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Notation1: The n� n identity matrix, when n is obvious1k: the k � k identity matrix, when k should be spe
i�edA: q � n 
oeÆ
ient matrix of the linear system Ax = bAI: the left Moore-Penrose generalized inverse (LMPGI) of the full-rank q � nmatrix A, with q > n: AI � (ATA)�1AT (1)b: q-dimensional ve
tor of the linear system Ax = bC: p � n, with p < n, 
oeÆ
ient matrix of the underdetermined linear systemCx = dCy: the right Moore-Penrose generalized inverse (RMPGI) of the full-rank p � nmatrix C, with p < n: Cy � CT (CCT )�1 (2)d: p-dimensional ve
tor of the linear system Cx = df : s
alar obje
tive fun
tion f(x) to be minimizedg(x): p-dimensional nonlinear ve
tor fun
tion of the set of inequalities g(x) � 0G: p� n Ja
obian matrix of ve
tor fun
tion g(x) w.r.t. xH: the n� n Hessian matrix of the obje
tive fun
tion f(x)Hi: ith Householder re
e
tion used to render a re
tangular matrix into upper-triangular form; a square matrixh(x): l-dimensional nonlinear ve
tor fun
tion of x, o

urring in the equality 
on-straints h(x) = 0 7



J(x): l � n gradient of h w.r.t. xL: lower-triangular matrix of the LU-de
omposition of a square matrix A. Alsoused to denote the orthogonal 
omplement of C or G; 
onfusion is avoidedbe
ause of the two di�erent 
ontexts in whi
h these matri
es o

url: number of equality 
onstraints hi(x) = 0, for i = 1; : : : ; l, expressed in ve
torform as h(x) = 0m: number of equations �i(x) = 0, for i = 1; : : : ; m, expressed in ve
tor form as�(x) = 0n: number of design variables xi, for i = 1; : : : ; n, expressed in ve
tor form as xOmn: the m� n zero matrixp: number of 
onstraint equations gi(x) = 0, for i = 1; : : : ; p, expressed in ve
torform as g(x) = 0 or Cx = dq: number of equations in Ax = bU: (square) upper-triangular matrixV: m�m lower-triangular matrix, a fa
tor of W, i.e., W = VTVW: m�m symmetri
 and positive-semide�nite weighting matrixx: n-dimensional ve
tor of design variablesx0: minimum-norm solution of an underdetermined linear systemxL: least-square solution of an overdetermined linear systemxi: the ith 
omponent of ve
tor xxk: the kth entry of a sequen
e x0;x1; : : :r: the gradient operator, pronoun
ed \nabla"; when its operand is a s
alar, ityields a ve
tor; when a ve
tor, it yields a matrixrr: the Hessian operator; its operand being a s
alar, it produ
es a square, sym-metri
 matrixk � k: a norm of either ve
tor or matrix ( � )8



Chapter 1Preliminaries
1.1 The Role of Optimization Within the DesignPro
essThe English word design derives from the Latin word designare, whi
h means \tomark out"|as found, for example, in the Random College Di
tionary. The wordthus implies a goal, an obje
tive. As su
h, the meaning of the word is extremelybroad, en
ompassing the general a
tivity of produ
ing 
on
epts aimed at a givengoal, be this pure intelle
tual pleasure, in the realm of art, or pragmati
, in therealm of engineering.The produ
t of the design a
tivity is a good, whether tangible, e.g., a fountainpen in the realm of industrial design, or intangible, e.g., a business plan, in therealm of management. We fo
us here on engineering design, but this does not meanthat we ex
lude intangible goods. An important bran
h of engineering is produ
tionsystems, whereby the design good is many a time intangible, su
h as the organizationof a health
are system.Design is an extremely 
omplex pro
ess. Various models have been proposedin the literature, e.g., the one by Fren
h (1992), whi
h divides the pro
ess into twoparts, (i) stages/des
riptions and (ii) a
tivities. The pro
ess is represented as a 
owdiagram, in whi
h stages or des
riptions are in
luded in 
ir
les, while a
tivities inre
tangles. In this model, the pro
ess starts with a need and ends with \workingdrawings." In-between, we have a sequen
e, starting by the analysis of the problem,an a
tivity, followed by the statement of the problem, a stage. On
e the problem hasbeen formulated, in design engineering terms, we suppose, as opposed to \
lient-9



needs" terms, the a
tivity leading to the 
on
eptual design follows, out of whi
h
omes (
ome) the "sele
ted s
heme(s)," apparently a des
ription. Then 
omes the\embodiment of s
heme(s)," i.e., of the s
heme(s) sele
ted in the previous part.The embodiment is then followed by the \detailing" of the designed obje
t, also ana
tivity.However, the design pro
ess is re
ognized as being anything but a one-way street.Two feedba
k loops are thus in
luded in Fren
h's model: One at the 
on
eptualdesign level, in whi
h a revision may indi
ate that the problem needs further analysis,and hen
e, the designer or the design team must return to the �rst a
tivity. A se
ondloop arises at the embodiment level, at whi
h the designer may realize that either arevision of the 
on
eptual design is needed, or even a revision of the problem analysisis warranted.The foregoing model 
ontemplates the design pro
ess as a 
onsultant's a
tivity,in whi
h a 
onsultant|an individual or a 
ompany|parti
ipates in a proje
t withinan organization, to either develop a new produ
t or improve an existing one. Themodel does not 
ontemplate the prototyping aspe
ts|usually outside of the s
opeof the 
onsultant's a
tivities|that lead to the realization of the design motivatedby the 
lient's need. Prototyping is needed when either an innovative produ
t isunder design or when an improvement on an existing design is planned that willa�e
t thousands or millions of produ
ed obje
ts. Prototype tests may bring aboutvarious feedba
k loops in turn. We propose in Fig. 1.1 an alternative model thatshould help better understand the role of optimization within the design pro
essand its pla
e therein.In the model of Fig. 1.1, the design pro
ess is initiated by a 
lient's need. Thedesigner then translates the need into a form that allows the designer to analyzethe 
lient's needs within a design 
ontext, whi
h is the blo
k indi
ated as \ProblemDe�nition." On
e the problem is well-de�ned, free of the fuzziness of the 
lient'sdes
ription, a sear
h for alternative solutions begins, leading to a design 
andidate.These a
tivities take pla
e within the \Preliminary Design" box in the proposedmodel. On
e a design 
andidate has been sele
ted, a detailed design follows, asin
luded in the dashed box of the same model. In this phase, the input is a prelim-inary design solution, devoid of details. That is, the preliminary design is nothingbut a rough layout needing an embodiment, i.e., a detailed de�nition in terms ofmaterials, dimensions, and so on. The �rst step in this stage is the synthesis of theembodiment, i.e., a topologi
al layout of the design|number of moving parts; typesof moving parts; individual fun
tions of the parts; et
.|involving only a qualitative10



