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Problem Definition

Synthesize a planar four-bar linkage, like the one shown in Fig. 4.1, whose coupler point R
attains a set of positions {Rj}

m
0
for corresponding values {ψj}

m
0
of the input angle ψ.

Problem Formulation

The general method of linkage synthesis for path generation is based on the synthesis
equations derived for motion generation, which are reproduced below for quick reference:

bT (1−Qj)a0 + rT
j Qja0 − rT

j b+
1

2
rT

j rj = 0 , for j = 1, . . . ,m (1a)

and

(b∗)T (1−Qj)a
∗

0
+ rT

j Qja
∗

0
− rT

j b∗ +
1

2
rT

j rj = 0 , for j = 1, . . . ,m (1b)

Notice that, now the synthesis equations of the two linkage dyads are coupled via the
unknown angles {φj}

m
0
, given by φj = θj − θ0, and occuring in Qj. Hence, we will consider

simultaneously the two sets of dyad equations.

Expression for Qj

Since the input link BA0 undergoes rotations about B, we can write

aj − b = Rj(a0 − b) , for j = 1, . . . ,m (2)

where Rj is the rotation matrix carrying BA0 into BAj through angle βj = ψj − ψ0.
Moreover, matrix Rj can be represented using eq.(1.6) as

Rj = cos βj1+ sin βjE , for j = 1, . . . ,m (3)

where 1 is the 2 × 2 identity matrix and E is the 90◦-ccw rotation matrix, introduced in
eq.(1.1a). Referring to Fig. 4.2, we can write

aj = rj +Qja0 , for j = 1, . . . ,m

Hence,
Qja0 = aj − rj , for j = 1, . . . ,m (4)

Upon substituting eq.(2) into the above equation, we have

Qja0 = Rja0 + (1−Rj)b− rj , for j = 1, . . . ,m (5)
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Now, if we substitute eq.(1.6) into the above equation, we end up with

cφja0 + sφjEa0 = Rja0 + (1−Rj)b− rj , for j = 1, . . . ,m (6)

which can be cast in the form

[ a0 Ea0 ]

[

cφj

sφj

]

= Rja0 + (1−Rj)b− rj
︸ ︷︷ ︸

cj

, for j = 1, . . . ,m (7)

Consequently, we can readily solve for cφj and sφj as
[

cφj

sφj

]

= [ a0 Ea0 ]
−1cj =

1

‖a0‖2

[

aT
0
E

−aT
0

]

Ecj =
1

‖a0‖2

[

aT
0
cj

−aT
0
Ecj

]

, j = 1, . . . ,m (8)

where we have recalled the formula for the inverse of a 2× 2 matrix given in Fact 1.4.2.

The BA0R Dyad

When the expression for Qja0 of eq.(5) is substituted into the synthesis equations (1a), we
obtain

bTa0 − bTRja0 − bT (1−Rj)b+ rT
j Rja0 − rT

j Rjb− rT
j b−

1

2
rT

j rj = 0 , j = 1, . . . ,m

which simplifies to

bT (1−Rj)b+ bT (Rj − 1)a0 + rT
j (Rj − 1)b− rT

j Rja0 +
1

2
rT

j rj = 0 , j = 1, . . . ,m (9)

thereby deriving the synthesis equations for the left-hand dyad of Fig. 4.1 for the problem
at hand. Apparently, these m equations are quadratic in b and linear in a0, their degree
being 2.

