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Chapter 1

A Summary of Dual Algebra

The algebra of dual numbers is recalled here, with extensions to vector and matrix oper-

ations. This material is reproduced from a chapter in a NATO Advanced Study Institute

book1

1.1 Introduction

The aim of this Appendix is to outine the applications of dual algebra to kinematic

analysis. To this end, the algebra of dual scalars, vectors, and matrices is first recalled.

The applications included here refer to the computation of the parameters of the screw of

a rigid body between two finitely-separated positions and of the instant screw. However,

the applications of dual numbers go beyond that in kinematics. Indeed, the well-known

Principle of Transference (Dimentberg, 1965; Bottema and Roth, 1978; Mart́ınez and

Duffy, 1994) has been found extremely useful in spatial kinematics, since it allows the

derivation of spatial kinematic relations by simply dualizing the corresponding relations

of spherical kinematics.

Dual numbers were first proposed by Clifford (1873), their first applications to kine-

matics being attributed to both Kotel’nikov (1895) and Study (1903). A comprehensive

analysis of dual numbers and their applications to the kinematic analysis of spatial link-

ages was conducted by Yang (1963) and Yang and Freudenstein (1964). Bottema and

Roth (1978) include a treatment of theoretical kinematics using dual numbers. More

recently, Agrawal (1987) reported on the application of dual quaternions to spatial kine-

matics, while Pradeep et al. (1989) used the dual-matrix exponential in the analysis of

robotic manipulators. Shoham and Brodsky (1993, 1994) have proposed a dual inertia

operator for the dynamical analysis of mechanical systems. A comprehensive introduction

1Angeles, J., 1998, “The Application of Dual Algebra to Kinematic Analysis”, in Angeles, J. and

Zakhariev, E. (editors), Computational Methods in Mechanical Systems, Springer-Verlag, Heidelberg,

Vol. 161, pp. 3-31.
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to dual quaternions is to be found in (McCarthy, 1990), while an abstract treatment is

found in (Chevallier, 1991)

1.2 Definitions

A dual number â is defined as the sum of a primal part a, and a dual part a0, namely,

â = a + ǫa0 , (1.1)

where ǫ is the dual unity, which verifies ǫ 6= 0, ǫ2 = 0, and a and a0 are real numbers, the

former being the primal part of â, the latter its dual part. Actually, dual numbers with

complex parts can be equally defined (Cheng and Thompson, 1996). For the purposes of

this chapter, real numbers will suffice.

If a0 = 0, â is called a real number, or, correspondingly, a complex number ; if a = 0,

â is called a pure dual number ; and if neither is zero â is called a proper dual number.

Let b̂ = b + ǫb0 be another dual number. Equality, addition, multiplication, and

division are defined, respectively, as

â = b̂ ⇔ a = b, a0 = b0 (1.2a)

â + b̂ = (a + b) + ǫ(a0 + b0) (1.2b)

âb̂ = ab + ǫ(ab0 + a0b) (1.2c)

â

b̂
=

a

b
− ǫ

(

ab0 − a0b

b2

)

, b 6= 0 . (1.2d)

From eq.(1.2d) it is apparent that the division by a pure dual number is not defined.

Hence, dual numbers do not form a field in the algebraic sense; they do form a ring

(Simmons, 1963).

All formal operations involving dual numbers are identical to those of ordinary algebra,

while taking into account that ǫ2 = ǫ3 = · · · = 0. Therefore, the series expansion of the

analytic function f(x̂) of a dual argument x̂ is given by

f(x̂) = f(x + ǫx0) = f(x) + ǫx0
df(x)

dx
. (1.3)

As a direct consequence of eq.(1.3), we have the expression below for the exponential

of a dual number x̂:

ex̂ = ex + ǫ x0e
x = ex(1 + ǫ x0) , (1.4)

and hence, the dual exponential cannot be a pure dual number.

The dual angle θ̂ between two skew lines L1 and L2, introduced by Study (1903), is

defined as

θ̂ = θ + ǫs , (1.5)
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where θ and s are, respectively, the twist angle and the distance between the two lines.

The dual trigonometric functions of the dual angle θ̂ are derived directly from eq.(1.3),

namely,

cos θ̂ = cos θ − ǫs sin θ, sin θ̂ = sin θ + ǫs cos θ, tan θ̂ = tan θ + ǫs sec2 θ . (1.6)

Moreover, all identities for ordinary trigonometry hold for dual angles. Likewise, the

square root of a dual number can be readily found by a straightforward application of

eq.(1.3), namely, √
x̂ =

√
x + ǫ

x0

2
√

x
, (1.7)

A dual vector â is defined as the sum of a primal vector part a, and a dual vector part

a0, namely,

â = a + ǫa0, (1.8)

where both a and a0 are Cartesian, 3-dimensional vectors. Henceforth, all vectors are

assumed to be of this kind. Further, let â and b̂ be two dual vectors and ĉ be a dual

scalar. The concepts of dual-vector equality, multiplication of a dual vector by a dual

scalar, inner product and vector product of two dual vectors are defined below:

â = b̂ ⇔ a = b and a0 = b0 ; (1.9a)

ĉ â = c a + ǫ (c0a + c a0) ; (1.9b)

â · b̂ = a · b + ǫ (a · b0 + a0 · b) ; (1.9c)

â× b̂ = a × b + ǫ (a× b0 + a0 × b) . (1.9d)

In particular, when b̂ = â, eq.(1.9c) leads to the Euclidean norm of the dual vector â,

i.e.,

‖â‖2 = ‖a‖2 + ǫ 2a · a0 . (1.9e)

Furthermore, the six normalized Plücker coordinates of a line L passing through a point

P of position vector p and parallel to the unit vector e are given by the pair ( e, p× e ),

where the product e0 ≡ p× e denotes the moment of the line. The foregoing coordinates

can be represented by a dual unit vector ê∗, whose six real components in e and e0 are

the Plücker coordinates of L, namely,

ê∗ = e + ǫ e0, with ‖e‖ = 1 and e · e0 = 0 . (1.10)

The reader is invited to verify the results summarized below:

Lemma 1.2.1 For ê∗ ≡ e + ǫ e0 and f̂∗ ≡ f + ǫ f0 defined as two dual unit vectors

representing lines L and M, respectively, we have:

(i) If ê∗ × f̂∗ is a pure dual vector, then L and M are parallel;
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(ii) if ê∗ · f̂∗ is a pure dual number, then L and M are perpendicular;

(iii) L and M are coincident if and only if ê∗ × f̂∗ = 0; and

(iv) L and M intersect at right angles if and only if ê∗ · f̂∗ = 0.

Dual matrices can be defined likewise, i.e., if A and A0 are two real n × n matrices,

then the dual n × n matrix Â is defined as

Â ≡ A + ǫA0 . (1.11)

We will work with 3×3 matrices in connection with dual vectors, but the above definition

can be applied to any square matrices, which is the reason why n has been left arbitrary.