des
ription of the design stru
ture. On
e a topologi
al layout has been produ
ed, itsdesign features are identi�ed and labelled, probably using mathemati
al symbols,su
h as ` for length; m for mass; R for resistor; P for 
ompressive load; T for tensileload; et
.A key step in the dashed box 
onsists in assigning numeri
al values to the fore-going features, whi
h is a task 
alling for dis
ipline-spe
i�
 knowledge|
uid me-
hani
s; stru
tural engineering; ma
hine design; multibody dynami
s; et
.|eithertheoreti
al or empiri
al. Out of this knowledge 
omes a mathemati
al model re-lating all the foregoing features. Numeri
al values 
an now be assigned to thesefeatures using most often good engineering judgment, whi
h 
omes only from expe-rien
e. As a means of verifying de
isions on dimensioning, the designer 
an resort towell-developed design methods leading systemati
ally to the best possible values ofthose features, while satisfying the 
lient's needs and budgetary 
onstraints. Under\budgetary" we understand not only �nan
ial resour
es, but also time, for deadlinesmust be respe
ted. How to assign values systemati
ally to the foregoing features isthe role of optimization.Optimization is thus a pro
ess by whi
h the de
ision-maker, in our 
ase thedesigner, arrives at optimum values of the features de�ning the design solution pro-posed. A set of optimum values has been a
hieved when a 
ost has been minimizedor a pro�t has been maximized, while respe
ting the mathemati
al model, i.e., thefun
tional relations among all quantities at stake and the budgetary 
onstraintsexpressed in the form of equality or inequality relations. On
e all design featureshave been determined, and validated by means of simulation using dis
ipline-spe
i�
tools|
omputational 
uid dynami
s 
ode; �nite element 
ode; ele
tromagneti
 de-sign 
ode; 
ode implementing Monte Carlo methods; et
.|an embodiment of thedesign solution 
an be produ
ed, probably as a virtual prototype. Su
h embodimentis the output of the dashed box.The embodiment is then further developed to the last detail, in order to allowfor third parties, e.g., a ma
hine-tool shop, to produ
e all the parts leading to thephysi
al prototype upon assembly. Finally, the physi
al prototype is subje
ted tovalidation tests before it is 
erti�ed and ready to go either into mass produ
tionor to the 
lient as an end user, thereby 
ompleting the design pro
ess. Currenttrends di
tate that the design 
ontemplate not only delivery to the end user, butalso disposability of the designed obje
t upon 
ompletion of its life 
y
le.Engineering design problems have in
reasingly be
ome model-based, in that their
omplexity 
alls for mathemati
al models involving many quantities, some of whi
h11



Figure 1.1: The role of optimization within the design pro
essare to be de
ided on by the designer with the purpose of meeting performan
espe
i�
ations|e.g., the thrust that an air
raft engine must deliver at a given rpm|under given environment 
onditions|engine must operate at a spe
i�ed ambienttemperature and at a given ambient pressure. We thus 
lassify the various quantitieso

urring in the model into:� Design Variables (DV): Those quantities that the designer has to �nd so asto produ
e the spe
i�ed performan
e under the given 
onditions;� Design-Environment Parameters (DEP): Those quantities over whi
h the de-signer has no 
ontrol, and that de�ne the 
onditions under whi
h the designedobje
t must operate; and 12



Figure 1.2: A 
oni
 
lut
h� Performan
e Fun
tions (PF): Relations representing the performan
e of thedesign in terms of design variables and design-environment parameters.Hen
eforth we shall denote by x the n-dimensional ve
tor of design variables;we shall refer to x, 
onsequently, as the design-variable ve
tor. Likewise, we shalldenote by p the �-dimensional ve
tor of design-environment parameters, while the� performan
e fun
tions, fi = fi(x; p), for i = 1; 2; : : : ; � are grouped in the design-performan
e ve
tor f. We thus havex � 26664 x1x2...xn
37775 ; p � 26664 p1p2...p�

37775 ; f � 26664 f1f2...f�
37775 ; f = f(x; p)� < n (1.1)Needless to say, the DV and the DEP ve
tors being independent from ea
hother, their dimensions are also independent, and hen
e, n 6= �, in general. By thesame token, the number � of performan
e fun
tions is independent from n and �.Moreover, DV, DEP and PF will all be termed design quantities.1.1.1 Example 1: The Design of a Coni
 Clut
hLet us 
onsider the design of the 
oni
 
lut
h shown in Fig. 1.2. The equationinvolving the design quantities of a 
lut
h is known to be (Shigley and Mis
hke,1989) 13



sin� = �8 �PdT (D2 � d2) (1.2)where � is the 
one angle, � is the fri
tion 
oeÆ
ient, P is the for
e applied bythe user by means of a pedal, D and d are the outer and inner diameters of the
one, 
orrespondingly, and T is the torque applied on the 
lut
h. Apparently, thedesigner is responsible for the values of d, D and, to some extent, of �. However, �is highly dependent on wear, over whi
h the designer has no 
ontrol, and hen
e, itis preferably to 
onsider � as a DEP; obviously, neither has the designer 
ontrol onthe engine-supplied torque T and the pressure P provided by means external to the
lut
h itself.We have thus des
ribed a design problem with DV ve
tor x and design PF fgiven by x � " dD #T ; f � sin� = �8 �PdT (D2 � d2) (1.3)In this example, then, the DEP are the fri
tion 
oeÆ
ient �, the applied for
eP and the applied torque T . Hen
e, the DEP ve
tor is p = [ � P T ℄T , andn = 2; � = 3; � = 1.Di�erent values of parameters �, p and T lead to di�erent values of �.1.1.2 Example 2: The Design of a Low-Pass FilterWe 
onsider now the design of the RL 
ir
uit shown in Fig. 1.3, �rst used by Tagu
hi(1988) to illustrate the 
on
ept of robust design, and then by Wilde (1992) to 
ounterTagu
hi's approa
h. The design variables are the resistan
e R and the indu
tan
e L,to be determined by the designer. Moreover, the ex
itation voltage v(t) is given byv(t) = Vo 
os!t. The voltage amplitude Vo and its frequen
y ! undergo variationsbeyond the 
ontrol of the designer.
PSfrag repla
ements v(t) R Li(t)

