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Abstract

We develop a differential geometric framework for regularizing diffusion MRI data. The key idea is to model white matter fibres as 3D
space curves and to then extend Parent and Zucker’s 2D curve inference approach [Parent, P., Zucker, S., 1989. Trace inference, curva-
ture consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 823–839] by using a notion of
co-helicity to indicate compatibility between fibre orientations at each voxel with those in a local neighborhood. We argue that this pro-
vides several advantages over earlier regularization methods. We validate the approach quantitatively on a biological phantom and on
synthetic data, and qualitatively on data acquired in vivo from a human brain. We also demonstrate the use of the technique to improve
the performance of a fibre tracking algorithm.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction and related work

Diffusion magnetic resonance imaging (MRI) is a tech-
nology for measuring the random thermal (Brownian)
motion of water molecules in live tissues. In the case of
fibrous tissues, such as the white matter of the central ner-
vous system, the fibre structures restrict this diffusive
motion, and thus the resulting diffusion is maximal along
the orientation(s) of the underlying fibre(s) (Lin et al.,
2003). The diffusion MRI signal can thus be used to infer
the presence and geometry of white matter fibres. Whereas
the physical processes that underlie the acquisition of the
diffusion MRI signal are beyond the scope of this article
(see e.g. Basser et al., 1994; Le Bihan et al., 2001; Tuch
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et al., 1999), the essential idea is to first obtain a set of
raw diffusion weighted images by applying magnetic gradi-
ents in different directions. From these images, one obtains
an estimate of the 3D probability distribution function
(PDF) describing the diffusion of the water molecules at
a discrete set of locations (voxels) in a 3D volume. From
the PDF, the orientation distribution function (ODF) at
each voxel can then be calculated by computing the integral
of the PDF in the radial direction. The 3D ODF dataset
can then be used to perform higher-level processing tasks,
such as fibre tracking (e.g. Mori et al., 1999; Basser et al.,
2000; O’Donnell et al., 2002; Behrens et al., 2003; Jackow-
ski et al., 2005; Parker and Alexander, 2005; Campbell
et al., 2005).

In diffusion tensor imaging (DTI), the diffusion PDF is
modeled as a zero-mean 3D Gaussian distribution (Basser
et al., 1994). Because of the assumption of a Gaussian
model, DTI has a limited representational power in voxels
that exhibit partial volume averaging effects, such as voxels
where distinct fibres cross, or branch, or where fibres are
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locally parallel but have different curvature and torsion,
thus forming a ‘‘neck’’-like configuration. In such voxels,
the ODF can be relatively isotropic, and thus provide
ambiguous information about the orientations of the cross-
ing fibres. As a consequence there has recently been an
increased interest in high angular resolution diffusion imag-
ing (HARDI) (e.g. Tuch et al., 1999), which is used for
characterizing non-Gaussian diffusion processes. In partic-
ular, it can model ODFs with multiple maxima in voxels
where fibres cross or branch, thus overcoming certain lim-
itations inherent in the DTI representation. The disadvan-
tage of HARDI with respect to DTI is that it requires
longer acquisition times. Furthermore, both types of imag-
ing methods can suffer from acquisition noise. Different
algorithms exist to reconstruct the ODF given HARDI
measurements, including the q-ball imaging (QBI) tech-
nique of Tuch et al. (2003) and the recent use of spherical
harmonic series approximations to provide analytic expres-
sions for the ODF (Descoteaux et al., 2005; Özarslan et al.,
2005).

To illustrate aspects of DTI and HARDI, consider a
biological phantom created by overlaying two rat spinal
cords (Campbell et al., 2005), as shown in Fig. 1 (left).
The ODF reconstruction using DTI is shown in Fig. 1
(middle), and the reconstruction using QBI (Tuch et al.,
2003) from HARDI measurements is visualized in Fig. 1
(right). In both cases, the ODFs are shown with the mini-
mal inscribed sphere (MIS) subtracted, to better emphasize
the locations where there is evidence of orientation prefer-
ence. The DTI ODFs capture the orientation of each fibre
tract, but in the vicinity of the crossing, the ODFs are rel-
atively isotropic and thus ambiguous. The QBI reconstruc-
tion is better able to model the multiple orientations
present in the area of the crossing.

In this article, we develop a novel technique for regular-
izing diffusion ODF data, while allowing for multiple fibre
orientations at a voxel to be supported when appropriate.
Its main advantages are: (1) the possibility of representing
multiple ODF maxima at a location, as in the case of fibre
crossings and branchings (Fig. 1), (2) applicability to both
DTI and QBI ODF reconstructions, (3) estimates of curva-
ture and torsion at each voxel, which can be useful to guide
fibre tracking algorithms, and (4) numerical robustness in
Fig. 1. A biological phantom created by overlaying two rat cord spinal cords (C
reconstruction (Tuch et al., 2003) from HARDI data (right). Both ODF sets
the vicinity of sparse data. By ‘‘sparse’’ we refer to data
such as the phantom in Fig. 1, where the fibres of interest
pass through a relatively small number of voxels with
anisotropic ODFs, embedded in a volume with isotropic
ODFs that are known to describe only the background.
Such data can be challenging for vector diffusion regulari-
zation methods such as (Tschumperlé and Deriche, 2002),
because the central difference approximations used to com-
pute derivatives numerically can be unreliable.

Our algorithm is fundamentally different from other
methods in the literature, e.g. Tschumperlé and Deriche
(2002), Wang et al. (2004), and Martin-Fernandez et al.
(2004), which do not incorporate an explicit geometric
model of the underlying fibre geometry. We model white
matter fibres as 3D curves, and we pose the regularization
problem as one of 3D curve inference from an initial set of
ODFs. We carry out an extension of Parent and Zucker’s
2D curve inference framework (Parent and Zucker, 1989)
to 3D, where at each voxel, the value of the ODF in a
given orientation is related to the initial confidence in a
curve tangent with that orientation being present. In this
setting, curve tangents represent local fibre orientations.
Those orientations that are supported by other nearby
(local) orientations via a geometrical model gain confi-
dence, while others are suppressed. This is accomplished
by introducing a notion of co-helicity to model the compat-
ibility of each orientation at each voxel with those in a
local neighborhood.

The regularized ODFs produced using 3D curve infer-
ence are not a quantitative measure of diffusion, since the
algorithm sharpens the ODFs and does not preserve mean
diffusivity. However, the ODF maxima can be assumed to
be tangent to fibres. Thus, in the case of DTI data, the
curve inference algorithm not only performs regularization,
in the sense of smoothing noisy orientations, but it also
allows for the inference of high angular resolution ODFs
directly from the diffusion ODF computed using only the
single tensor model. This is an attractive feature when the
available diffusion MRI acquisition has either sparse diffu-
sion encoding directions, or low b values (acquisition
schemes suitable for HARDI reconstructions typically
require 100–500 diffusion encoding directions and b values
P3000 s/mm2). Furthermore, the discrete fibre curvature
ampbell et al., 2005) (left) yields a DTI reconstruction (middle) and a QBI
are shown with MIS subtraction, for ease of visualization.
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and torsion estimates obtained using the algorithm have
the potential to improve fibre tracking results in the pres-
ence of partial volume averaging effects. For example, they
provide valuable information to distinguish between the
cases where: (i) a single fibre is branching, (ii) two fibres
are crossing one another, or (iii) two distinct fibres are in
a ‘‘neck’’-like configuration. Finally, the 3D curve infer-
ence algorithm can take as input not only diffusion ODFs
(DTI or HARDI reconstructions), but also any ODF data-
set, including, for example, fibre ODFs (Tournier et al.,
2004).