Equality, multiplication by a dual scalar, and multiplication by a dual vector are defined

as in the foregoing cases. Moreover, matrix multiplication is defined correspondingly, but

then the order of multiplication must be respected. We thus have that, if Â and B̂ are

two n × n dual matrices, with their primal and dual parts self-understood, then

ÂB̂ = AB + ǫ (AB0 + A0B) . (1.12)

Therefore, matrix Â is real if A0 = O, where O denotes the n × n zero matrix; if

A = O, then Â is called a pure dual matrix. Moreover, as we shall see below, a square

dual matrix admits an inverse if and only if its primal part is nonsingular.

Now we can define the inverse of a dual matrix, if this is nonsingular. Indeed, it

suffices to make B̂ = Â−1 in eq.(1.12) and the right-hand side of this equation equal to

the n×n identity matrix, 1, thereby obtaining two matrix equations that allow us to find

the primal and the dual parts of Â−1, namely,

AB = 1, AB0 + A0B = O ,

whence

B = A−1, B0 = −A−1A0A
−1 ,

which are defined because A is invertible by hypothesis, and hence, for any nonsingular

dual matrix Â,

Â−1 = A−1 − ǫA−1A0A
−1 . (1.13)

Note the striking similarity of the dual part of the foregoing expression with the time-

derivative of the inverse of A(t), namely,

d

dt
[A−1(t)] = −A−1(t)Ȧ(t)A−1(t) .
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In order to find an expression for the determinant of an n × n dual matrix, we need

to recall the general expression for the dual function defined in eq.(1.3). However, that

expression has to be adapted to a dual-matrix argument, which leads to

f(Â) = f(A) + ǫ tr

[

A0

(

df

dÂ

)T
]∣

∣

∣

∣

∣

Â=A

. (1.14)

In particular, when f(Â) = det(Â), we have, recalling the formula for the derivative of

the determinant with respect to its matrix argument (Angeles, 1982), for any n×n matrix

X,
d

dX
[det(X)] = det(X)X−T ,

where X−T denotes the transpose of the inverse of X or, equivalently, the transpose of

X−1. Therefore,

tr

[

A0

(

df

dÂ

)T
]∣

∣

∣

∣

∣

Â=A

= det(A)tr(A0A
−1) ,

and hence,

det(Â) = det(A)[1 + ǫ tr(A0A
−1)] . (1.15)

Now we can define the eigenvalue problem for the dual matrix Â defined above. Let

λ̂ and ê be a dual eigenvalue and a dual (unit) eigenvector of Â, respectively. Then,

Âê = λ̂ê, ‖ê‖ = 1 . (1.16a)

For the foregoing linear homogeneous equation to admit a nontrivial solution, we must

have

det(λ̂1 − Â) = 0 , (1.16b)

which yields an nth-order dual polynomial in the dual number λ̂. Its n dual roots, real

and complex, constitute the n dual eigenvalues of Â. Note that, associated with each dual

eigenvalue λ̂i, a corresponding dual (unit) eigenvector ê∗
i is defined, for i = 1, 2, . . . , n.

Moreover, if we recall eq.(1.4), we can write

eÂ = eA + ǫA0e
A . (1.17)

Upon expansion, the foregoing expression can be cast in the form

eÂ = (1 + ǫA0)e
A 6= eA(1 + ǫA0) , (1.18)

the inequality arising because, in general, A and A0 do not commute. They do so only in

the case in which they share the same set of eigenvectors. A special case in which the two

matrices share the same set of eigenvectors is when one matrix is an analytic function of

the other. More formally, we have
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Lemma 1.2.2 If F is an analytic matrix function of matrix A, then the two matrices

(i) share the same set of eigenvectors, and

(ii) commute under multiplication.

Typical examples of analytic matrix functions are F = AN and F = eA, for an integer N .

1.3 Fundamentals of Rigid-Body Kinematics

We review in this section some basic facts from rigid-body kinematics. For the sake of

conciseness, some proofs are not given, but the pertinent references are cited whenever

necessary.

1.3.1 Finite Displacements

A rigid body is understood as a particular case of the continuum with the special feature

that, under any given motion, any two points of the rigid body remain equidistant. A rigid

body is available through a configuration or pose that will be denoted by B. Whenever a

reference configuration is needed, this will be labelled B0. Moreover, the position vector

of a point P of the body in configuration B will be denoted by p, that in B0 being denoted

correspondingly by p0.

A rigid-body motion leaving a point O of the body fixed is called a pure rotation, and

is represented by a proper orthogonal matrix Q, i.e., Q verifies the two properties below:

QQT = 1, det(Q) = +1 . (1.19)

According to Euler’s Theorem (Euler, 1775), a pure rotation leaves a set of points of

the body immutable, this set lying on a line L, which is termed the axis of rotation. If

we draw the perpendicular from an arbitrary point P of the body to L and denote its

intersection with L by P ′, the angle φ between P ′P 0 and P ′P , where, according to our

convention, P 0 denotes the point P in the reference configuration B0 of the body, is called

the angle of rotation. Note that a direction must be specified along this line to define the

sign of the angle. Furthermore, the direction of the line is specified by the unit vector e.

We term e and φ the natural invariants of Q.

As a result of Euler’s Theorem, the rotation Q can be represented in terms of its

natural invariants. This representation takes the form

Q = eeT + cos φ(1 − eeT ) + sin φE , (1.20)

where E denotes the cross-product matrix of e, i.e., for any 3-dimensional vector v,

e × v = Ev .
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As a result of the foregoing definition, E is skew-symmetric, i.e., E = −ET and, moreover,

it has the properties below:

E2k+1 = (−1)kE, E2k = (−1)k(1 − eeT ), for k = 1, 2, . . .

By virtue of the foregoing properties of the cross-product matrix E of e, the rotation

matrix Q can be written in the alternative form

Q = 1 + sin φE + (1 − cos φ)E2 . (1.21)

Now, if we recall the Cayley-Hamilton Theorem (Halmos, 1974), we can realize that

the right-hand side of the foregoing equation is nothing but the exponential of φE, i.e.,

Q = eφE , (1.22)

which is the exponential form of the rotation matrix. Now it is a simple matter to obtain

the eigenvalues of the rotation matrix if we first notice that one eigenvalue of E is 0, the

other eigenvalues being readily derived as ±
√
−1, where

√
−1 is the imaginary unit, i.e.,√

−1 ≡
√
−1. Therefore, if Q is the exponential of φE, then the eigenvalues of Q are the

exponentials of the eigenvalues of φE:

λ1 = e0 = 1, λ2,3 = e±
√
−1φ = cos φ ±

√
−1 sin φ . (1.23)

Moreover, we recall below the Cartesian decomposition of an n×n matrix A, namely,

A = As + Ass , (1.24a)

where As is symmetric and Ass is skew-symmetric. These matrices are given by

As ≡
1

2
(A + AT ), Ass ≡

1

2
(A − AT ) . (1.24b)

Any 3×3 skew-symmmetric matrix is fully defined by three scalars, which means that

such a matrix can then be made isomorphic to a 3-dimensional vector. Indeed, let S be a

3× 3 skew-symmetric matrix and v be an arbitrary 3-dimensional vector. Then, we have

Sv ≡ s× v . (1.25)

When the above items are expressed in a given coordinate frame F , the components of

S, indicated as { si,j }3
i,j=1, and of s, indicated as { si }3

1, bear the relations below:

S =





0 −s3 s2

s3 0 −s1

−s2 s1 0



 , s =
1

2





s32 − s23

s13 − s31

s21 − s12



 . (1.26)

In general, we define the axial vector of an arbitrary 3 × 3 matrix A in terms of the

difference of its off-diagonal entries, as appearing in eq.(1.26) for the entries of matrix S.
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Apparently, the axial vector of any 3× 3 matrix is identical to that of its skew-symmetric

component; this vector, represented as a ≡ vect(A), is the vector linear invariant of A.