The B∗A∗
0
R Dyad

Vector Qja
∗

0
appearing in eq.(1b) can be expressed as

Qja
∗

0
= [ a∗

0
Ea∗

0
]

[

cφj

sφj

]

=
1

‖a0‖2
[(aT

0
cj)a

∗

0
− (aT

0
Ecj)Ea∗

0
] , for j = 1, . . . ,m

which reduces to

Qja
∗

0
=

1

‖a0‖2

[

(aT
0
cj)1− (a

T
0
Ecj)E

]

a∗

0
, for j = 1, . . . ,m (10)

Substituting the above expression into eq.(1b), we obtain, after clearing the denominator,

(b∗)T
[

(‖a0‖
2 − aT

0
cj)1+ (a

T
0
Ecj)E

]

a∗

0
+ rT

j

[

(aT
0
cj)1− (a

T
0
Ecj)E

]

a∗

0

−‖a0‖
2rT

j b∗ +
1

2
‖a0‖

2‖rj‖
2 = 0 , for j = 1, . . . ,m (11)

which are the synthesis equations for the right-hand dyad of Fig. 4.1 for the problem at
hand. Apparently, these m equations are all quartic.
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Remarks

• We have 2m equations, (9 & 11), to solve for eight unknowns—the components of
a0, b, a

∗

0
, b∗. Therefore, to have a determined system of equations, we must have

m = 4

which implies that up to five points can be visited in a plane using a four-bar linkage,
with prescribed timing.

• Since the system of eqs.(9 & 11) involves four quadratic and four quartic equations in
the unknowns {a0,b}, the Bezout number NB of the system, giving an upper bound
for the number of roots to expect, being thus

NB = 2
4 × 44 = 4096

As Morgan and Wampler (1990) claimed, this number can be substantially reduced;
in this reference, they reduced the number of roots to 36. We show below that the
Morgan and Wampler number can be further reduced to one-third.

• Equations (9) are linear in a0 and quadratic in b. Consequently, we can eliminate a0

by casting the said system in the form

Bx = 0 (12)

in which x = [ aT
0
1 ]T and B is a 4× 3 matrix function of b of the from

B =








{(RT
1
− 1)b−R1r1}

T bT (1−R1)b+ rT
1
(R1 − 1)b+ rT

1
r1/2

{(RT
2
− 1)b−R1r2}

T bT (1−R2)b+ rT
2
(R2 − 1)b+ rT

2
r2/2

{(RT
3
− 1)b−R3r3}

T bT (1−R3)b+ rT
3
(R3 − 1)b+ rT

3
r3/2

{(RT
4
− 1)b−R4r4}

T bT (1−R4)b+ rT
4
(R4 − 1)b+ rT

4
r4/2








(13)

For the 4 × 3 matrix B to have a nonzero nullspace, which is needed in light of the
form of x, B must be rank-deficient. This means that every 3×3 submatrix of B must
be singular. We can thus derive four bivariate polynomial equations in the Cartesian
coordinates u and v of B, the components of b, namely,

∆j(u, v) = det(Bj) , for j = 1, . . . , 4 (14)

where ∆j is the determinant of the jth 3 × 3 submatrix Bj, obtained by deleting
the jth row of B. Notice that ∆j can be computed by the cofactors of the third row
of its associated matrix. Moreover, this row is quadratic in b, the corresponding
cofactors being determinants of 2 × 2 matrices whose entries are linear in b. Such
a determinant is expanded in Fact 1.4.1, Subsection 1.4.2, in which it is apparent
that this determinant is a bilinear expression of its rows or, correspondingly, of its
columns. Hence, each 2 × 2 cofactor is quadratic in b, the result being that ∆j is
quartic in b. Therefore, the Bezout number of any pair of those equations is

NB = 4
2 = 16
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Moreover, each eq.(14) defines a contour in the u-v plane. The real solutions of
system (12) can be visually estimated by plotting the m contours in the same figure.
Notice that, at the outset, we do not have bounds for the location of B in the u-v
plane. However, we always have a region available of this plane in which we can
anchor the revolute center B. Our first attempt of finding real solutions for B is thus
this region.