This article is organized as follows. We begin with a
brief review of related work on diffusion MRI regulariza-
tion in Section 1.1. We then introduce the notion of
co-helicity to model the local compatibility between fibre
orientations in Section 2. In Section 2.3 we show how this
can be used to define average local support, which in turn
can be maximized using relaxation labeling techniques
(Rosenfeld et al., 1976; Hummel and Zucker, 1983). This
results in an algorithm that extends Parent and Zucker’s
2D curve inference approach (Parent and Zucker, 1989)
to the case of 3D ODF data. We discuss implementation
details in Section 3 and present several experimental results
on DTI and HARDI data obtained for the rat spinal cord
phantom, on in vivo human brain data, as well as on syn-
thetic data in Section 4. We also demonstrate applications
of the regularized ODFs to fibre tracking in the phantom
dataset as well as in the in vivo brain dataset. We discuss
these results in Section 5 and conclude with Section 6.

1.1. Related work

In this subsection we provide a brief review of related
work on diffusion MRI regularization. Earlier techniques
include the spaghetti plate model of Poupon et al. for the
regularization of DTI data, where local curvature measures
are integrated along the length of a white matter fascicle
(Poupon et al., 2000). Martin-Fernandez et al. (2004) regu-
larize the six individual elements of each DTI tensor using
a six-dimensional, multivariate Gaussian Markov random
field (MRF) framework. Wang et al. (2004) propose the
novel idea of simultaneously estimating and regularizing
DTI tensors directly from raw data images. Coulon et al.
(2001) approach the DTI regularization process in two sep-
arate steps. First, they regularize the orientation fields
using an adaptation of variational methods for diffusion
of vector data on non-flat manifolds (Chan and Shen,
1999; Tang et al., 2000). Second, they use a scalar non-lin-
ear anisotropic diffusion process to regularize each tensor
eigenvalue separately. Tschumperlé and Deriche (2002)
propose a flow algorithm using variational methods for
regularizing DTI data, where the smoothing of diffusivities
(the eigenvalues of the diffusion tensor) is separated from
the smoothing of orientations (the eigenvectors). They
introduce a novel extension of the Perona–Malik diffusion
scheme (Perona and Malik, 1990) to vector valued data,
with the constraint that orthonormality between the eigen-
vectors at each location is preserved. In more recent work,
Chefd’Hotel et al. (2004) develop related ideas, where these
constraints are handled by restricting the data to lie on
suitably defined manifolds.

All of the above algorithms have the inherent limitations
that: (1) they were designed explicitly for DTI data and
cannot be trivially extended to handle HARDI data; and
(2) they assume (explicitly or implicitly) a single fibre orien-
tation at each voxel and thus cannot handle branchings or
crossings. To our knowledge the only algorithms which
address these concerns, at least in part, are those proposed
in Ramı́rez-Manzanares and Rivera (2003), Chen et al.
(2004), and Cointepas et al. (2002). Ramı́rez-Manzanares
and Rivera (2003) express the observed tensors as linear
combinations of a set of highly anisotropic basis tensors
and minimize a cost function to recover the coefficients
of the combination. Chen et al. (2004) propose an algo-
rithm for regularizing HARDI data using a variational
method where the diffusion profile at each voxel is approx-
imated with a spherical harmonic series. Cointepas et al.
(2002) use a spin glass framework to minimize a global
energy of a fibre map, given the diffusion data. Whereas
some of these latter methods have been validated on syn-
thetic data, few (or none) have been demonstrated on a
biological phantom with known ground truth fibre
orientations.

2. 3D curve inference

Owing to the importance of visual information carried
by curves in images, recovering their trace has been recog-
nized as an important problem by the computer vision
community. A prominent example is the 2D curve infer-
ence framework introduced by Parent and Zucker (1989),
where the problem is cast as one of recovering likely trace,
tangent and curvature fields, given initial measurements of
curve tangent estimates. This problem is then solved using
a relaxation labeling mechanism (Rosenfeld et al., 1976;
Hummel and Zucker, 1983) where local curve tangents that
are well supported (via a notion of co-circularity between
nearby tangents) gain confidence, while others are
suppressed.

More recently, extensions have been introduced to cre-
ate new models for contour-based stereo correspondence,
in which orientation disparities are used in conjunction
with positional disparities in order to recover 3D space
curve structure from two 2D images (Alibhai and Zucker,
2000; Li and Zucker, 2003). Using local Frenet approxima-
tions of 3D curves, considerations from projective geome-
try define the compatibility between pairs of candidate
matches (Li and Zucker, 2003).

Related ideas have been introduced towards the infer-
ence of texture flow patterns, which play an important role
in perceptual organization (Ben-Shahar and Zucker, 2003).
Here the authors carry out a geometrical analysis of texture
flow, and introduce an algorithm for the regularization of
‘‘noisy’’ 2D orientation fields. They demonstrate many



Fig. 2. An illustration of co-helicity between three helix tangent vectors,
specified at three distinct points on helix a(t).
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advantages over traditional orientation diffusion schemes,
such as the ability to deal with missing information, and
the ability to handle multiple dominant orientations at
the same location. Ideas related to curve inference have
also been considered within the tensor voting framework
(Medioni et al., 2000).

Inspired by these developments, we introduce a differen-
tial geometric framework for 3D curve inference. It is moti-
vated by the consideration that contextual information is
key to the interpretation of 3D orientation data. This con-
textual information is integrated locally through geometri-
cal constraints (described below), in order to obtain reliable
estimates of likely curves passing through a given location,
together with estimates of their curvature and torsion.

We assume as input a 3D orientation distribution func-
tion sampled on a regular (typically rectangular) 3D lattice.
We obtain estimates of the trace, tangent, curvature and
torsion fields of curves in the 3D volume by using a notion
of co-helicity between a set of three tangents specified at
three locations. This is the natural extension to 3D of Par-
ent and Zucker’s co-circularity constraint between a pair of
tangents in 2D (Parent and Zucker, 1989). In this frame-
work, an osculating helix (which has constant curvature
and constant torsion) is used to locally approximate a
curve passing through a given location.