The scalar linear invariant of the same matrix is its trace, tr(A). With this notation,

note that
1

2
(A− AT )v = a × v .

Further, with reference to Fig. 1.3.1, let A and P be two points of a rigid body, which

is shown in its reference and its current configurations.

Figure 1.1: Displacements of two points of a rigid body in two finitely-separated configu-

rations

We can regard vector p− a as the image of p0 − a0 under the rotation Q, namely,

p− a = Q(p0 − a0) , (1.27)

whence an expression for p can be derived as

p = a + Q(p0 − a0) . (1.28)

Furthermore, the displacement dA of A is defined as the difference a − a0, with a similar

definition for the displacement dP of P . From the above equation, it is now apparent that

a linear relation between the two displacements follows:

dP = dA + (Q − 1)(p0 − a0) . (1.29)

Therefore,

Theorem 1.3.1 The displacements of all the points of a rigid body have identical projec-

tions onto the axis of the concomitant rotation.

The proof of the foregoing result follows upon dot-multiplying both sides of eq.(1.29)

by e:

e · dP = e · dA .
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From the previous result it is apparent that ‖dP‖ can attain infinitely large values,

depending on ‖p0 − a0‖, but, in general, dP does not vanish. Hence, a minimum of ‖dP‖
can be found, a result summarized in the Mozzi-Chasles Theorem (Mozzi, 1763; Chasles,

1830). This theorem states that the points of B of minimum-norm displacement lie in a

line M that is parallel to the axis of the rotation represented by matrix Q, the minimum-

norm displacement being a vector parallel to the same axis. If we recall that e and φ

denote the natural invariants of Q, then the position vector p∗ of the point P ∗ of M lying

closest to the origin O is given by Angeles (2002)

p∗ =
(Q − 1)T (Qa0 − a)

2(1 − cos φ)
, for φ 6= 0 , (1.30)

the special case in which φ = 0 corresponding to a pure translation, whereby all points

of B undergo identical displacements. In this case, then, the axis M is indeterminate,

because all points of the body can be thought of as undergoing minimum-norm displace-

ments. Henceforth, line M will be termed the Mozzi-Chasles axis. Note that the Plücker

coordinates of the Mozzi-Chasles axis are given by e and e0 ≡ p∗ × e. We shall denote

with d∗ the minimum-norm displacement, which can be represented in the form

d∗ = d∗e, d∗ = dP · e . (1.31)

Therefore, the body under study can be regarded as undergoing, from B0 to B, a screw

motion, as if the body were rigidly attached to the bolt of a screw of axis M and pitch p

given by

p =
d∗

φ
=

e · dP

φ
. (1.32)

We list below further results:

Lemma 1.3.1 Let A and P be two points of a rigid body undergoing a general motion

from a reference pose B0 to a current pose B. Then, under the notation adopted above,

the difference p− Qp0 remains constant and is denoted by d, i.e.,

p− Qp0 = a −Qa0 = d . (1.33)

Proof: If we recall eq.(1.28) and substitute the expression therein for p in the difference

p− Qp0, we obtain

p −Qp0 = a + Q(p0 − a0) −Qp0 = a − Qa0 = d ,

thereby completing the intended proof.

Note that the kinematic interpretation of d follows directly from eq.(1.33): d represents

the displacement of the point of B that coincides with the origin in the reference pose B0.
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The geometric interpretation of the foregoing lemma is given in Fig. 1.2. What this

figure indicates is that the pose B can be attained from B0 in two stages: (a) first, the

body is given a rotation Q about the origin O, that takes the body to the intermediate

pose B′; (b) then, from B′, the body is given a pure translation of displacement d that

takes the body into B.

Figure 1.2: Geometric interpretation of Lemma 3.1

Therefore, eq.(1.30) for the position vector of the point of the Mozzi-Chasles axis lying

closest to the origin can be expressed in terms of vector d as

p∗ =
(1 − Q)Td

2(1 − cos φ)
, for φ 6= 0 . (1.34)

Note that, in general, d is not of minimum norm. Additionally, d is origin-dependent,

and hence, is not an invariant of the motion under study. Now, if we choose the origin on

the Mozzi-Chasles axis M, then we have the layout of Fig. 1.3, and vector d becomes a

multiple of e, namely, d = d∗e.

Figure 1.3: Rigid-body displacement with origin on the Mozzi-Chasles axis

We can now express the Plücker coordinates of a line L of a rigid body B in terms of

those of the line in its reference configuration L0 (Bottema and Roth, 1978; Pradeep et al.,
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1989), as shown in Fig. 1.3.1. To this end, we let f be the unit vector parallel to L and

P be a point of L, and arrange the Plücker coordinates of L0 and L in the 6-dimensional

arrays λ
0 and λ, respectively, defined as

λ
0 ≡

[

f0

p0 × f0

]

, λ ≡
[

f

p× f

]

. (1.35)

Figure 1.4: The reference and the current configurations of a body and one of its lines

We thus have

f = Qf0, p = Qp0 + d ,

and hence,

p× f = (Qp0 + d) ×Qf0 = (Qp0) ×Qf + d× Qf0 .

Now, the first term of the rightmost-hand side of the above equation can be simplified

upon noticing that the cross product of two rotated vectors is identical to the rotated

cross product. Furthermore, the second term of the same side can be expressed in terms

of D, the cross-product matrix of d, thereby obtaining

p× f = Q(p0 × f0) + DQf0 .

Upon substituting the foregoing expressions for f and p× f into eq.(1.35), we obtain

λ =

[

Qf0

DQf0 + Q(p0 × f0)

]

,

which can be readily cast in the form of a linear transformation of λ
0, i.e.,

[

f

p× f

]

=

[

Q O

DQ Q

] [

f0

p0 × f0

]

, (1.36a)

where O denotes the 3 × 3 zero matrix.