Once b is known, we can solve for a0 from eq.(12) using a least-square approximation.
To this end, we rewrite eq.(12) in the form

Ma0 = n (15)

where

M =








{(RT
1
− 1)b−R1r1}

T

{(RT
3
− 1)b−R3r3}

T

{(RT
3
− 1)b−R3r3}

T

{(RT
4
− 1)b−R4r4}

T







,n =








bT (1−R1)b+ rT
1
(R1 − 1)b+ rT

1
r1/2

bT (1−R2)b+ rT
2
(R2 − 1)b+ rT

2
r2/2

bT (1−R3)b+ rT
3
(R3 − 1)b+ rT

3
r3/2

bT (1−R4)b+ rT
4
(R4 − 1)b+ rT

4
r4/2








(16)

• Equation (11) is bilinear in b∗ and a∗

0
. Once we have a0 and b from eq.(12), we

can solve eq.(11) for a∗

0
and b∗ using dialytic elimination, as we did in the motion-

generation case. That is, computing b∗ and a∗

0
leads to the solution of one quartic

polynomial. We need not find the roots of this polynomial numerically, if we apply
the contour technique introduced in Chapter 4.

Reducing the Degree of the Synthesis Equations of the

BA0R Dyad

Using the definition of Qj of eq.(1.6), the first term of eq.(9) can be further simplified to

bT (1−Rj)b = bT [(1− cβj)1+ sβjE]b = (1− cβj)‖b‖
2 , j = 1, . . .m (17)

where we used the identity bTEb ≡ 0, because matrix E is skew-symmetric. Thus, eq.(9)
reduces to

(1− cβj)‖b‖
2+bT (Rj − 1)a0+ rT

j (Rj − 1)b− rT
j Rja0+

1

2
rT

j rj = 0 , j = 1, . . . ,m (18)

Let M be j ∈ { 1, . . . ,m } that maximizes |1− cβj|. Use now the Mth equation of eqn.(18)
as a pivot, to reduce the order of the remaining equations. After a reshuffling of the
equations, we let M = 1, so that now the pivot equation is the first one of the set. Just
as in Gaussian elimination, subtract a ”suitable” multiple of the first equation from the
remaining ones, so as to eliminate the quadratic term of those equations, which leads to

(1− cβ1)‖b‖
2 + bT (R1 − 1)a0 + rT

1
(R1 − 1)b− rT

1
R1a0 +

1

2
rT
1
r1 = 0 (19a)

bT [Rj − 1− qj(Rj − 1)]a0 + [r
T
j (Rj − 1)− qjr

T
j (R1 − 1)]b

−(rT
j Rj − qjr

T
1
R1)a0 +

1

2
(rT

j rj − rT
1
r1) = 0, j = 2, . . . ,m (19b)
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where

qj =
1− cβj

1− cβ1

, j = 2, . . . ,m (20)

System (19) can be cast in linear-homogeneous form in vector x = [ aT
0
1 ]T :

Bx = 04 (21a)

with

B =








{(RT
1
− 1)b−RT

1
r1}

T s1

{RT
2
− 1− q2(R

T
1
− 1)}Tb− (RT

2
r2 − q2R

T
2
) s2

{RT
3
− 1− q3(R

T
3
− 1)}Tb− (RT

3
r3 − q3R

T
3
) s3

{RT
4
− 1− q4(R

T
4
− 1)}Tb− (RT

4
r4 − q4R

T
4
) s4








(21b)

and

s1 = (1− cβ1)‖b‖
2 + rT

1
(R1 − 1)b+

1

2
rT
1
r1 (21c)

sj = [r
T
j (Rj − 1)− qjr

T
j (R1 − 1)]b+

1

2
(rT

j rj − rT
1
r1) , j = 2, . . . ,m (21d)

Notice that s1 is quadratic and {sj}
m
2
are all linear in b. Thus, the corresponding ∆1

of eq.(14) for system (21) is quadratic, but {∆j}
m
2
are all cubic in b. Consequently, the

Bezout number of any pair of equations (1, j), for j = 2, . . . ,m, is

NB = 3× 4 = 12

thereby reducing the Bezout number reported by Morgan and Wampler to one-third.
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