We now review some basic properties of a helix. We then
provide a definition for co-helicity and present an algo-
rithm for determining co-helicity between three orienta-
tions, specified at three distinct locations. The notion of
co-helicity is then incorporated into a relaxation labeling
scheme, which allows for local contextual information to
be integrated using geometric constraints.
2.1. Properties of a helix and co-helicity

A circular helix is a curve inscribed on the surface of a
cylinder, such that at all points on the curve, the associated
tangent vector forms a constant angle with the cylinder’s
axis. Consider such a helix, a(t), parametrized by t, with
its axis coinciding with the z-axis. Its equations and those
of its unit tangent and unit normal are given by

aðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ ¼ ðr cosðtÞ; r sinðtÞ; ctÞ; ð1Þ
a0ðtÞ
ka0ðtÞk ¼

ðx0ðtÞ; y0ðtÞ; z0ðtÞÞ
kðx0ðtÞ; y0ðtÞ; z0ðtÞÞk ¼

ð�r sinðtÞ; r cosðtÞ; cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p ; ð2Þ

a00ðtÞ
ka00ðtÞk ¼

ðx00ðtÞ; y 00ðtÞ; z00ðtÞÞ
kðx00ðtÞ; y 00ðtÞ; z00ðtÞÞk ¼ ð� cosðtÞ;� sinðtÞ; 0Þ:

ð3Þ
Here r is the radius of the helix and c is a constant defining
the vertical separation of the helical loops (measured along
the helix axis). Three distinct tangents along the helix can
be used to illustrate the notion of co-helicity, as demon-
strated in Fig. 2. Let P be the plane orthogonal to the axis
of helix a(t). Consider three distinct points on a(t), i.e. a(t1),
a(t2) and a(t3), with associated tangent vectors a 0(t1), a 0(t2),
and a 0(t3). The orthographic projection of the helix onto P
is a circle (shown with a dashed curve), and the projections
of a 0(t1), a 0(t2) and a 0(t3) onto P are labeled P(a 0(t1)),
P(a 0(t2)) and P(a 0(t3)), respectively. These three projections
are co-circular (Parent and Zucker, 1989), since they are all
tangent to the same circle in plane P.

Definition 1 (Co-Helicity). Let three vectors v1; v2; v3 2 R3

be specified at three distinct locations p1; p2; p3 2 R3. Then
(v1,p1), (v2,p2) and (v3,p3) are co-helical if and only if there
is a helix which:

(1) passes through p1, p2 and p3,
(2) has tangent vectors at these locations that are parallel

to ±v1, ±v2 and ±v3, respectively.

This definition is based on the orientations ±v1, ±v2 and
±v3 instead of simply the directions v1, v2 and v3 to reflect
the fact that water molecule diffusion is an antipodally
symmetric processes, i.e. diffusion along direction v is the
same as diffusion along direction �v (and thus diffusion
ODFs are always antipodally symmetric). It also reflects
the fact that it is necessary to model local fibre orientations
as opposed to fibre directions.

We now state the following propositions. Proposition 1
will be used for increased efficiency in the implementation
of our 3D curve inference algorithm (developed in the fol-
lowing subsection), and Proposition 2 will be used in the
proof of Proposition 3.

Proposition 1. Two tangents to a helix always form an equal

angle to the line joining their points of contact with the helix.

Proposition 2. Consider two unit tangents to a helix, a 0(t1)/

ia 0(t1)i and a 0(t2)/ia 0(t2)i. The unit difference vector between

them is equal to the unit normal vector a00ðt1þt2

2
Þ=ka00ðt1þt2

2
Þk to

the helix at aðt1þt2

2
Þ. Furthermore, this vector is orthogonal to

the helix axis.

Proof of Proposition 1. Consider two unit tangent vectors
to a helix. They are defined using Eq. (2) as a 0(t1)/ia 0(t1)i
and a 0(t2)/ia 0(t2)i. Their locations in space are given by
a(t1) and a(t2), according to Eq. (1). The vector d12 between
these locations is given by d12 = a(t1) � a(t2). It is straight-
forward to check that



Fig. 3. An illustration of the concepts used in the proof of Proposition 3,
as well as in Algorithm 2.2, in order to determine co-helicity between
(v1,p1), (v2,p2) and (v3,p3).
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a0ðt1Þ
ka0ðt1Þk

; d12

� �
¼ a0ðt2Þ
ka0ðt2Þk

; d12

� �
; ð4Þ

where ÆÆ, Ææ denotes the usual dot product in R3. h

Proof of Proposition 2. Again, consider two unit tangent
vectors to a helix, defined using Eq. (2) as a 0(t1)/ia 0(t1)i
and a 0(t2)/ia 0(t2)i. Their difference is

a0ðt2Þ
ka0ðt2Þk

� a0ðt1Þ
ka0ðt1Þk

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

�2r cos t1þt2
2

� �
sin t2�t1

2

� �� �
�2r sin t1þt2

2

� �
sin t2�t1

2

� �� �
0

2
64

3
75:

ð5Þ

The magnitude of this difference vector is

a0ðt2Þ
ka0ðt2Þk

� a0ðt1Þ
ka0ðt1Þk

����
���� ¼ 2r sin t2�t1

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p : ð6Þ

Dividing the difference vector (Eq. (5)) by its magnitude
(Eq. (6)) in order to normalize it to unit length yields

N ¼
� cos t1þt2

2

� �
� sin t1þt2

2

� �
0

2
64

3
75; ð7Þ

which is the unit normal vector at a t1þt2
2

� �
. Eqs. (1)–(3) de-

fine a helix whose axis coincides with the z axis. Clearly, N
has no z component, and hence is orthogonal to the helix
axis. h
2.2. Determining co-helicity

The use of an osculating helix as a local approximation
to an arbitrary (smooth) 3D curve allows for both curva-
ture and torsion to be captured. In this subsection we
explain how to fit a helical curve, if one exists, to three ori-
entations defined at three 3D locations, all within some
local neighborhood. These local helical curve approxima-
tions will later be used within the relaxation labeling frame-
work, described in Section 2.3, in order to infer the likely
curves (i.e. white matter fibres) that pass through a given
point in the 3D ODF dataset.

Proposition 3. Given three unit vectors v1; v2; v3 2 R3 spec-

ified at three locations p1; p2; p3 2 R3, it is possible to

determine whether or not (v1,p1), (v2,p2) and (v3,p3) are co-

helical. Furthermore, if they are co-helical, it is possible to

recover the parameters of the helix passing through p1, p2 and
p3 and having tangent vectors at these locations that are

parallel to ±v1, ±v2 and ±v3, respectively.

Proof of Proposition 3. Although there are several details in
this proof, the approach is quite intuitive. Fig. 3 serves as a
visual aid to the solution. The key idea is simply to use Prop-
osition 2 to uniquely define a putative helix axis given the
three candidate helix tangents and their locations, and then
to determine whether these are compatible with the proper-
ties of a helix, given the axis and the plane orthogonal to it.
A helix with an axis coinciding with the z-axis is a
parametric curve defined by Eq. (1). In particular, Eq. (1)
implies that the orthographic projection of the curve in the
direction of the axis onto the plane normal to the axis
(which coincides with the xy plane in this case) is a circle
with radius r, centered at the origin. Furthermore, the
parameter c determines the (constant) angle that the
tangent vectors to the curve make with the axis, as well
as the translation along the helix axis for a given increment
of the value of parameter t.

To determine whether or not (v1,p1), (v2,p2) and (v3,p3)
are co-helical (where p1, p2 and p3 are distinct), one needs
to demonstrate that there is a curve that satisfies the above
helix properties, which passes through p1, p2 and p3 and
which has tangent vectors at these locations that are
parallel to ±v1, ±v2 and ±v3, respectively.

Let us assume that such a helix curve exists. In general,
its axis will not be aligned with the z-axis, nor will it pass
through the origin. We use Proposition 2 to recover two
(distinct) normal vectors to the helix, from which we can
recover the helix axis, which is defined as the cross-product
of any two normal vectors of the helix. Once the helix axis
is recovered, one can verify the co-helical properties of
(v1,p1), (v2,p2) and (v3,p3). That is, the projections along
the axis of p1, p2 and p3 (which we call P(p1), P(p2) and
P(p3), respectively) onto P should lie on a circle, CP. The
center O of CP is a point through which the helix axis
passes (see Fig. 3).