As the reader can readily verify, the inverse relation of eq.(1.36a) takes the form
[

f0

p0 × f0

]

=

[

QT O

−QT D QT

] [

f

p × f

]

. (1.36b)
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By inspection of eq.(1.36a), and recalling the dual-unit-vector representation of a line,

as given in eq.(1.10), we can realize that the dual unit vector of L can be expressed as the

image of the dual unit vector of L0 upon a linear transformation given by a dual matrix

Q̂. Moreover, the dual matrix of interest can be readily derived from the real matrix

of eq.(1.36a). Indeed, it can be realized from Section 2 that the difference between the

primal and the dual parts of a dual quantity is that the units of the dual part are those of

the primal part times units of length. Hence, the primal part of the dual matrix sought

is bound to be Q, which is dimensionless, the corresponding dual part being DQ, which

has units of length. A plausible form of the matrix sought is, then,

Q̂ = Q + ǫDQ . (1.37)

The correctness of the above expression can be readily realized. Indeed, let f̂∗ = f+ǫp × f

and f̂0∗ = f0 + ǫp0 × f0 be the dual unit vectors of L and L0, respectively. Then upon

performing the product Q̂f̂0∗, we note that the product is rightfully f̂∗, i.e., f̂∗ = Q̂f̂0∗. In

the derivations below, we will need expressions for the vector and scalar linear invariants

of the product of two matrices, one of which is skew-symmetric. These expressions are

derived in detail in (Angeles, 2002). For quick reference, we recall these relations below:

Theorem 1.3.2 Let both A and S be 3 × 3 matrices, the former arbitrary, the latter

skew-symmetric. Then,

vect(SA ) =
1

2
[tr(A)1− A]s , (1.38)

where s ≡ vect(S ).

Now, as a direct consequence of the above result, we have

Corollary 1.3.1 If A in Theorem 1.3.2 is skew-symmetric, then the axial vector of the

product SA reduces to

vect(SA ) = −1

2
As = −1

2
a × s , (1.39)

where a ≡ vect(A).

Moreover,

Theorem 1.3.3 Let A, S, and s be defined as in Theorem 1.3.2. Then,

tr(SA ) = −2s · [vect(A )] . (1.40)

Furthermore, we prove now that Q̂ is proper orthogonal. Indeed, orthogonality can

be proven by performing the product Q̂Q̂T and noticing that this product yields the 3×3
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identity matrix, i.e., Q̂Q̂T = 1. Proper orthogonality is proven, in turn, upon application

of formula (1.15) to matrix Q̂, as given by eq.(1.37), namely,

det(Q̂) = det(Q)[1 + ǫ tr(DQQ−1)] = det(Q)[1 + ǫ tr(D)] = 1 ,

thus completing the proof.

The exponential form of the dual rotation matrix can be obtained if we note that the

exponential of a pure dual number x̂ = ǫx0 reduces to

eǫx0 = 1 + ǫx0 . (1.41)

On the other hand, we can write

Q̂ = (1 + ǫD)Q . (1.42)

In analogy with eq.(1.41), the foregoing expression takes the form

Q̂ = eǫDQ .

Furthermore, if we recall the exponential form of Q, as given in eq.(1.22), the foregoing

expression simplifies to

Q̂ = eǫDeφE . (1.43)

However, since D and E are unrelated, they do not share the same set of eigenvectors,

and hence, they do not commute under multiplication, the foregoing expression thus not

being further reducible to one single exponential. Nevertheless, if the origin is placed on

the Mozzi-Chasles axis, as depicted in Fig. 1.3, then the dual rotation matrix becomes

Q̂ = Q + ǫ d∗EQ , (1.44)

where d∗E is, apparently, the cross-product matrix of vector d∗e. Furthermore, the expo-

nential form of the dual rotation matrix, eq.(1.43), then simplifies to Q̂ = e(φ+ǫ d∗)E or, if

we let φ̂ = φ + ǫ d∗, then we can write Q̂ = eφ̂E.

1.3.2 Velocity Analysis

Upon differentiation with respect to time of both sides of eq.(1.27), we obtain

ṗ− ȧ = Q̇(p0 − a0) ,

and, if we solve for (p0 − a0) from the equation mentioned above, we obtain

ṗ− ȧ = Q̇QT (p− a) , (1.45)

where Q̇QT is defined as the angular-velocity matrix of the motion under study, and is

represented as Ω, namely,

Ω ≡ Q̇QT . (1.46a)
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It can be readily proven that the foregoing matrix is skew-symmetric, i.e.,

ΩT = −Ω . (1.46b)

Moreover, the axial vector of Ω is the angular-velocity vector ω:

ω = vect(Ω) . (1.46c)

We can now write eq.(1.45) in the form

ṗ = ȧ + Ω(p − a) = ȧ + ω × (p− a) , (1.47)

whence,

ṗ− ω × p = ȧ− ω × a ≡ v0 = const . (1.48)

Therefore, the difference ṗ − ω × p is the same for all points of a rigid body. The

kinematic interpretation of this quantity is straightforward: If we rewrite v0 in the form

v0 = ṗ + ω × (−p), then we can readily realize that, −p being the vector directed from

point P of the rigid body to the origin O, v0 represents the velocity of the point of the

body that coincides instantaneously with the origin. Furthermore, we express d, as given

by eq.(1.33), in terms of the position vector of an arbitrary point P , p, thus obtaining

d = p −Qp0 . (1.49)

Upon differentiation of the two sides of the above expression with respect to time, we

obtain

ḋ = ṗ − Q̇p0 ,

which can be readily expressed in terms of the current value of the position vector of P ,

by solving for p0 from eq.(1.49), namely,

ḋ = ṗ− Ω(p− d) or ḋ− ω × d = ṗ − ω × p , (1.50)

and hence, the difference ḋ − ω × d is identical to the difference ṗ− ω × p, i.e.,

ḋ − ω × d = v0 . (1.51)

Furthermore, upon dot-multiplying the two sides of eq.(1.48) by ω, we obtain an

interesting result, namely,

ω · ṗ = ω · ȧ , (1.52)

and hence,

Theorem 1.3.4 The velocities of all points of a rigid body have the same projection onto

the angular-velocity vector of the motion under study.
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Similar to the Mozzi-Chasles Theorem, we have now

Theorem 1.3.5 Given a rigid body B under general motion, a set of its points, on a line

L, undergoes the identical minimum-magnitude velocity v∗ parallel to the angular velocity

ω.

The Plücker coordinates of line L, grouped in the 6-dimensional array λ, are given as

λ ≡
[

f

π × f

]

, f ≡ ω

‖ω‖ , π ≡ ω × v0

‖ω‖2
, (1.53)

where v0 was previously introduced as the velocity of the point of B that coincides in-

stantaneously with the origin. Line L is termed the instant screw axis–ISA, for brevity.

Thus, the instantaneous motion of B is defined by a screw of axis L and pitch p′, given

by

p′ =
ṗ · ω
‖ω‖2

, (1.54)

where ṗ is the velocity of an arbitrary point P of B, the product ṗ ·ω being constant by

virtue of Theorem 1.3.4. A proof of the foregoing results is available in (Angeles, 2002).