Figure 1.3: A low-pass �lter14



For this �lter, the steady-state 
urrent i(t) is harmoni
: i(t) = Io 
os(!t + �),where Io and � are the magnitude and the phase of i(t). These are given byIo = VopR2 + !2L2 ; � = tan�1�!LR �Furthermore, V0 is 110 volt, while ! is 60 Hz, as provided by a power utility, the �lterbeing designed for an amplitude I0 of the 
urrent of 10 ampere. While it is up tothe designer to de
ide whi
h values to 
hoose for R and L, the voltage amplitude V0and frequen
y ! are subje
t to variations that lie beyond the 
ontrol of the designer.By the same token, the �lter performan
e is 
ompletely des
ribed by the 
urrentamplitude I0 and phase �. The ve
tors of DV, DEP and PF are, thus,x = " RL # ; p = " Vo! # ; f = " Io� #Apparently, then, in this design problem we have n = 2, � = 2 and � = 2.1.2 The Stru
ture of Optimum Design ProblemsIn optimum design problems, the DEP are given by the 
lient either expli
itly orimpli
itly. The designer then assumes that these bear ideal values that are represen-tative of the operation 
onditions, and do not 
hange. The fa
t of the matter is thatthe DEP entail values that are random and hen
e, are known, if at all, only throughtheir statisti
s, su
h as mean values and standard deviations; when the parametersobey a Gaussian distribution, mean value and standard deviation are suÆ
ient todes
ribe the variation of the DEP. In this 
ase, then, the designer uses the meanvalues of the DEP as the nominal values of these parameters, on whi
h the designis based.The foregoing approa
h is 
lassi
al, and will be followed here. An alternativeapproa
h, due to Tagu
hi (1988), 
onsists in admitting that the DEP are not �xed,but varying in a random manner, beyond the 
ontrol of the designer, the purpose ofthe design task then being to sele
t the design variables in su
h a way that, underarbitrary variations of the DEP within a 
ertain range, the PF exhibit \small"variations. This approa
h is known as robust design. For an introdu
tory 
ourse,we will not dwell on this approa
h. SuÆ
e it to say that the methods dis
ussedin this 
ourse are equally appli
able to robust design, if with a suitable alternativeformulation. 15



In an optimum design problem the designer 
hooses either one or several PFand formulates an obje
tive fun
tion to be either minimized, when this fun
tionrepresents a 
ost, or maximized, when the same represents a pro�t. As a matter offa
t, pro�t-maximization 
an be readily turned into 
ost-minimization if the pro�tis rede�ned as a 
ost by, for example, reversing its sign or taking its re
ipro
al.Moreover, a large 
lass of optimum design problems lends itself to a least-squareformulation, whi
h inherently aims at minimizing a sum of squares. For these rea-sons, and unless otherwise stated, we will aim in this 
ourse at the minimization ofan obje
tive fun
tion f(x). De�ning the obje
tive fun
tion is thus a simple matterwhen only one of the PF is of interest. In de�ning obje
tive fun
tions, however, asin many design tasks, it will prove 
onvenient to use dimensionless quantities.1.2.1 Example 3: The Optimum Design of an IC EngineValve-Driving Me
hanism

Figure 1.4: Cam me
hanismIn this problem we want to determine how \sti�" the valve-opening me
hanismof an IC engine, shown in Fig. 1.4, should be designed so as to satisfy the operation
onditions des
ribed below. In order to simplify the ensuing mathemati
al model,we negle
t fri
tion for
es; then, we �nd the minimum natural frequen
y !n =pk=mof the me
hanism, that will prevent separation between 
am and follower, for a given
am-speed _ = !0 = 
onst. 16



Figure 1.5: Cam pro�leWe shall refer to the 
am geometry of Fig. 1.5, where b is the radius of thebase 
ir
le and h is the rise. The 
am pro�le has been found so as to produ
e thevariable part �( ) of the follower-displa
ement program of Fig. 1.6. A

ording tothis program, the follower rises from  = 70Æ = 7�=18 to  = 5�=6; then, dwellstill  = 7�=6, to return to its lower dwell at  = 29�=18, whi
h ends after the
am has undergone a rotation of  = 70Æ = 7�=18. Moreover, both rise and returnphases are spe
i�ed as identi
al here, while following a 
y
loidal motion (Angelesand L�opez-Caj�un, 1991).

Figure 1.6: The follower-displa
ement program17



For starters, we need a mathemati
al model, that 
an be readily derived froma free-body diagram (FBD), as sket
hed in Fig. 1.7. In this �gure, F (t), or F ( )for that matter, is the 
onta
t for
e between 
am and follower and k(� + l0) is thefor
e exerted by the spring on the follower, of mass m, under the assumption thatthe spring is 
ompressed by an amount l0 when the follower is at the lower dwell.Moreover, we assume that kl0 = mg, with g denoting the gravity a

eleration. Fromthe FBD, we have

Figure 1.7: Free-body diagram of a 
am me
hanismm�s = �F (t) + k(� + l0)�mg; s(t) = L� [�(t) + l0℄where L is the length of the undeformed spring. Re
alling our assumptions, theforegoing model redu
es to F (t) = k� +m��Sin
e the 
am turns at a 
onstant speed !0, appli
ation of the \
hain rule" leads to_� = �0( ) _ = �!0�0( )and hen
e, �� = �!20�00( )After simple 
al
ulations, F ( ) = m[!2n�( ) + !20�00( )℄Sin
e !0 is a known 
onstant, F ( ) 
an be made positive for any value of  by 
hoosing !n \large enough." Given that !2n = k=m, !n 
an be rendered high18



by 
hoosing a \large" value of k and a \small" value of m. However, 
hoosing ktoo large will require an extremely large volume to a

ommodate the me
hanism.By the same token, a too-small value of m will lead qui
kly to wear and in
reaseunne
essarily the maintenan
e 
osts of the engine. Hen
e, !n should be made \largeenough," but not \too large." Just how large is large-enough is the subje
t of thedis
ussion below.In order to have F ( ) � 0, we must have !2n�( ) + !20�00( ) � 0, i.e.,!2n!20 � ��00( )�( )Apparently, the minimum value of !n guaranteeing that no separation will o