Consider three unit-length line segments l1, l2, l3, defined
to be parallel to v1, v2, v3, respectively, and to be located at
p1, p2 and p3, respectively. The projections of l1, l2 and l3
onto P should be tangent to CP. As well, l1, l2 and l3
should make a constant angle with the helix axis. Finally,
consider a new coordinate system where the z-axis is
defined to correspond to the helix axis. The difference
between the z-coordinates of p1, p2 and p3 in this new
coordinate system should be consistent with both the
(constant) angle between each of l1, l2 and l3 and the helix
axis, as well as the angular separation of P(p1), P(p2) and
P(p3) along CP (which is equivalent to the parameter t in
Eq. (1), when 0 6 t < 2p).
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By the definition of co-helicity, if (v1,p1), (v2,p2) and
(v3,p3) are co-helical then the above properties will be
satisfied. Conversely, if they are not co-helical, then one or
more of these properties will not hold. h

We now present an algorithm (Algorithm 2.2) for deter-
mining whether or not (v1,p1), (v2,p2) and (v3,p3) in R3 are
co-helical, and if so, for recovering the parameters of the
helix. To speed-up the process, one can use Proposition 1
in a preprocessing step to reject non-co-helical triplets.

Algorithm 2.2. Determining co-helicity between (v1,p1),
(v2,p2) and (v3,p3).

Data: Three vectors v1; v2; v3 2 R3 at three locations
p1; p2; p3 2 R3.

Result: 1 if (v1,p1), (v2,p2) and (v3,p3) are co-helical, 0
otherwise.

(1) Define l1, l2, l3 to be unit-length line segments parallel
to v1, v2, v3, respectively, located at p1, p2 and p3,
respectively.

(2) (Testing for a special case) If l1, l2, l3, (p2 � p1),
(p3 � p2) are all collinear,
Return 1.

(3) For i = 1,2,3, define vtemp
i to be either vi or �vi, so

that the difference vectors vD1 ¼ vtemp
2 �

vtemp
1 and vD2 ¼ vtemp

3 � vtemp
2 are orthogonal to vec-

tors (p2 � p1) and (p3 � p2), respectively. Define a
vector n as the cross-product of vectors vD1 and
vD2. By Proposition 2, n is parallel to the axis of
the putative helix. For convenience, we assume
from now on that n is normalized to unit length.

(4) Compute the projections P(l1), P(l2) and P(l3) of l1,
l2, l3 onto P, the plane that has n as its normal vector,
in the direction n. Without loss of generality, we fix P
to be the plane that contains p1. Compute the projec-
tions P(p2) and P(p3) of p2 and p3 onto P in the direc-
tion n. By construction, P(p1) = p1. These projections
fix the value of the parameter r in the helix equation
(Eq. (1)). That is, r is the radius of the circle CP, lying
in P, passing through P(p1), P(p2), and P(p3), and to
which P(l1), P(l2) and P(l3) are all tangent.

(5) The center O of CP is determined by intersecting the
three lines lying in P that are normal to P(l1), P(l2)
and P(l3). Without loss of generality one can set the
parameter t (see Eq. (1)) corresponding to p1 to t1=0.
The parameter t2 of p2 can then be set to the angle
between the line O � P(p1) and the line O � P(p2).
The parameter t3 of p3 can be set in a similar way
to the angle between lines O � P(p2) and O � P(p3)
(see Fig. 3).

(6) One should then verify that l1, l2 and l3 make the
same angle with the helix axis n, and that this angle
is consistent with the values for r, t2 and t3 deter-
mined previously. In particular, let

/2 ¼
p
2
� arccosðminðhv2; ni; h�v2; niÞÞ:
That is, /2 is the angle between l2 and the plane P. /1

and /3 are defined in a similar manner using v1 and
v3, respectively. The equality /1 = /2 = /3 should
hold. Now let f2 = Æp2,næ. f1 and f3 are defined in
an equivalent manner using p1 and p3, respectively.
In other words, f1, f2 and f3 represent the projection
of p1, p2 and p3 onto the helix axis, or equivalently,
the z-coordinates of p1, p2 and p3 in a new coordinate
system where n gives the z-axis. Letting / = /1 =
/2 = /3, the following equalities should hold:

tanð/Þ ¼ f3 � f1

rðt2 þ t3Þ
;

tanð/Þ ¼ f3 � f2

rt3

;

tanð/Þ ¼ f2 � f1

rt2

:

(7) If one or more of the above steps fail (e.g. there is no
circle to which P(l1), P(l2) and P(l3) are all tangent in
step (4), or the equations in step (6) do not hold),
Return 0.
Else define the value of parameter c in the helix equa-
tion (1) by setting jcj = rtan(/). The sign of c is deter-
mined by the direction in which the helix winds
around the axis - clockwise or anticlockwise. Equiva-
lently, it can be set to the sign of Æn,v2æ. The curvature
of the helix segment is given by j = r/(r2 + c2) and
the torsion is given by s = c/(c2 + r2),
Return 1.
2.3. Relaxation labeling

Following Parent and Zucker (1989), we pose the prob-
lem of 3D curve inference as that of assigning confidence in
a set of labels associated with nodes in a graph, using relax-
ation labeling (Rosenfeld et al., 1976; Hummel and Zucker,
1983).

Let the graph consist of n nodes (i.e. 3D voxels), each
with an orientation distribution function f(h,/). Edges
are placed between any two nodes that interact, i.e. all such
pairs are viewed as neighbors. f is sampled so as to achieve
orientation likelihood estimates in m orientations, using a
uniform sampling of the surface of a sphere. The value of
m will depend on the desired angular resolution in the rep-
resentation of the data. These m orientations are associated
with the labels k. A quantity pi(k) is assigned to label k at
node i to indicate the confidence in that particular label
existing at node i. The value of this assignment is deter-
mined by

piðkÞ ¼
f ðhk;/kÞPm
k¼1f ðhk;/kÞ

; ð8Þ

so that 8i;
Pm

k¼1piðkÞ ¼ 1 and 0 6 pi(k) 6 1.
Following Rosenfeld et al. (1976) and Hummel and

Zucker (1983), this yields a space of weighted labeling
assignments K, given by
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K ¼ P 2 Rnm : P ¼ ðp1; . . . ; pnÞ; ð9Þ
pi ¼ ðpið1Þ; . . . ; piðmÞÞ 2 Rm: ð10Þ

In Parent and Zucker’s 2D curve inference framework, a
labeling P provides support si(k) for label k at node i given
by

siðkÞ ¼
Xn

j¼1

Xm

k0¼1

rijðk; k0Þpjðk0Þ; ð11Þ

where k and k 0 are labels associated with nodes i and j,
respectively, and where the rij(k,k 0)’s are the elements of
a matrix of compatibilities between pairs of labels, as
defined through a co-circularity constraint (Parent and
Zucker, 1989). In our work, we use a co-helicity constraint
defined between triplets of labels. Thus, the support func-
tion must be extended to use a higher-order compatibility
(see Hummel and Zucker, 1983), given by

siðkÞ ¼
Xn

j¼1

Xm

k0¼1

Xn

k¼1

Xm

k00¼1

rijkðk; k0; k00Þpjðk0Þpkðk00Þ: ð12Þ

Here rijk(k,k 0,k00) represents the compatibility (co-helicity)
between orientation k at node i, orientation k 0 at node
j and orientation k00 at node k, as determined using
Algorithm 2.2.