1.3.3 The Linear Invariants of the Dual Rotation Matrix

We start by recalling the linear invariants of the real rotation matrix Angeles (2002).

These are defined as

q ≡ vect(Q) = (sin φ)e, q0 ≡
tr(Q) − 1

2
= cos φ . (1.55a)

Note that the linear invariants of any 3×3 matrix can be obtained from simple differ-

ences of its off-diagonal entries and sums of its diagonal entries. Once the foregoing linear

invariants are calculated, the natural invariants can be obtained uniquely as indicated

below: First, note that the sign of e can be changed without affecting q if the sign of φ

is changed accordingly, which means that the sign of φ–or that of e, for that matter–is

undefined. In order to define this sign uniquely, we will adopt a positive sign for sin φ,

which means that φ is assumed, henceforth, to lie in the interval 0 ≤ φ ≤ π.

We can thus obtain the inverse relations of eq.(1.55a) in the form

e =
q

‖q‖ , φ = arctan

(‖q‖
q0

)

, q 6= 0 , (1.55b)

the case q = 0 being handled separately. Indeed, q vanishes under two cases: (a) φ = 0,

in which case the body undergoes a pure translation and the axis of rotation is obviously

undefined; and (b) φ = π, in which case Q is symmetric and takes the form

For φ = π : Q = −1 + 2eeT , (1.55c)

15



whence the natural invariants become apparent and can be readily extracted from Q.

Similar to the linear invariants of the real rotation matrix, in the dual case we have

q̂ ≡ vect(Q̂), q̂0 ≡
tr(Q̂) − 1

2
. (1.56)

Expressions for the foregoing quantities in terms of the motion parameters are derived

below; in the sequel, we also derive expressions for the dual natural invariants in terms

of the same parameters. We start by expanding the vector linear invariant:

vect(Q̂) = vect(Q + ǫDQ) = vect(Q) + ǫ vect(DQ) . (1.57a)

But, by virtue of eq.(1.20),

vect(Q) = (sin φ)e . (1.57b)

Furthermore, the second term of the rightmost-hand side of eq.(1.57a) can be readily

calculated if we recall Theorem 1.3.2, with d ≡ vect(D):

vect(DQ) =
1

2
[tr(Q)1 − Q]d . (1.57c)

Now, if we recall expression (1.20), we obtain

tr(Q)1 − Q = (1 + cosφ)1 − sin φE − (1 − cos φ)eeT .

Upon substitution of the foregoing expression into eq.(1.57c), the desired expression for

vect(DQ) is readily derived, namely,

vect(DQ) =
1

2
[(1 + cosφ)d− sin φe × d− (1 − cos φ)(e · d)e] , (1.57d)

and hence,

q̂ = (sin φ)e + ǫ
1

2
[(cos φ)(e · d)e + (1 + cos φ)d + (sin φ)d× e − (e · d)e]. (1.57e)

On the other hand, the position vector p∗ of the Mozzi-Chasles axis, given by eq.(1.34),

can be expressed as

p∗ =
1

2

sin φ

1 − cos φ
e × d +

1

2
d− 1

2
(e · d)e , (1.58a)

and hence,

p∗ × e =
1

2

sin φ

1 − cos φ
d − 1

2

sin φ

1 − cos φ
(e · d)e +

1

2
d× e . (1.58b)

Moreover, let us recall the identity

1 + cos φ

sin φ
=

sin φ

1 − cos φ
, (1.58c)
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which allows us to rewrite eq.(1.58b) in the form

p∗ × e =
1

2

1 + cos φ

sin φ
d− 1

2

1 + cos φ

sin φ
(e · d)e +

1

2
d× e , (1.58d)

whence,

(sin φ)p∗ × e =
1

2
[(1 + cosφ)d− (1 + cosφ)(e · d)e + (sin φ)d× e] ,

and q̂ takes the form

q̂ = (sin φ)e + ǫ [(cos φ)(e · d)e + (sin φ)p∗ × e] . (1.59)

If we now recall eqs.(1.31) and (1.32), d · e ≡ d∗ = pφ, while p∗ × e is the moment of

the associated Mozzi-Chasles axis, e0, and hence, eq.(1.59) becomes

q̂ = (sin φ)e + ǫ [(cos φ)pφe + (sin φ)e0] , (1.60)

and hence, q̂ can be further simplified to

q̂ = ê∗ sin φ̂, φ̂ ≡ φ1 + ǫ p) , (1.61)

where ê∗ is the dual unit vector representing the Mozzi-Chasles axis, i.e., ê∗ = e + ǫ e0.

Now, such as in the real case, we can calculate the dual natural invariants of the motion

under study in terms of the foregoing dual linear invariants. We do this by mimicking

eqs.(1.55b), namely,

ê∗ =
q̂

‖q̂‖ , φ̂ = arctan

(‖q̂‖
q̂0

)

, ‖q̂‖ 6= 0 , (1.62)

where ‖q̂‖ is calculated from eq.(1.9e), which gives ‖q̂‖2, the square root of the latter

then following from eq.(1.7), thus obtaining

‖q̂‖ = sin φ̂ = sin φ + ǫ (e · d) cos φ , (1.63)

and hence, upon simplification,

ê∗ = e + ǫp∗ × e = e + ǫ e0 , (1.64)

which is rightfully the dual unit vector of the Mozzi-Chasles axis. Furthermore,

tr(Q̂) = tr(Q) + ǫ tr(DQ) , (1.65a)

where, from Theorem 1.3.3, tr(DQ) turns out to be

tr(DQ) = −2[vect(Q)] · d = −2 sin φ(e · d) , (1.65b)
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whence,

tr(Q̂) = 1 + 2 cosφ − ǫ 2(sin φ)e · d , (1.65c)

and so, from the second of eqs.(1.56),

q̂0 ≡ cos φ̂ = cos φ − ǫ (sin φ)(e · d) ,

which, by virtue of eqs.(1.31), leads to

q̂0 = cos φ − ǫ (sin φ)d∗, φ̂ = φ + ǫ d∗ = φ(1 + ǫ p) . (1.65d)

In summary, the dual angle of the dual rotation under study comprises the angle

of rotation of Q in its primal part and the axial component of the displacement of all

points of the moving body onto the Mozzi-Chasles axis. Upon comparison of the dual

angle between two lines, as given in eq.(1.5), with the dual angle of rotation φ̂, it is then

apparent that the primal part of the latter plays the role of the angle between two lines,

while the corresponding dual part plays the role of the distance s between those lines. It

is noteworthy that a pure rotation has a dual angle of rotation that is real, while a pure

translation has an angle of rotation that is a pure dual number.

Example 1: Determination of the screw parameters of a rigid-body motion.

We take here an example of Angeles (2002): The cube of Fig. 1.5 is displaced from

configuration A0B0 . . .H0 into configuration AB . . .H . Find the Plücker coordinates of

the Mozzi-Chasles axis of the motion undergone by the cube.