uris that whi
h makes the above relation an equality for the maximum value of theright-hand side, i.e., !2n!20 = max ���00( )�( ) �the problem now redu
ing to �nding the maximum of the ratio ��00( )=�( ). Itis apparent that this ratio takes its maximum in the region where �00( ) � 0, andhen
e, the sear
h for the maximum 
an be 
onstrained to the return stage, i.e., tothe interval [7�=6; 29�=18℄. Hen
e, we 
an state our optimum-design problem inthe form max ���00( )�( ) �subje
t to 7�=6 �  � 29�=18Alternatively, the foregoing problem 
an be stated asf( ) � ��00( )�( ) ! max subje
t to 7�=6 �  � 8�=6We will not dwell on the methods of solution of the foregoing problem here. Theintention is just to highlight a few features of the example at hand:1. A design problem has led to the maximization of a real fun
tion f of one singlevariable,  ;2. The maximization is 
onstrained to a �nite interval on the real axis;19



3. The real fun
tion f( ) to be maximized is not analyti
 over the whole realaxis, whi
h means that f( ) does not admit a series expansion everywhere onthe real axis, and hen
e, it does not have 
ontinuous derivatives everywhere,of an arbitrary order1.The above features are 
ommon of optimization problems, although,1. An optimization problem usually involves the minimization or maximization ofa real fun
tion of many variables, whi
h is 
alled a multivariable-optimizationproblem; and2. sometimes the fun
tion to minimize or to maximize is analyti
 everywhere;even if not analyti
 everywhere, it is analyti
 within a subinterval in whi
hthe minimum or, 
orrespondingly, the maximum, �nds itself. In our 
ase, f( )is analyti
 in ℄7�=6; 8�=6[, whi
h ex
ludes the extremes of the subinterval.

1As a matter of fa
t, f( ) itself is 
ontinuous and admits 
ontinuous �rst- and se
ond-orderderivatives everywhere, but its third- and higher-order derivatives are dis
ontinuous at the blendingpoints of the dwells with the rise and the return stages.20



Chapter 2Single-Variable Optimization
2.1 Methods of Single-Variable OptimizationWhile real-life design problems involve multiple variables, some te
hniques developedto �nd the optimum of these problems rely on a sear
h along ea
h of the variables at atime. Moreover, the designer in many instan
es is interested in the role played by onesingle variable, in whi
h 
ase the sear
h for the optimum value 
an be 
ondu
ted withte
hniques spe
i�
 to this 
ase. For this reason, it is 
onvenient to study te
hniquesappli
able to the solution of single-variable optimization problems, whi
h is thesubje
t of this 
hapter. We start by introdu
ing a de�nition:A fun
tion f(x) is unimodal in the interval [ 0; 1 ℄ if it attains one singleextremum|a minimum or a maximum|within this interval.Remarks:� We will deal only with fun
tion minimization in explaining the methods ofinterest|fun
tion maximization 
an be handled by paraphrasing the 
orre-sponding method a

ordingly.� A unimodal fun
tion need neither be 
ontinuous nor smooth.� De�ning the interval of interest as [ 0; 1 ℄ is not restri
tive. If this interval is[ a; b ℄, where a and b are any real numbers, then a simple linear transformationof the variable in question 
an lead to the above interval.We introdu
e, moreover, the basi
 assumption: Fun
tion f(x), to be mini-mized, is unimodal in the interval [ 0; 1 ℄, whi
h means that f(x) attains exa
tly oneminimum (or one maximum) in the given interval.21



As a 
onsequen
e of the above de�nition, we haveLemma 2.1.1 Let f(x) be unimodal in [ 0; 1 ℄ and attain a minimum within thisinterval. Then, its maximum lies ne
essarily at the extremes of the interval, i.e.,either at x = 0 or at x = 1.The proof of this lemma is left to the reader as an exer
ise. Moreover, note that:� The obje
tive fun
tion 
an be evaluated only at a dis
rete, �nite set of sam-ple values of its argument x, f xi gn1 . Ea
h fun
tion evaluation, f(xi) � fi,is termed an experiment. The name is quite appropriate be
ause in some in-stan
es it may happen that the evaluation of fun
tion f(x) 
an be done onlyby physi
al experiments, e.g., when this fun
tion is the steady-state tempera-ture of an engine, that is known to 
hange as the proportion of a mixture offuel and air varies;� We assume that the interval in whi
h the minimum lies is known, and termedthe interval of un
ertainty (i.o.u) of the problem at hand. Upon a suitabletransformation of the design variable, this interval is mapped into the normalinterval [ 0; 1 ℄, whi
h is of unit length. The length of the interval of un
er-tainty when the series of experiments is initiated is thus 1, the purpose of theminimization exer
ise being to bring down the interval of un
ertainty to ana

eptable low, whi
h is di
tated mostly by the 
ost of ea
h experiment;� If the 
ost of ea
h experiment is not an issue, then the fun
tion 
an be evaluatedin a ri
h sample of argument values within the interval [ 0; 1 ℄ and plot the
orresponding values; the optimum 
an then be lo
ated by inspe
tion, possiblyat the 
li
k of a mouse. This is termed an exhaustive sear
h;� If the foregoing 
ost is high, then pro
eed iteratively: At ea
h iteration, theinterval of un
ertainty is 
ut by a 
ertain fa
tor using a suitable strategy, i.e.,a sear
h method;� Any strategy exploits the unimodality assumption. We 
an 
ite four strategiesthat are the most 
ommonly employed:- Di
hotomous sear
h- Interval-halving- Fibona