The goal of relaxation labeling is to find a consistent
labeling V 2 K, which is equivalent to solving a variational
inequality (Hummel and Zucker, 1983). In the case of com-
patibility coefficients rijk measured between triplets of
labels k, k 0, and k00, a labeling V is consistent if and only if

Xn

i¼1

Xm

k¼1

Xn

j¼1

Xm

k0¼1

Xn

k¼1

Xm

k00¼1

rijkðk; k0; k00Þpjðk0Þ

pkðk00Þ½piðkÞ � viðkÞ� 6 0; ð13Þ

for all P 2 K (Hummel and Zucker, 1983). The meaning of
this inequality is that a consistent labeling V must have a
total support greater or equal to that of any other possible
labeling P. Hummel and Zucker (1983) show that inequal-
ity (13) can be solved using gradient ascent on the average

local support function A(P)

AðPÞ ¼
Xn

i¼1

Xm

k¼1

piðkÞsiðkÞ: ð14Þ

They prove that if the matrix of compatibilities follows
certain symmetry conditions (which can be shown to hold
for our co-helicity compatibilities, determined through
Algorithm 2.2), and if A(P) attains a local maximum at
V 2 K, then V is a consistent labeling. Hence, for symmet-
ric compatibilities the problem of finding consistent label-
ings reduces to that of finding local maxima of the
objective function A(P). The method for finding local
maxima of A(P) follows Algorithm 8.2 in Hummel and
Zucker (1983), as well as the radial projection method de-
scribed in Appendix A of Parent and Zucker (1989).
Algorithm 8.2 is an iterative one, and as the iterations
progress, the labeling of the network approaches consis-
tency, i.e. the ODFs that the network represents become
more and more regularized. In practice it may not be nec-
essary to achieve a consistent labeling for the ODFs to be
sufficiently regularized. In fact, Algorithm 8.2 can be used
as an any-time algorithm that can be stopped after any
number of iterations have completed, once a desired level
of regularization is achieved. In Section 5, we address the
issue of how to determine appropriate amounts of
regularization.

3. Implementation issues

3.1. Quantization of location, curvature and torsion

The equations used throughout Section 2 must be
applied in the context of a discretized 3D volume, with dis-
cretized orientations at each location. In Section 2.3, we
examined the discretization of the space of allowable orien-
tations into a set of ‘‘labels’’. Here, we discuss quantization
of location, as well as the quantization of curvature and
torsion.

We treat each orientation estimate (label) in a given
voxel (voxels are assumed to be isotropic, i.e. cubic), as
being localized anywhere within a sphere of radius 1/2
the edge of a voxel, centered at that voxel. This has impli-
cations for the implementation of various parts of Algo-
rithm 2.2. As one example (there are many others), a pair
of orientations, one in voxel i and one in voxel j should
be considered to satisfy Proposition 1 if the difference in
the angle they make with the line joining the centers of the
voxels is less than h = arcsin(1/dij), where dij represents the
Euclidean distance between the centers of voxels i and j,
following an argument very similar to that presented in
Parent and Zucker (1989).

Following Parent and Zucker (1989), we implement a
discretization of the allowed range of variation of curva-
ture and torsion (the 3D extension of the curvature classes
in Parent and Zucker (1989)) in order to be able to distin-
guish between distinct curves that share a tangent. We
quantize the range between the maximum and the mini-
mum admissible curvature values into a set of intervals
(typically three to five), and the range of admissible torsion
values is discretized in the same manner.

Fig. 4 (left) shows an example of this discretization for a
torsion value of 0, and for a certain range of curvature val-
ues. It is also clear from this figure that there can be an infi-
nite number of helix curves with the same curvature and
torsion that have the central orientation as a tangent,
because of the additional degree of freedom given by rota-
tion around that tangent, in the plane normal to the tan-
gent. Thus, in addition to discretization based on
curvature and torsion values, it is necessary to perform a
discretization in the plane normal to the given orientation,
at equal angular intervals, as shown in Fig. 4 (right). Each
element of this discretization is referred to as a curvature-
torsion-normal class, or simply a class.

An orientation is considered to be a member of a class
when it receives maximum support through co-helical



Fig. 4. Left: An example of a discretization of curvature and torsion
around an orientation, as defined using a minimum and a maximum
curvature value and a torsion value of 0. Right: To achieve a meaningful
discretization, one needs to perform an additional subdivision at equal
angular intervals in the plane orthogonal to the orientation. In this
example, a set of curvature-torsion-normal classes are visualized, for a
given range of curvature values and a torsion value of 0.
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configurations within that class. To determine class mem-
bership for a given orientation, in a manner analogous to
the methodology of Parent and Zucker (1989), we measure
support independently by curvature-torsion-normal class.
To do so, given a total of C curvature-torsion-normal clas-
ses, we modify the support function (12) as follows:

siðkÞ ¼ max
c¼1;...;C

Xn

j¼1

Xm

k0¼1

Xn

k¼1

Xm

k00¼1

Qc
ijkðk; k

0; k00Þ

rijkðk; k0; k00Þpjðk0Þpkðk00Þ: ð15Þ

Here Qc
ijkðk; k

0; k00Þ is a binary-valued partition function
such that its value is 1 if label k at node i, label k 0 at node
j and label k00 at node k are co-helical with a helix that has
parameters (as determined through Algorithm 2.2) that
lie within the boundaries of curvature-torsion-normal class
c, and is 0 otherwise. The class number c that maximizes
(15) is recorded as the class which label k at node i is a
member of.

This notion of class membership allows the extension to
3D of the curvature consistency principle of Parent and
Zucker (1989). Since in principle it is possible for three
labels that belong to separate curves to be in a co-helical
configuration, it is desirable that only those co-helical
labels that belong to the same curve provide support to
each other. Stated in another way, one would like to
ensure that co-helical labels that belong in fact to distinct
curves do not provide support to each other. To do so, we
apply the relaxation labeling algorithm discussed in Sec-
tion 2.3, with the constraint that each label k will accumu-

late support according to Eq. (12) only if k 0 and k00 are

members of the same class as k. This is the 3D extension
of the curvature consistency principle introduced in Parent
and Zucker (1989). We refer to this extension as the 3D

curve consistency principle.
3.2. Computational efficiency

Determining co-helical configurations of triplets is com-
putationally expensive, even in small volumes. We obtain a
significant increase in efficiency by precomputing co-helical
configurations of triplets within a spherical neighborhood
of a given radius, and storing these in a look-up table. This
operation is carried out only once, offline, for a particular
choice of parameters. The parameters, which influence the
running time of the algorithm, include the number of orien-
tations modeled at each location (the size of the label set),
the choice of the discretization parameters, i.e. the number
of different classes, and the diameter of the spherical neigh-
borhood in which all pairs of voxels are considered neigh-
bors. As an example, with a label set of 100 orientations, a
neighborhood diameter of nine voxels, and a discretization
using five curvature intervals, three torsion intervals and
four normal rotation intervals, precomputing co-helical
configurations takes about 8 h on a 3.6 GHz Intel proces-
sor running Linux. Once co-helical configurations have
been computed, the running time of the algorithm is linear
in the number of voxels in the volume. With volume grids
of 128 · 128 · 63 voxels, using the same processor we typ-
ically obtain satisfactory regularization results within 6 h of
dedicated running time.
4. Experimental validation

In this section, we present a series of validation experi-
ments to demonstrate the performance of 3D curve infer-
ence. We provide qualitative and quantitative validation of
our algorithm using a biological phantom, as well as a syn-
thetic DTI dataset. We also provide regularization results
using DTI data and QBI reconstructions from HARDI mea-
surements acquired in vivo from a human brain. In particu-
lar, we show that regularizing the brain DTI data results in
ODFs that are qualitatively very similar to those obtained
with a QBI reconstruction (Tuch et al., 2003) from the
HARDI data. We also demonstrate that 3D curve inference,
as a preprocessing step, significantly improves the perfor-
mance of fibre tracking in the phantom as well as in the brain.