Solution: We start by constructing Q̂: Q̂ ≡ [ î∗ ĵ∗ k̂∗ ], where î∗, ĵ∗, and k̂∗ are the dual

unit vectors of lines AB, AD, and AE, respectively. These lines are, in turn, the images

of lines A0B0, A0D0, and A0E0 under the rigid-body motion at hand. The dual unit

vectors of the latter are denoted by î0∗, ĵ0∗, and k̂0∗, respectively, and are parallel to the

X, Y , and Z axes of the figure. We thus have

î∗ = −j0 + ǫ a × (−j0), ĵ∗ = k0 + ǫ a × k0, k̂∗ = −i0 + ǫ a × (−i0) ,

where a is the position vector of A, and is given by

a = [ 2 1 −1 ]T a .

Hence,

î∗ = −j0 + ǫ a(−i0 − 2k0)

ĵ∗ = k0 + ǫ a(i0 − 2j0)

k̂∗ = −i0 + ǫ a(j0 + k0)
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Figure 1.5: Motion of a cube

Therefore,

Q̂ =





− ǫ a + ǫ a −1

−1 − ǫ 2a + ǫ a

− ǫ 2a 1 + ǫ a



 ,

whence,

vect(Q̂) =
1

2





1 − ǫ a

−1 + ǫ 2a

−1 − ǫ a



 , tr(Q̂) = − ǫ (2a) ,

and

‖vect(Q̂)‖2 = ‖1

2





1

−1

−1



 ‖2 + ǫ 2
1

2
[ 1 −1 −1 ]





−1

2

−1





a

2
=

3

4
− ǫ a .

Thus,

‖vect(Q̂)‖ =

√
3

2
+ ǫ

−a√
3

=

√
3

2
− ǫ

√
3

3
a .

Therefore, the unit dual vector representing the Mozzi-Chasles axis of the motion at hand,

ê∗, is given by ê∗ = vect(Q̂)/‖vect(Q̂)‖, i.e.,

ê∗ =
1√
3/2

1

2





1

−1

−1



− ǫ
a

3/4





1

2





1

−1

−1





−
√

3

3
− 1

2





−1

2

−1





√
3

2



 .
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After various stages of simplification, the foregoing expression reduces to

ê∗ =

√
3

3





1

−1

−1



+ ǫ

√
3

9





−1

4

−5



 a .

Thus, the Mozzi-Chasles axis is parallel to the unit vector e, which is given by the primal

part of ê, while the dual part of the same dual unit vector represents the moment of

the Mozzi-Chasles axis, from which the position vector p∗ of P ∗, the point of the Mozzi-

Chasles axis closest to the origin, is readily found as

p∗ = e × e0 =
a

3
[ 3 2 1 ]T .

1.3.4 The Dual Euler-Rodrigues Parameters of a Rigid-Body

Motion

We first recall the definition of the Euler-Rodrigues parameters of a pure rotation, which

are isomorphic to the quaternion of the rotation (Hamilton, 1844). These are most nat-

urally introduced as the linear invariants of the square root of the rotation at hand, and

represented, paralleling the definition of the linear invariants, as

r ≡ vect(
√

Q), r0 ≡
tr(

√
Q) − 1

2
, (1.66)

the proper orthogonal square root of Q being given as (Angeles, 2002):

√

Q = 1 + sin

(

φ

2

)

E +

[

1 − cos

(

φ

2

)]

)E2 . (1.67)

The dual Euler-Rodrigues parameters of a rigid-body motion are thus defined as

r̂ ≡ vect(

√

Q̂), r̂0 ≡
tr(

√

Q̂) − 1

2
. (1.68)

Below we derive an expression for

√

Q̂. Prior to this, we introduce a relation that will

prove useful:

Lemma 1.3.2 Let a and b be arbitrary 3-dimensional vectors, and c ≡ a × b. The

cross-product matrix C of c is given by

C = baT − abT . (1.69)
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Proof: This follows by noticing that, for any 3-dimensional vector u,

c × u = (a × b) × u = b(aT u) − a(bTu) ,

which readily leads to

Cu = (baT − abT )u ,

thereby completing the proof.

Now we proceed to determine

√

Q̂. To this end, we regard the motion at hand, from

a reference configuration B0 to a current configuration B, as consisting of a rotation Q

about the origin O followed by a translation d. Then, this motion is decomposed into two

parts, as shown in Fig. 1.3.4: First, the body is rotated about the origin O by a rotation√
Q and a translation ds; then, from the configuration B′ thus attained, the body is given

a new rotation
√

Q about O as well, followed by the same translation ds.

It is apparent that, from the general expression for the dual rotation matrix, eq.(1.42),
√

Q̂ can be represented as
√

Q̂ = (1 + ǫDs)
√

Q , (1.70)

the calculation of

√

Q̂ thus reducing to that of the skew-symmetric matrix Ds, which is

the cross-product matrix of ds. This matrix is calculated below in terms of
√

Q and D.

We thus have

p2 =
√

Qp0 + ds , (1.71)

p4 =
√

Qp2 + ds = Qp0 + (1 +
√

Q)ds . (1.72)

Figure 1.6: Decomposition of the motion of a rigid body

But p4 is the position vector of point P in B, which can be attained by a rotation Q

about O followed by a translation d, i.e.,

p4 = Qp0 + d . (1.73)
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Upon comparing the right-hand sides of eqs.(1.72) and (1.73), we obtain

(1 +
√

Q)ds = d ,

whence,

ds = (1 +
√

Q)−1d . (1.74)

An expression for the above inverse can be derived if we realize that this inverse is an

analytic function of
√

Q, which is, in turn, an analytic function of Q. We can thus conclude

that by virtue of the Cayley-Hamilton Theorem, invoked when deriving the exponential

form of the rotation matrix in eq.(1.22), the inverse sought must be a linear combination

of the first three powers of E: e0 ≡ 1, E, and E2, namely,

(1 +
√

Q)−1 = α1 + βE + γE2 , (1.75)

where α, β, and γ are to be determined. To this end, we write

(1 +
√

Q)−1(α1 + βE + γE2) = 1 .

