \theta_{ij})|)}$$



Modify the consistency coefficients:

$$r_{ij}^{kk'}(\lambda,\lambda') = c_{ij}(\lambda,\lambda')K_{ij}^{k}(\lambda,\lambda')C_{ij}^{kk'}(\lambda,\lambda')$$

 $C_{ij}^{kk'}(\lambda,\lambda')=1$  if curvature class k of  $\lambda$  is "consistent with curvature class k' of  $\lambda'$  at j;

$$C_{ij}^{kk'}(\lambda,\lambda')=0$$
 otherwise.

$$A(p) = \sum_{i=1}^{n} s_i(\lambda) p_i(\lambda)$$

The  $p_i(\lambda)$ 's provide a measure of which tangents are chosen.

The  $s_i(\lambda)$ 's indicate how mutually consistent they are.

Idea is to iteratively update the  $p_i(\lambda)$ 's in order to maximize the average local support.