The 3D curve inference algorithm can use an arbitrarily
large label set. In our implementation we use a label set of
100 unit direction vectors distributed isotropically over a
hemisphere, obtained using an electrostatic charge repulsion
algorithm (Jones et al., 1999). We use a spherical neighbor-
hood with a diameter of nine voxels in all our experiments.
4.1. Quantitative validation on a biological phantom

A biological phantom (introduced in Campbell et al.,
2005) was created from two excised Sprague–Dawley rat
spinal cords embedded in 2% agar. The cords were approx-
imately 12.5 cm in length and 5 mm in diameter. Two
diffusion-weighted datasets were acquired using this phan-
tom, with 90 diffusion encoding directions, with b values of



Fig. 5. First row: A biological phantom created by overlaying two rat
cord spinal cords (left) and ground truth local fibre orientations shown
separately for the two cords (right). Second row: Unregularized DTI
reconstruction of the ODFs in the area of the crossing (left) and the same
set of ODFs regularized using 3D curve inference (right). Third row: The
unregularized QBI reconstruction from HARDI measurements in the
vicinity of the crossing (left) and the regularized ODFs using 3D curve
inference (right). Fourth row: The principal eigenvector orientations of the
DTI dataset in the vicinity of the crossing (left) and the regularized
orientations obtained using the technique of Tschumperlé and Deriche
(2002) (right).
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3000 s/mm2 and 1300 s/mm2, respectively, as described in
Campbell et al. (2005). The first was used for high angular
resolution reconstruction with the QBI technique (Tuch
et al., 2003). The second was used for diffusion tensor
reconstruction of the diffusion ODF, using the standard
3D Gaussian model for the diffusion PDF (Basser et al.,
1994):

P ðrjsdÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jDjð4psdÞ3
q exp

�rTD�1r

4sd

� 	
: ð16Þ

Here P(r—sd) is the probability that a water molecule dis-
places by vector r during the time sd over which diffusion is
observed. D is the diffusion tensor, a 3 · 3 positive semi-
definite matrix whose eigenvalues give the variances of
the 3D Gaussian model. The diffusion ODF is then defined
as the normalized projection of the 3D diffusion PDF on
the surface of the unit sphere:

ODFðuÞ ¼ ODF�ðuÞ
ODF�mean

; ð17Þ

ODF�ðuÞ ¼
Z 1

0

P ðrujsdÞdr; ð18Þ

where u = (1,h,/) is a unit vector from the origin to the
surface of the unit sphere and ODF�mean is the mean value
of ODF*(u) over all values of u.

A T1-weighted image of this phantom is shown in Fig. 5
(top left). The ground truth orientations were determined
by extracting the centerlines of each cord using the tech-
nique of Bouix et al. (2005) and then smoothly extending
the orientations in the centre to the boundary of the cord,
for each cord (shown separately in Fig. 5, top right). For
numerical accuracy we carried this out on a super-sampled
version of the original data and then sub-sampled the
result. The second row of Fig. 5 shows the DTI reconstruc-
tion of the ODFs in the region of the crossing, indicated
with a white box in Fig. 5 (top left), prior to regularization
(left) and after regularization through the 3D curve infer-
ence algorithm (right). For ease of visualization, the unreg-
ularized DTI reconstruction is shown after subtraction of
the MIS (all subsequent figures showing unregularized
ODF sets will also be visualized using MIS subtraction).
One can see that the ODFs in the crossing region are fairly
isotropic (and thus MIS subtraction leaves little volume).
After the application of 3D curve inference, however, the
ODFs in the voxels of the crossing region show well-
defined maxima oriented along both of the crossing fibres.
The third row of Fig. 5 shows, in a similar fashion, the
result of applying 3D curve inference (right) on the QBI
reconstruction of the ODFs, shown prior to regularization
(left). Although there is some evidence for multiple maxima
in the QBI reconstruction in the voxels of the crossing, the
regularization result brings them out in a much clearer
way. Finally, the fourth row presents results obtained using
the orthonormal vector regularization algorithm of
Tschumperlé and Deriche (2002). The unregularized princi-
pal directions of the DTI ODFs are shown on the left and
the regularized results are shown on the right. Such an
algorithm cannot handle more than one ODF maximum
at each voxel, and is furthermore hindered by the sparse-
ness of the data.

In the regularization experiments on the phantom data,
3D curve inference was run with five curvature intervals,
covering the range of curvature radii between1 (for 0 cur-
vature) and 1.05 voxel units. In the QBI dataset, one voxel
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unit corresponds to 2.8 mm, and in the DTI dataset, to
2.5 mm. There were three torsion quantizations, covering
torsion radii between 1 and 4.6 voxel units (as well as
between �1 and �4.6, since torsion can be negative)
and the normal plane (see Fig. 4 and Section 3.1) was quan-
tized into four quadrants, each covering p/2 rad. Thus,
there were a total of 5 · 3 · 4 = 60 curvature-torsion-
normal classes.

To perform a quantitative evaluation of the 3D curve
inference algorithm, we use the ground truth orientations
described above. For each ODF dataset, regularized or
not, the ODF maxima are extracted. Then, at each voxel,
the smallest angular difference (error) between the avail-
able maximum (or maxima) and ground truth orienta-
tion(s) at that voxel is recorded. The median and mean
(±1 standard deviation) orientation errors in degrees are
shown for the ground truth dataset and the unregularized
as well as regularized datasets in the left column of the
table in Fig. 6 (top). Observe that 3D curve inference
yields results with significantly lower mean errors, in par-
ticular when applied to QBI data. It is important to note
that due to the discrete sampling of the sphere, even per-
fect ODF data will be expected to have some error with
respect to the ground truth orientations. This minimal
expected error is related to the solid angle subtended by
one facet of the sphere tessellation induced by the sam-
pling. For example, it can be found to equal 7.2� for the
uniform sampling of the hemisphere by 100 directions
used in our experiments.
Fig. 6. Top: Table of validation results showing median and mean ±1
standard deviation orientation errors in degrees for the biological
phantom data set and the synthetic data set. The row headings read as
follows. Unreg. DTI: unregularized DTI. CI-DTI: 3D curve inference
applied to the DTI dataset. OVR-DTI: the orthonormal vector regular-
ization of Tschumperlé and Deriche (2002) applied to the DTI dataset.
Unreg. QBI: unregularized QBI reconstructions (Tuch et al., 2003). CI-
QBI: 3D curve inference applied to the QBI dataset. Bottom: A snapshot
of the noisy synthetic data set, prior to regularization.
4.2. Quantitative validation on synthetic data