If we now substitute in the above equation the expression for
√

Q displayed in eq.(1.67),

we obtain three equations for the three unknowns α, β, and γ, from which it is a simple

matter to solve for these unknowns, namely,

α =
1

2
, β = − sin(φ/2)

2[1 + cos(φ/2)]
, γ = 0 , (1.76)

the inverse sought thus taking the form

(1 +
√

Q)−1 =
1

2

[

1 − sin(φ/2)

1 + cos(φ/2)
E

]

. (1.77)

Therefore, eq.(1.74) yields

ds = (1 +
√

Q)−1d =
1

2

[

1 − sin(φ/2)

1 + cos(φ/2)
E

]

d ,

i.e.,

ds =
1

2

[

d − sin(φ/2)

1 + cos(φ/2)
e × d

]

. (1.78)

Thus, Ds is the cross-product matrix of the sum of two vectors, and hence, Ds reduces

to the sum of the corresponding corss-product matrices. The cross-product matrix of the

first term of the right-hand side of the foregoing equation is apparently proportional to

D, that of the second term being proportional to the cross-product matrix of e× d. The

latter can be readily obtained by application of Lemma 1.3.2, which leads to

Ds =
1

2

[

D − sin(φ/2)

1 + cos(φ/2)
(deT − edT )

]

. (1.79)
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Hence,
√

Q̂ = 1 + ǫ
1

2

[

D − sin(φ/2)

1 + cos(φ/2)
(deT − edT )

]

√

Q . (1.80)

Now, the linear invariants of

√

Q̂ are

vect(

√

Q̂) = vect(
√

Q) + ǫ vect(Ds

√

Q) (1.81a)

and

tr(

√

Q̂) = tr(
√

Q) + ǫ tr(Ds

√

Q) . (1.81b)

An expression for vect(
√

Q), appearing in the first term of vect(

√

Q̂), can be obtained

from eq.(1.67), namely,

vect(
√

Q) = sin

(

φ

2

)

vect(E) = sin

(

φ

2

)

e , (1.82)

while an expression for the second term of the right-hand side of eq.(1.81b) is obtained

by application of Theorem 1.3.2:

vect(Ds

√

Q) =
1

2
[tr(
√

Q)1 −
√

Q]ds ,

which can be further expanded without intermediate lengthy derivations if we realize

that the above expression is the counterpart of that appearing in eq.(1.57c); the latter

is expanded in eq.(1.57d). Thus, all we need now is mimic eq.(1.57d), if with φ and d

substituted by their counterparts φ/2 and ds, respectively, i.e.,

vect(Ds

√

Q) =
1

2

{[

1 + cos

(

φ

2

)]

ds − sin

(

φ

2

)

e × ds

−
[

1 − cos

(

φ

2

)]

(e · d)e

}

. (1.83)

If we now simplify the above expression for vect(Ds

√
Q), and substitute the simplified

expression into eq.(1.81a), along with eq.(1.82), we obtain the desired expression for r̂.

Note that the latter is defined in eq.(1.68), and hence,

r̂ = sin

(

φ

2

)

e + ǫ

[

cos

(

φ

2

)

ps

φ

2
e + sin

(

φ

2

)

e0

]

, (1.84)

where ps is the pitch associated with the motion represented by

√

Q̂, namely,

ps ≡ ds · e =
1

2
d , (1.85)

where we have recalled the expression for ds displayed in eq.(1.78). Similar to eq.(1.61),

then, the dual vector of the Euler-Rodrigues parameters is given by

r̂ = ê∗ sin

(

φ̂

2

)

, φ̂ ≡ φ + ǫ d∗
s, d∗

s ≡ ds · e . (1.86)
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The scalar of the Euler-Rodrigues parameters under study, r̂0, is now found in terms

of the trace of

√

Q̂, which is displayed in eq.(1.81b). In that equation,

tr(
√

Q) = 1 + 2 cos

(

φ

2

)

,

the dual part of the right-hand side of eq.(1.81b) being calculated by application of The-

orem 1.3.3:

tr(Ds

√

Q) = −2ds · vect(
√

Q) = −2ds · e sin

(

φ

2

)

or, in terms of the corresponding pitch ps,

tr(Ds

√

Q) = −2ps sin

(

φ

2

)

.

Therefore,

tr(

√

Q̂) = 1 + 2 cos

(

φ

2

)

− ǫ 2ps sin

(

φ

2

)

,

and hence,

r̂0 = cos

(

φ

2

)

− ǫ ps sin

(

φ

2

)

, (1.87)

which is the counterpart of the second of eqs.(1.55a). The set (r̂, r̂0) constitutes the dual

quaternion of the motion under study (McCarthy, 1990).

1.4 The Dual Angular Velocity

Similar to the angular-velocity matrix Ω introduced in eq.(1.46a), the dual angular velocity

matrix Ω̂ is defined as

Ω̂ ≡ ˙̂
QQ̂T . (1.88)

Now we differentiate with respect to time the expression for Q̂ introduced in eq.(1.42),

which yields
˙̂
Q = (1 + ǫD)Q̇ + ǫḊQ .

Upon substitution of the above expression for
˙̂
Q and of the expression for Q̂ of eq.(1.42)

into eq.(1.88), we obtain

Ω̂ = Ω + ǫ (DΩ− ΩD + Ḋ) . (1.89)

The dual angular-velocity vector ω̂ of the motion under study is then obtained as the

axial vector of the foregoing expression, namely,

ω̂ = vect(Ω̂) = ω + ǫ [vect(DΩ − ΩD) + ḋ] , (1.90)

with ḋ being the time-derivative of vector d, introduced in eq.(1.33). Thus, in order to

determine ω̂, all we need is the axial vector of the difference DΩ − ΩD. An expression
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for this difference can be obtained in various manners, one of which is outlined below:

First, note that this difference is skew-symmetric, and hence,

vect(DΩ − ΩD) = 2 vect(DΩ) .

Further, the vector of DΩ is computed by means of Corollary 1.3.1, eq.(1.39), upon

substituting A by Ω in that expression. Thus,

vect(DΩ) = −1

2
ω × d . (1.91)

Therefore,

ω̂ = ω + ǫ (ḋ− ω × d) , (1.92)

and, if we recall eq.(1.51), the foregoing expression takes the alternative form

ω̂ = ω + ǫv0 . (1.93)

In consequence, the dual angular velocity is the dual representation of the twist t of

B, defined as the 6-dimensional array

t ≡
[

ω

v0

]

. (1.94)

We can therefore find the angular velocity vector and the moment of the ISA about

the given origin–i.e., the instant screw parameters of the motion at hand–if we are given

enough information as to allow us to compute ω̂. The information required to determine

the screw parameters of the motion under study can be given as the position and velocity

vectors of three noncollinear points of a rigid body (Angeles, 2002). However, note that

the dual rotation matrix was obtained in Example 1 in terms of the dual unit vectors

representing three mutually orthogonal lines. Notice that, by virtue of Lemma 1.2.1, the

three lines of Example 1 were chosen concurrent and mutually orthogonal.

Now, in order to find the instant-screw parameters of interest, we need the time-

derivatives of the dual unit vectors representing three concurrent, mutually orthogonal

lines, but all we have at our disposal is the position and velocity vectors of three non-

collinear points. Nevertheless, once we know three noncollinear points of a rigid body, say

A, B, and C, along with their velocities, it is possible to find the position and velocity

vectors of three pairs of points defining a triad of concurrent, mutually orthogonal lines,

an issue that falls beyond the scope of this chapter. Rather than discussing the problem

at hand in its fullest generality, we limit ourselves to the special case in which the position

vector p of a point P of the rigid body under study can be determined so that the three

lines PA, PB, and PC are mutually orthogonal. Further, we let the position vectors of

the three given points be a, b, and c. Thus, point P of the body in this case forms a
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rectangular trihedron with vertex at P and edges PA, PB, and PC. We can thus express

p as a nonlinear function of the three position vectors a, b, and c:

p = p(a, b, c) . (1.95)

Moreover, the velocity of point P , ṗ, can be calculated now as a linear combination of

the velocities of the three given points, by straightforward differentiation of the foregoing

expression, namely,

ṗ = Paȧ + Pbḃ + Pcċ , (1.96)

where Pa, Pb, and Pc denote the partial derivatives of p with respect to a, b, and c,

respectively. Once the position and the velocity vectors of point P are known, it is

possible to determine the time-rates of change of the dual unit vectors representing the

three lines PA, PB and PC, as described below.