i numbers- Golden sear
h. 22



2.2 Di
hotomous Sear
h

Figure 2.1: Di
hotomous sear
h

The quali�er \di
hotomous" derives fromGreek, meaning to 
ut into two parts. Thestrategy to follow thus 
onsists in splitting theinterval into two subintervals, not ne
essar-ily of the same length, with one not 
ontain-ing the minimum, and is hen
e, reje
ted; theother subinterval then is bound to 
ontain theminimum sought.The sear
h strategy of this method is de-s
ribed below:� Assume that, at iteration i, the 
urrentsear
h interval is Ii = [ l; r ℄, of length Li = r � l < 1 (Fig.2.1);� lo
ate two points of abs
issae x1 and x2 around the 
entre of the interval: Fora \small" Æ > 0, pres
ribed by the user,x1 � r + l � Æ2 ; x2 � r + l + Æ2 ; fi � f(xi); f1 6= f2Note: If f1 = f2, then we have two 
ases: (i) f(x) is symmetri
 about x =(r + l)=2, in whi
h 
ase the minimum lies at x = 1=2, and we are done; and(ii) f(x) is not symmetri
 about x = 1=2, in whi
h 
ase we just 
hange Æ.� if f2 > f1, then eliminate the interval segment to the right of x2, the newsear
h interval being [ l; x2 ℄. If, on the 
ontrary, f1 > f2, then eliminate theinterval segment to the left of x1, the new sear
h interval being [ x1; r ℄.Noti
e that the new sear
h interval Ii+1 is of length Li+1 = (Li + Æ)=2, i.e., slightlyover one half the length of the previous one.Now we determine the length L2k of interval I2k after 2k experiments|thisnumber is always even! To this end, we noti
e how the length of the i.o.u. evolvesas the sear
h progresses: L2 = 12 + Æ2L4 = L22 + Æ2 = 14 + Æ4 + Æ2= 14 + 3Æ4 23



L6 = L42 + Æ2 = 18 + 3Æ8 + Æ2= 18 + 7Æ8...The length of the interval after 2k experiments is thusL2k = 12k + �1� 12k� Æ (2.1)Usually, L2k is pres
ribed, but k is not. Computing k from L2k is, nevertheless,straightforward, as des
ribed below: Solving eq.(2.1) for 2k yields2k = 1� ÆL2k � Æ (2.2)and hen
e, k = � ln[(1� Æ)=(L2k � Æ)℄ln(2) � (2.3)where d( � )e is the 
eiling fun
tion, de�ned as the smallest integer that is greaterthan the real argument ( � ). Note: 1 > Æ; 2k > 0 ) L2k > Æ.2.2.1 Example 4: Finding the Maximum Dexterity Postureof a Two-Phalanx Roboti
 FingerWe study here the optimum dimensioning of the two-phalanx roboti
 �nger, asdepi
ted in Fig. 2.2. The geometry of the �nger is thus 
ompletely spe
i�ed by theangles that the phalanx axes make with given lines. In the �gure, only the angle �made by the distal phalanx with the �rst one is indi
ated be
ause only this angle isrelevant to the problem under study.
Figure 2.2: Two-phalanx roboti
 �nger

In optimizing the performan
e ofroboti
 hands, one is interested in maxi-mizing their dexterity, a performan
e indexthat 
omes into play as explained below.In robot 
ontrol, a velo
ity v of the op-eration point of the end link is to be pro-du
ed by a suitable set of joint rates, grouped in ve
tor _q, the relation between thetwo ve
tors being linear: J _q = v. Hen
e, the Ja
obian matrix J(q) must be invertedin order to 
ompute the joint-rate ve
tor, for a given posture of the manipulator, as24



spe
i�ed by ve
tor q, and a given desired velo
ity v. Dexterity measures, essentially,how invertible the Ja
obian matrix is. If we assume that a1 = l and a2 = lp2=2,whi
h bear the optimum proportion found by Salisbury and Craig (1982), then dex-terity 
an be quanti�ed by means of the produ
t JTJ = `2K, where K is givenby K � � 3 + 2p2 
os � 1 +p2 
os �1 +p2 
os � 1 �It should be apparent that, when � = 0 or �, matrix K, that we shall term herethe dexterity matrix, is singular, and hen
e, not invertible, as is J. Between thesetwo values, 0 and �, there is one spe
i�
 value �o optimum, at whi
h the dexteritymatrix is maximally invertible. To �nd �o, we start by de�ning the dexterity as theratio of the smallest (�m) to the largest (�M) eigenvalues of K. In this regard, notethat K is symmetri
, and hen
e, its eigenvalues are real. Moreover, one 
an readilyverify that K is positive-de�nite, and be
omes singular only for the two values of �given above. We thus have the dexterity fun
tion D(�) de�ned below:D(�) = �m�M � 0; 0 � D(�) � 1Now, maximizing D(�) is equivalent to minimizing f(�) � 1�D(�), whi
h willbe de�ned as the loss of dexterity, and be
omes, then, the obje
tive fun
tion of theproblem at hand. Given the form of the obje
tive fun
tion, then, ea
h experimentinvolves four steps:1. For a given value of �, 
ompute the two eigenvalues of K, a task that 
an bereadily implemented using an eigenvalue routine, a quadrati
-equation solver,or even the Mohr 
ir
le (Norton, 2000).2. Order the two eigenvalues in as
ending order: �m, �M .3. Compute D(�) as D(�) = �m�M � 04. Compute f(�) as f(�) = 1�D(�) 0 � f(�) � 1An interpretation of f(�) 
an be obtained if we rede�ne the loss of dexterityL(�) in the formL(�) � f(�)� 100 (%) = [1�D(�)℄� 100 (%); 0 � L(�) < 100%25



and hen
e, when D(�) attains its maximum value of unity, L(�) attains itsminimum of 0. At the other end of the spe
trum, when the �nger is posturedat a singularity, L(�) attains its maximum of 100%, indi
ating that the �ngerhas lost all its dexterity.An expert roboti
ist 
laims that the dexterity is maximum|the �nger is at thepeak of its positioning a

ura
y|when � lies \somewhere between 90Æ and 150Æ."Find an estimate of �opt within an interval of un
ertainty of 5% of the given intervallength of 60Æ.Solution: We implemented the di
hotomous sear
h in the Maple worksheet des
ribedbelow, whi
h is posted in the 
ourse Web page.> restart: with(linalg):We start by produ
ing a pro
edure K that will allow us to evaluate matrix K for agiven value �:> K:=pro
(theta)matrix([[3+2*sqrt(2)*
os(th),1+sqrt(2)*
os(th)℄,[1+sqrt(2)*
os(th), 1℄℄)end;K := pro
(�)matrix([[3 + 2 � sqrt(2) � 
os(th); 1 + sqrt(2) � 
os(th)℄; [1 + sqrt(2) � 
os(th); 1℄℄)end pro
> argu:= 3*Pi/4; K(argu);# Testing pro
edure, whi
h should yield the 2 by 2 identity matrix forthis value of argument theta:argu := 34 �" 1 00 1 #Apparently, pro
edure is OK.We introdu
e now a transformation that maps �, given in degrees, into the normalinterval [ 0; 1 ℄. Let the asso
iated \normal" variable be x, to be produ
ed by ase
ond pro
edure x. By the same token, we need a third pro
edure � to return theangle in radians, for a given value of x. Thus,26