A synthetic DTI dataset in a 100 · 50 · 100 voxel grid
was created by placing anisotropic diffusion tensors with
their principal direction vector aligned with one of three
curves: a planar sine wave, and two helices with different
curvature and torsion. Partial volume averaging effects
were simulated in voxels where the helices intersected the
sine wave, and background voxels were filled with isotropic
(spherical) tensors. Since 3D curve inference depends only
on the relative shape of the ODFs, the mean eigenvalue of
all tensors was arbitrarily set to 3. In anisotropic regions
the principal eigenvalue was set to 7 and the others to 1.
In voxels with crossings, the two principal directions had
eigenvalues of 4, and the other eigenvalue was set to 1.
The two angles describing the orientation of each tensor
were independently perturbed by adding Gaussian noise,
with mean 0 and a standard deviation of ±22.9�
(0.4 rad). The original noiseless dataset was treated as the
ground truth. One view of the noisy dataset is shown in
Fig. 6 (bottom); it is important to note that the helices
are non-planar curves. Validation results are shown in
the right column of the table in Fig. 6 (top). Observe that
once again, 3D curve inference achieves a significant reduc-
tion in orientation error, compared to both the noisy
unregularized data, as well as the result obtained with the
regularization method of Tschumperlé and Deriche (2002).

In this experiment, 3D curve inference was run with a
total of 48 curvature-torsion-normal classes, with four cur-
vature quantizations covering curvature radii between 1
and 2.5 (in voxel units), three torsion intervals covering tor-
sion radii between 1 and 4.4 voxel units (as well as
between �1 and �4.4) and the normal plane was quan-
tized into four quadrants of p/2 rad each (see Section 3.1).

4.3. Qualitative validation on human brain data

We now present regularization results using in vivo
human brain data. Human brain diffusion weighted images
were acquired using a Siemens 3T Trio MR scanner. The
acquisition used 99 diffusion encoding directions, 2 mm
isotropic voxel size, 63 slices, and b = 3000 s/mm2. Both
the DTI and the QBI ODF datasets were calculated using
all of the data. Again, the QBI reconstruction was carried
out according to the technique of Tuch et al. (2003) and
the DTI reconstruction was carried out with the Gaussian
model described in Section 4.1. A T1-weighted anatomical
scan was also acquired. Fig. 7 shows the principal diffusion
direction RGB map overlaid on the T1-weighted anatomi-
cal image for two different regions of interest (ROIs) indi-
cated with white contours, for which regularization results
are presented below.

Fig. 8 shows the DTI ODFs, the regularized DTI ODFs,
the QBI ODFs, and the regularized QBI ODFs in an ROI
containing fibres from the cortical spinal tract and the cor-
pus callosum. The ROI is indicated with a white square in
Fig. 7 (left). This region has fibres that are in a crossing



Fig. 7. The principal diffusion direction RGB map shown overlaid on the T1-weighted anatomical image, together with a white box indicating the ROIs
used for Fig. 8 (left) and Fig. 9 (right).
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and/or a ‘‘neck’’-like configuration. Another ODF com-
parison is shown in Fig. 9, in a region of partial volume
averaging of the cingulum and the corpus callosum, indi-
cated with a white box in Fig. 7 (right). In this area it is
known from anatomy (and can also be seen from the
RGB directions map in Fig. 7 (right)) that the fibres of
the cingulum are approximately orthogonal to those of
the corpus callosum. Thus, at the interface of the two fibre
tract systems, where partial volume averaging occurs,
ODFs in the shape of a cross can be seen in the QBI recon-
struction in Fig. 9, third row.

In Figs. 8 and 9, the unregularized DTI reconstruction is
ambiguous in voxels where partial volume averaging of
directions occurs. In contrast, both the QBI and the regu-
larized DTI ODFs exhibit multiple maxima in these voxels
that are qualitatively very similar to each other. Finally,
Fig. 8. ODFs obtained using DTI (top left), regularized DTI (top right),
QBI (bottom left), and regularized QBI (bottom right) in a region of
partial volume averaging of the cortical spinal tract and the corpus
callosum. The ROI is indicated by the white box in Fig. 7 (left).

Fig. 9. ODFs obtained using DTI (top row), regularized DTI (second
row), QBI (third row), and regularized QBI (bottom row) in the region of
partial volume averaging of the cingulum and the corpus callosum
indicated with a white box in Fig. 7 (right). The ODFs are displayed from
an oblique point of view, so that crossing configurations can be clearly
seen. Thus, ODF maxima that have an up-down orientation are associated
with the corpus callosum.



ig. 10. Tractography results on the phantom, using unregularized DTI
op left), unregularized QBI (top right), regularized DTI (bottom left) and
gularized QBI (bottom right). A transparent surface indicating the
gmented cords is shown for reference.
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one can see that as with the phantom data, 3D curve
inference sharpens the QBI ODFs and makes the maxima
salient.

In all experiments with brain data, 3D curve inference
was run with a total of 48 curvature-torsion-normal classes,
with four curvature quantizations covering curvature radii
between 1 and 2.5 (in voxel units), three torsion intervals
covering torsion radii between 1 and 4.4 voxel units (as
well as between �1 and �4.4) and the normal plane was
quantized into four quadrants of p/2 rad each (see Section
3.1). In our brain data, one voxel unit corresponds to 2 mm.

4.4. Applications of 3D curve inference to fibre tracking

We now present experiments which apply 3D curve
inference as a preprocessing step to improve the perfor-
mance of a fibre tracking algorithm. As stated previously
in Section 1, the output of 3D curve inference is not a dif-
fusion ODF but rather an ODF that encodes a confidence
in fibre tracts being present with a given orientation. In this
setting, the resulting ODF maxima are the best estimates
available to guide a fibre tracking algorithm. Thus a
streamline tracking method on the ODF maxima is used,
as opposed to a more general diffusion ODF tracking tech-
nique. Recent work by Lazar and Alexander (2003) com-
pares different streamline tracking techniques and shows
that the fibre assignment by continuous tracking (FACT)
method of Mori et al. (1999) has higher precision in syn-
thetic divergent diffusion tensor fields, as well as superior
accuracy in synthetic curved fields. Given that both diver-
gent and curved fields are expected in the brain, streamline
fibre tracking with FACT integration is a reasonable choice
for a representative line propagation technique.

We begin with tracking results on the biological phan-
tom. The FACT method (Mori et al., 1999) was initiated
in a seed ROI spanning a cross-section of the curved cord
near its end. All maxima of the diffusion ODF that pro-
duced curves with radius of curvature 2.5 mm or greater
were followed (directions that generated paths with a smal-
ler radius of curvature were assumed to be crossing fibres
and were not followed). Tracking was constrained to voxels
with fractional anisotropy (FA) of 0.05 or greater. Fig. 10
shows tracking results on unregularized data (top row) and
regularized data (bottom row), for the case of DTI (left
column) and QBI (right column). Transparent surfaces cor-
responding to the two different cords are shown for refer-
ence. In the unregularized DTI case, tracking cannot
continue past the crossing. In the unregularized QBI case,
the tracking passes through the crossing, but has difficulties
following the cord to its end. Tracking on regularized DTI
not only passes the crossing, but also reaches the end of the
cord. Tracking on regularized QBI gives the result that
agrees most closely with the curvature of the cord.