Let ê∗ denote the dual unit vector representing the line determined by points A and

P , its primary and dual parts, e and e0, being given by

e =
a − p

‖a − p‖ , e0 = p × a − p

‖a − p‖ . (1.97)

Straightforward differentiation of the foregoing expressions with respect to time leads

to

ė =
1

‖a− p‖

(

ȧ − ṗ − e
d

dt
‖a− p‖

)

,

ė0 = ṗ× a− p

‖a− p‖ + p × 1

‖a − p‖

(

ȧ − ṗ − e
d

dt
‖a− p‖

)

.

Upon simplification, we obtain the desired expression for ˙̂e
∗
, namely,

˙̂e
∗

=
1

‖a− p‖ [ȧ− ṗ + ǫ (pȧ + ṗ× a)] . (1.98)

Therefore, knowing the velocity of two points of a line, we can determine the time-

rate of change of the dual unit vector representing the line. The foregoing idea is best

illustrated with the aid of the example included below.

Example 2: Determination of the ISA of a rigid-body motion.

For comparison purposes, we take an example from (Angeles, 2002): The three vertices

of the equilateral triangular plate of Fig. 1.4, which lie in the X-Y plane, {Pi }3
1, have the

position vectors {pi }3
1. Moreover, the origin of the coordinate frame X, Y, Z lies at the

centroid C of the triangle, and the velocities of the foregoing points, { ṗi }3
1, are given in

this coordinate frame as

ṗ1 =
4 −

√
2

4





0

0

1



 , ṗ2 =
4 −

√
3

4





0

0

1



 , ṗ3 =
4 +

√
2

4





0

0

1



 .
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Figure 1.7: A rigid triangular plate undergoing a motion given by the velocity of its

vertices

With the above information, compute the instant-screw parameters of the motion under

study.

Solution: Since the centroid C of the triangle coincides with that of the three given

points, we have c = 0, where c is the position vector of C. Moreover,

p1 =





1/2

−
√

3/6

0



 , p2 =





0√
3/3

0



 , p3 =





−1/2

−
√

3/6

0



 .

First and foremost, we have to verify the compatibility of the data. To do this, we

calculate the component of the relative velocities of two given points onto the line that

they define. It can be readily shown that the data are compatible, and hence, the motion

is possible. Next, we obtain the position vector of the point P that, along with {Pi}3
1,

forms an orthogonal trihedron. It is not difficult to realize that the position vector of

point P can be expressed as2

p = c +

√
2

3
(p2 − p1) × (p3 − p1) ,

and hence,

ṗ = ċ +

√
2

3
[(p3 − p2) × ṗ1 + (p1 − p3) × ṗ2 + (p2 − p1) × ṗ3] ,

2Although c = 0 in this case, ċ 6= 0, and hence, c must be written explicitly in the expression for p.
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with the numerical values of p and ṗ given below:

p =

√
6

6





0

0

1



 , ṗ =
1

12





2
√

3√
6

12 −
√

3



 .

Now, let ê∗
i denote the dual unit vector representing the line that passes through P and

Pi, i.e.,

ê∗
i =

1

‖pi − p‖ [pi − p + ǫp× pi] ,

where

‖pi − p‖ =

√
2

2
, i = 1, 2, 3 .

Next, the three foregoing dual unit vectors are stored columnwise in the dual rotation

matrix Q̂, i.e.,

Q̂ = [ ê∗
1 ê∗

2 ê∗
3 ] .

Upon substitution of the numerical values of these vectors into the above expression, we

obtain

Q̂ =

√
12

12





6 + ǫ 2 − ǫ 2
√

2 −6 + ǫ
√

2

−2
√

3 + ǫ
√

6 4
√

3 −2
√

3 − ǫ
√

6

−2
√

6 −2
√

6 −2
√

6



 .

Likewise, the time derivative of Q̂ is computed as

˙̂
Q =

√
2
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−4
√

3 −4
√

3 −4
√

3

−2
√

6 −2
√

6 −2
√

6

−6
√

2 + 2
√

3 −4
√

3 6
√

2 + 2
√

3





+ ǫ





−1 + 4
√

3 2 − 8
√

3 −1 + 4
√

3

12 −
√

3 0 −12 +
√

3

−(2 +
√

6) 4 −2 +
√

6







 .

Therefore,

Ω̂ =
˙̂
QQ̂T =

1

12





0 − ǫ (12 −
√

3) 6
√

2

+ ǫ (12 −
√

3) 0 6

−6
√

2 −6 0



 ,

which, as expected, is a dual skew-symmetric matrix. Hence,

ω̂ = vect(Ω̂) =
1

2





−1√
2

0



+ ǫ
12 −

√
3

12





0

0

1



 ,

from which we can readily identify

ω =
1

2





−1√
2

0



 , v0 =
12 −

√
3

12





0

0

1



 .
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Furthermore, the position vector π
∗ of the point P ∗ of the ISA lying closest to the origin

can be obtained from v0. Indeed, let v∗ be the velocity of P ∗, which thus allows us to

write

v0 = v∗ + ω × (−p∗) = v∗ + p∗ × ω .

Upon cross-multiplying the two sides of the foregoing expression by ω, we obtain

v0 × ω = v∗ × ω + (p∗ × ω) × ω ,

whose first term of the right-hand side vanishes because v∗ and ω are parallel. Therefore,

v0 × ω = (p∗ × ω) × ω = (p∗ · ω)ω − ‖ω‖2p∗ .

The first term of the rightmost-hand side of the foregoing equation vanishes because p∗

being the position vector of the point of the ISA that lies closest to the origin, and the

ISA being parallel to ω, these two vectors are orthogonal. We can thus solve for p∗ from

the above expression, which yields

p∗ = −v0 × ω

‖ω‖2
.

The quantities involved in the foregoing expression are now evaluated:

−v0 × ω = ω × v0 =
12 −

√
3

24





√
2

1

0



 , ‖ω‖2 =
3

4
.

Finally, p∗ = {[(12 −
√

3)]/18}[
√

2 1 0]T , which coincides with the results reported in

(Angeles, 2002), obtained by another method.

1.5 Conclusions

We revisited dual algebra in the context of kinematic analysis, which led us to a straight-

forward introduction of dual quaternions. In the process, we showed that the parameters

of both the finite screw and the instant screw of a rigid-body motion can be computed

from the sum of the diagonal and the difference of the off-diagonal entries of the dual

rotation and, correspondingly, the dual angular-velocity matrices.
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