> x:=pro
(th)(th-Pi/2)/(5*Pi/6-Pi/2)end; x := pro
(th) 3 � (th� 1=2 � �)=� end pro
> thet:=pro
(x)(Pi/3)*x+Pi/2end; thet := pro
(x) 1=3 � � � x + 1=2 � � end pro
Now we determine the number 2k of experiments needed to attain the pres
ribedlength of the i.o.u. We re
all that the length L2k of this interval is given byL2k = 12k + Æ�1� 12k� (2.4)> L[2*k℄:=(1/2^k)+delta*(1-(1/2^k));L2 k := 12k + Æ (1� 12k )Let 2k = N . Then,> N:=solve(L_N= (1/N) + delta*(1 - 1/N), N);N := �1 + Æ�L N + ÆWe want the length of the �nal i.o.u. to be 5% of original length, for a value ofÆ of 0.01:> delta:=0.01; L_N:= 0.05; Æ := 0:01L N := 0:05> N:=subs((delta=0.01, L_N=0.05), N);N := 24:75000000Hen
e,> k:=
eil(solve(2^k=N,k)); k := 5where the Maple 
eil(�) 
ommand has been used.27



We thus need 2k = 10 experiments. Hen
e, the two points x 1 and x 2 within I0 arede�ned as> x[1℄:= (1-delta)/2; x[2℄:=(1+delta)/2;x1 := :4950000000x2 := :5050000000> theta[1℄:=evalf(thet(x[1℄));theta[2℄:=evalf(thet(x[2℄));K1:=evalf(K(theta[1℄));K2:=evalf(K(theta[2℄)); �1 := 2:089159115�2 := 2:099631090K1 := " 1:598631263 :2993156313:2993156313 1: #
K2 := " 1:572980385 :2864901922:2864901922 1: #> lambda:=eigenvals(K1); mu:=eigenvals(K2);� := :8760194061; 1:722611857� := :8813318770; 1:691648508> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:966408330f2 := 1:919422810f1 > f2 ) delete subinterval [0, x1℄. Let l and r denote, respe
tively, the abs
issaeof the left and right ends of the new subinterval:> l:=x[1℄; r:=1; L:=r-l;l := :4950000000r := 1L := :5050000000L is length of i.o.u. at the end of the �rst two experiments. Carry on:> x[1℄:=(l+r-delta)/2; x[2℄:=(l+r+delta)/2;x1 := 0:7425000000x2 := 0:752500000028



> theta[1℄:=evalf(thet(x1));theta[2℄:=evalf(thet(x2));K1:=evalf(K(theta[1℄)); K2:=evalf(K(theta[2℄));�1 := 2:348340509�2 := 2:358812484K1 := " 1:015769486 :0078847430:0078847430 1: #
K2 := " :994770873 �:002614564�:002614564 1: #> lambda:=eigenvals(K1); mu:=eigenvals(K2);� := :9967340325; 1:019035453� := :9936878850; 1:001082988> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:022374495f2 := 1:007442078f1 > f2 ) delete subinterval [l, x 1℄. Rede�ne l and r :> l:=x[1℄; L:=r-l; #r remains un
hangedl := :7425000000L := :2575000000L is length of i.o.u. at the end of 3rd & 4th experiments. Carry on:> x[1℄:=(l+r-delta)/2; x[2℄:=(l+r+delta)/2;x1 := :8662500000x2 := :8762500000> theta[1℄:=evalf(thet(x[1℄));theta[2℄:=evalf(thet(x[2℄));K1:=evalf(K(theta[1℄)); K2:=evalf(K(theta[2℄));�1 := 2:477931206�2 := 2:488403181K1 := " :771929030 �:114035485�:114035485 1: #29



K2 := " :753805937 �:123097032�:123097032 1: #> lambda:=eigenvals(K1); mu:=eigenvals(K2);� := :7246939855; 1:047235044� := :7028174767; 1:050988460> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:445072079f2 := 1:495393178The ensuing 
omputations follow the same pattern. In the interest of brevity, were
ord here only the last two experiments:At the end of 7th and 8th experiments, we haver := :8143750000L := :0718750000> x[1℄:=(l+r-delta)/2; x[2℄:=(l+r+delta)/2;x1 := 0:7734375000x2 := 0:7834375000> theta[1℄:=evalf(thet(x[1℄));theta[2℄:=evalf(thet(x[2℄));K1:=evalf(K(theta[1℄)); K2:=evalf(K(theta[2℄));�1 := 2:380738183�2 := 2:391210159K1 := " :951519906 �:024240047�:024240047 1: #
K2 := " :931208945 �:034395528�:034395528 1: #> lambda:=eigenvals(K1); mu:=eigenvals(K2);� := :9414793498; 1:010040556� := :9169618507; 1:014247094> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:072822847f2 := 1:106095192f2 > f1 ) delete subinterval [ x2,r ℄. Rede�ne l and r :30



> r:=x[2℄; L:=r-l; #l remains un
hangedr := :7834375000L := :0409375000L is length of i.o.u. at the end of 9th & 10th experiments. Sin
e L is smaller than0.05, we're done. The best estimate of �opt is obviously the mid point of 
urrenti.o.u., i.e.,> x[opt℄:=(l+r)/2; theta:=evalf(thet(x[opt℄));xopt := :7629687500� := 2:369775334> K[opt℄:=evalf(K(theta));Kopt := " :973023585 �:013488208�:013488208 1: #> lambda:=eigenvals(K[opt℄);� := :9674365862; 1:005586999> f[o℄:=lambda[2℄/lambda[1℄;fo := 1:039434536> theta[opt℄:=evalf(th*180/Pi);�opt := 135:7781250Note that optimum value of theta is 135Æ, i.e., 3�=4 rad, whi
h yields a value off=1.0.
2.3 Interval-HalvingTo be in
luded.2.4 Fibona

i NumbersFibona

i numbers are named after the Italian mathemati
ian Leonardo Pisano(1175), son of Guglielmo Bona