We conclude this section with a fibre tracking experi-
ment in the brain, once again using streamline fibre track-
ing with FACT integration (Mori et al., 1999) but starting
from a small seed region near the cortex. The results are
F
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presented in Fig. 11. If the QBI tract reconstructions are
used as a qualitative ‘‘ground truth’’, the advantage of
using regularized DTI over DTI is obvious. The DTI,
QBI and regularized DTI tract reconstructions indicate
U-fibre structure near the cortex. The QBI and regularized
DTI tract reconstructions also indicate pathways from the
seed region to the cortical spinal tract and corpus callosum.
It is probable that fibres from all of these pathways pass
through the seed region. The high angular resolution of
the QBI reconstruction and the inferred high angular reso-
lution of the regularized DTI reconstruction allow the
tracking algorithm to branch in regions where multiple
fibre orientations exist, giving more accurate information
about the connectivity.

5. Discussion

We now address certain aspects of our experimental
results and propose directions in which to extend the 3D
curve inference algorithm.

5.1. Fibre tracking experiments

The results presented in the previous section demon-
strate the ability of 3D curve inference to infer high-angu-
lar resolution ODFs from DTI data, which has a significant
impact on the performance of fibre tracking algorithms. In
fact, in the case of the phantom data, regularization using



Fig. 11. Tractography results showing connections that pass through a small seed region near the cortex, obtained using streamline fibre tracking with
FACT integration (Mori et al., 1999). The ODFs used to drive the tractography were top: DTI, centre: QBI, and bottom: regularized DTI. A sagittal view
is shown at left and an axial view at right. The T1-weighted anatomical image is shown for reference.
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3D curve inference improves tracking even on the QBI
dataset. It is quite possible that streamline fibre tracking
with FACT integration (Mori et al., 1999) achieves better
results on both the regularized DTI and regularized QBI
phantom datasets than on the (unregularized) QBI phan-
tom dataset, because in a voxel where a single curving fibre
passes, the unregularized QBI ODF may not have a well-
defined maximum due to subvoxel averaging of directions.
As a consequence, the ODF maxima selection process may
be ambiguous, particularly if noise is present, and may
cause the streamline propagation procedure to stop. In this
situation regularization would have the effect of sharpening
the ODF and of enhancing a maximum in the direction
tangent to the curving fibre, thus helping the tracking
algorithm.

The tracking experiments in the unregularized brain
DTI data (Fig. 11, top row) can recover only the U-fibre,
whereas tracking in the QBI reconstruction also recovers
branches down the cortico-spinal tract, as well as a branch
along the corpus callosum to the cortex of the other hemi-
sphere. The improvement brought by 3D curve inference is
that in the regularized DTI, tracking also recovers
branches down the cortico-spinal tract and a branch along
the corpus callosum to the other hemisphere. Of course, the
result is not identical to the one obtained on QBI data. If
one looks closely at Fig. 11 (bottom row), it appears that
the U-fibre has been replaced by a fibre that takes a sharp
(and thus improbable) turn that nevertheless follows a tra-
jectory similar to it. Furthermore, in comparison to the
QBI tracking result, there seem to be a few spurious paths
that have been introduced in the tracking result on regular-
ized DTI. These are probably effects of over-regularization
of the DTI data. We have empirically determined that for
improved results, different regions of the brain require dif-
ferent amounts of regularization, as well as different
parameter values, for example different neighborhood
sizes. For instance, the amount of regularization that is
necessary to recover multiple maxima in a crossing or
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branching region may be too much for a region with a U-
fibre. Furthermore, the neighborhood size should ideally be
chosen so as to be at the same scale as the structures to be
recovered. For example, a larger neighborhood size would
be more appropriate for the corpus callosum region than
for regions near the cortex, where U-fibres occur. The
neighborhood size determines how ‘‘local’’ the helix model
for fibres is. For example, the helical approximations
should be more localized for a U-fibre with rapidly chang-
ing curvature than for the corpus callosum. In our experi-
ments we have applied a uniform level of regularization all
over the brain, using the same neighborhood size. In future
work we plan to use priors that vary throughout the brain
so that the appropriate level of regularization can be
applied to each region.

5.2. ODF sharpening

It may seem surprising at first that the regularized ODFs
in the phantom data (Fig. 5) look as sharp as they do. This
ODF sharpening in the regularized results is due to the fact
that in the phantom, support for orientations aligned with
the cords is so strong that support for all other orientations
essentially collapses to 0. This is simply a result of the for-
mulation of the relaxation labeling algorithm. Further-
more, it is important to note that regularization is
performed after MIS subtraction from the original ODFs,
in all experiments.

5.3. Synthetic data experiment

Our method for generating noisy synthetic tensor data
as described in Section 4.2 is a very basic one and does
not reflect the reality of MRI noise. However, it is impor-
tant to remember that 3D curve inference is applicable to
any ODF dataset, not just actual diffusion MRI datasets.
In this sense, this experiment is still a valid demonstration
of the regularization properties of 3D curve inference and
is well suited for a comparison with the variational flow
technique of Tschumperlé and Deriche (2002).

5.4. Future work

In the experiments presented in this article, we have used
only the ODF shapes and their maxima for qualitative and
quantitative validation, as well as for fibre tracking. In
future work we will examine how discrete local curvature
and torsion estimates for curves can impact the perfor-
mance of fibre tracking algorithms. In particular, we will
investigate the problem of distinguishing cases of complex
subvoxel fibre configurations, which are known to con-
found fibre tracking algorithms even in QBI data. Such
subvoxel configurations include curving fibres, crossings,
neck-like configurations, branchings, fibre fanning and
fibre splaying. Such configurations can yield ODFs with
ambiguous shapes, even in QBI reconstructions. Disambig-
uating such configurations requires integrating information
over a local neighborhood. Knowledge of the curvature(s)
and torsion(s) of the underlying curve(s) can potentially
help to identify these configurations, and thus improve
the performance of fibre tracking algorithms. Another
foreseeable application of 3D curve inference is in the inter-
polation of ODF fields. Again, knowledge of the differen-
tial geometry of the underlying curves should provide
constraints that will guide the interpolation of ODF data.
Finally, since 3D curve inference can be applied to any
ODF dataset, we intend to investigate its application to
fibre ODFs (Tournier et al., 2004) in future work.
6. Conclusion

We have presented a differential geometric framework
for regularizing diffusion MRI data, where a notion of
co-helicity is used to compute support for orientations
given other neighboring orientations. In this setting, white
matter fibres are modeled as 3D curves, and the use of geo-
metric constraints allows for the inference of local tangent,
curvature and torsion estimates of curves, given an initial
3D ODF dataset.

This algorithm is applicable to DTI data, as well as to
high angular resolution ODF reconstructions from
HARDI measurements. We have demonstrated through
experimental results several of the advantages of our algo-
rithm. In particular, the 3D curve inference framework
allows for the inference and representation of multiple
ODF maxima at one location, when appropriate. As a
result, regularized DTI ODFs can exhibit multiple maxima
that agree qualitatively with the maxima of the QBI recon-
struction (Tuch et al., 2003) from HARDI measurements.
These maxima are also closer to the ground truth than
the original unregularized DTI dataset in the case of the
biological phantom, where ground truth is available. Fur-
thermore, experiments in the phantom and in the brain
datasets show a significant improvement of the perfor-
mance of streamline fibre tracking in regularized DTI, as
opposed to unregularized DTI. Experimental results also
demonstrate that regularization can improve tracking in
the phantom even in the case of QBI ODF reconstructions.
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