io, and hen
e, referred to as Filius Bona

i in Latin,31



or Fibona

i for brevity (Livio, 2002). These numbers form a sequen
e, de�nedre
ursively as F0 = F1 = 1 (2.5a)Fk = Fk�2 + Fk�1 (2.5b)Remark: The sequen
e is monotoni
ally in
reasing, for all numbers are positiveintegers and the 
urrent one equals the sum of the two previous ones. From eq.(2.5b),Fk � Fk�1 = Fk�2 (2.6)Moreover, by virtue of the above remark,Fk�1 > Fk�2 (2.7)Upon addition of eq. (2.6) to inequality (2.7) sidewise, we obtainFk � Fk�1 + Fk�1 > 2Fk�2i.e., Fk�2Fk < 12 (2.8)Furthermore, from eq.(2.5b), Fk�1Fk = 1� Fk�2Fk (2.9)Now we outline the strategy to follow in this method:� Let I0 � [ 0; 1 ℄ be the initial interval of un
ertainty, of length 1, where theminimum is known to lie.� Pres
ribe the number n of experiments to be 
ondu
ted� De�ne a length L�2 as1L�2 � Fn�2Fn L0 � Fn�2Fn �< 12� (2.10)where L0 is the length of the original interval, whi
h has been de�ned as unity.1Length L�1 is skipped be
ause we want to make the subs
ript of L� mat
h that of the 
orre-sponding Fibona

i number; sin
e F1 = F0, the �rst two Fibona

i numbers are undistinguishable,and we 
an arbitrary set L�1 = L�2 = 1. L1 = L0 as well.32



Figure 2.3: Shrinking of the i.o.u. when: (a) right subinterval is eliminated; (b) leftsubinterval is eliminated

Figure 2.4: Subdivision of the new interval into three subintervals when: (a) rightsubinterval is eliminated; (b) left subinterval is eliminated� Let P1(x1) and P2(x2) be two points equidistant from the left and the rightends of I0, respe
tively, by a distan
e L�2, i.e., with abs
issaex1 = 0 + L�2 = Fn�2Fn < 12 (2.11a)x2 = 1� L�2 = 1� Fn�2Fn > 12 > x1 (2.11b)Note that x2 = 1� Fn�2Fn = Fn � Fn�2Fn = Fn�1Fn (2.11
)Use the unimodality assumption to eliminate the subinterval, left or right, wherethe minimum 
annot lie. Whether the subinterval eliminated is the right or theleft, the length L2 of the new, shorter interval I2|again, su
h as we do not de�ne33



L�1, we neither de�ne I1|is given byL2 = 1� L�2 = 1� Fn�2Fn = Fn � Fn�2Fn = Fn�1Fn < 1 (2.12)as depi
ted in Fig.2.3.On
e the �rst iteration is 
ompleted, and as illustrated in Fig.2.3,� Let l and r > l denote, respe
tively, the abs
issae of the left and the right endsof the 
urrent, smaller interval of un
ertainty I2. The abs
issa of one of theends of I2, left or right, is either x1 or x2;� if x1 is the abs
issa of one of the ends of I2, 
ase of Fig. 2.3(b), then x2 2 I2;else, as in Fig. 2.3(a), x1 2 I2. Let xI be the abs
issa of point PI , the interiorpoint of I2, either P1 or P2;� note that PI lies a distan
e L�3 from one of the ends of I2. Now, de�ne x3 2 I2,so that its asso
iated point P3 also lies a distan
e L�3 from the other end, asdepi
ted in Fig. 2.4;� the pro
ess is 
ontinued until the interval In, of length Ln, is obtained. Ln isthe length of the �nal interval of un
ertainty.The abs
issa xj 
omputed at the jth experiment is determined by length L�j , sothat its asso
iated point Pj, as well as the interior point PI of interval Ij�1 are adistan
e L�j from the ends of Ij, with L�j given by2L�j = Fn�jFn�(j�2)Lj�1 (2.13a)while the length Lj of the jth interval of un
ertainty is3Lj = Fn�(j�1)Fn (2.13b)Hen
e, for j = n, Ln = F1Fn (2.14)whi
h allows us to �nd n for a pres
ribed length Ln. Noti
e that, by virtue ofrelations (2.8) and (2.10), For n � 2; L�n < 12 (2.15)2see eq.(2.10), whi
h is valid for j = 2; see also footnote 1.3see eq.(2.12), whi
h is valid for j = 2 34



The Lo
ation of the Final ExperimentLet In�1 = [ l; r ℄, of length Ln�1, be the one-before-the-last interval of un
ertainty.A

ording with eqs.(2.11a & b), the abs
issae of the last two experiments, xn�1 andxn, are given as xn�1 = l + L�n (2.16a)xn = r � L�n = l + Ln�1 � L�n (2.16b)where L�n is given by eq.(2.13a), with j = n:L�n = F0F2Ln�1 � 12Ln�1 (2.17)Upon substitution of L�n, as given by eq.(2.17), into eq.(2.16b), it is apparent thatxn = l + 12Ln�1 = xn�1xn�1 and xn thus 
oin
iding, and hen
e, the last experiment fails to produ
e twodistin
t points in In�1. To 
ope with this out
ome, we have to de�ne points P1 andP2, of abs
issae x1 and x2, in an alternative manner. For example, we 
an de�nethem as in the strategy employed by the di
hotomous sear
h, with a Æ small enoughwith respe
t to L�n.Fibona

i numbers are tabulated in many manuals, with short tables available intextbooks (Rao, 1996). Also note that s
ienti�
 software is provided with Fibona

inumbers. For example, Maple in
ludes the 
ommandwith(
ombinat, Fibona

i):that allows the user to invoke the Fibona

i number F(i) by typingfibona

i(i)However, note that not all Fibona

i sequen
es are identi
al. For example,the �rst two Fibona

i numbers in Maple are de�ned asf(0) = 0 and f(1) = 12.4.1 Example 5: Finding the Maximum Dexterity Postureof a Two-Phalanx Roboti
 FingerWe implement the Fibona

i sear
h in a Maple worksheet:35



> restart:> with(linalg): with(
ombinat, fibona

i):We retake the example problem 
onsisting in the �nding of the most dexterousposture of a two-phalanx roboti
 �nger, using exa
tly 10 experiments. However,be
ause of the way Maple de�nes the Fibona

i sequen
e, we must use F (n + 1)when we would normally use F (n). Moreover, we shall also use K, � and x exa
tlyas des
ribed in Subse
tion 2.2.1.We want to have L�2 = F10�2F10 ; (2.18)but must shift the subs
ript by 1:> Lstar[2℄:=evalf(fibona

i(9)/fibona

i(11));Lstar2 := :3820224719> l:=0; r:=1; L[0℄:=r - l;> # Abs
issae of extremes of left- & right-hand> sides of the initial (normal) interval, and length of this intervall := 0r := 1L0 := 1> x[1℄:= l + L^star[2℄; x[2℄:= r - Lstar[2℄;x1 := :3820224719x2 := :6179775281> theta[1℄:=evalf(thet(x1));> theta[2℄:=evalf(thet(x2));> K1:=K(theta[1℄); K2:=K(theta[2℄);�1 := 1:970849324�2 := 2:217940881K1 := " 3� :7789343108p2 1� :3894671554p21� :3894671554p2 1 #
K2 := " 3� 1:205821535p2 1� :6029107675p21� :6029107675p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>; 36



� := " :81393101512:084489519 #� := " :93896338831:355747444 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 2:561014976f2 := 1:443876791f1 > f2 ) drop left end:> l:=x[1℄; L[2℄:=L[0℄ - Lstar[2℄;> Lstar[3℄:=(fibona

i(8)/fibona

i(10))*L[2℄;l := :3820224719L2 := :6179775281Lstar 3 := :2359550562> x[1℄:= l + Lstar[3℄; x[2℄:= r - Lstar[3℄;x1 := :6179775281x2 := :7640449438> theta[1℄:=evalf(thet(x[1℄));> K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x[2℄)); K2:=K(theta[2℄);�1 := 2:217940881K1 := " 3� 1:205821535p2 1� :6029107675p21� :6029107675p2 1 #�2 := 2:370902321K2 := " 3� 1:434859867p2 1� :7174299337p21� :7174299337p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :93896338831:355747444 #� := " :96475455421:006047163 #37



> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 1:443876791f2 := 1:042801155f1 > f2 ) drop left end:> l:= x[1℄; L[3℄:= L[2℄ - Lstar[3℄;> Lstar[4℄:= (fibona

i(7)/fibona

i(9))*L[3℄;l := :6179775281L3 := :3820224719Lstar 4 := :1460674157> x[1℄:= l + Lstar[4℄; x[2℄:= r - Lstar[4℄;x1 := :7640449438x2 := :8539325843> theta[1℄:=evalf(thet(x[1℄)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x[2℄)); K2:=K(theta[2℄);�[1 ℄ := 2:370902321K1 := " 3� 1:434859867p2 1� :7174299337p21� :7174299337p2 1 #�2 := 2:465032438K2 := " 3� 1:559462054p2 1� :7797310268p21� :7797310268p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :96475455421:006047163 #� := " :75204531591:042542298 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 1:042801155f2 := 1:38627590138



In the interest of brevity, we skip the intermediate results, and display only the lasttwo experiments:> x[1℄:= l + Lstar[8℄; x[2℄:= r - Lstar[8℄;x1 := :7303370787x2 := :7415730337> theta[1℄:=evalf(thet(x1)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x2)); K2:=K(theta[2℄);�1 := 2:335603527K1 := " 3� 1:384795807p2 1� :6923979033p21� :6923979033p2 1 #�2 := 2:347369792K2 := " 3� 1:401678651p2 1� :7008393253p21� :7008393253p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :99138373861:050219250 #� := " :99632860911:021398433 #> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:059346859f2 := 1:025162204> l:= x[1℄; L[8℄:= L[7℄ - Lstar[8℄;> Lstar[9℄:= (fibona

i(2)/fibona

i(4))*L[8℄;l := :7303370787L8 := :03370786516Lstar 9 := :01123595505Note that the length of the i.o.u. at the end of the 8th experiment is 3.4% of originallength, i.e., smaller than at the end of 10 experiments with the di
hotomous sear
h!> x[1℄:= l + Lstar[9℄; x[2℄:= r - Lstar[9℄;x1 := :7415730338x2 := :752808988839



> theta[1℄:=evalf(thet(x[1℄)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x[2℄));> K2:=K(theta[2℄); �1 := 2:347369792K1 := " 3� 1:401678651p2 1� :7008393253p21� :7008393253p2 1 #�2 := 2:359136057K2 := " 3� 1:418367442p2 1� :7091837208p21� :7091837208p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :99632860911:021398433 #� := " :99290888501:001216643 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 1:025162204f2 := 1:008367090f1 > f2 ) drop left end:> l:= x[1℄; L[9℄:= L[8℄ - Lstar[9℄;> Lstar[10℄:= (fibona

i(1)/fibona

i(3))*L[9℄;l := :7415730338L9 := :02247191011Lstar 10 := :01123595506> x[1℄:= l + Lstar[10℄; x[2℄:= r - Lstar[10℄;x1 := :7528089889x2 := :7528089887As expe
ted, x1 = x2. Let us estimate the optimum by di
hotomous sear
h over thelast i.o.u.: Let Æ = Lstar10=10> delta:= Lstar[10℄/10; 40



Æ := :001123595506> x[1℄:= (l + r - delta)/2;> x[2℄:= (l + r + delta)/2;x1 := :7522471910x2 := :7533707866> theta[1℄:=evalf(thet(x[1℄)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x[2℄)); K2:=K(theta[2℄);�1 := 2:358547744K1 := " 3� 1:417537647p2 1� :7087688235p21� :7087688235p2 1 #�2 := 2:359724370K2 := " 3� 1:419196745p2 1� :7095983727p21� :7095983727p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :99432543291:000973602 #� := " :99149317571:001459540 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 1:006686110f2 := 1:010051874f2 > f1 ) delete [ x2; r ℄ and take as most likely estimate of the optimum themidpoint of remaining interval [ l; x1 ℄:> x[o℄:=(l+x[1℄)/2; th_opt:=evalf(th(x[o℄));> K_opt:= K(th_opt); xo := :7469101124�opt := 2:352958768 �! 134:8146ÆKopt := " 3� 1:409630165p2 1� :7048150824p21� :7048150824p2 1 #41



> lambda:=<eigenvals(Kopt)>;� := " :99865755371:007824349 #> f[opt℄:=lambda[2℄/lambda[1℄;fopt := 1:009179118
2.5 Golden-Se
tion Sear
hThis method is similar to the method based on Fibona

i numbers, but its imple-mentation is mu
h simpler. The out
ome is that its 
onvergen
e is a bit slower thanthat of the former. A major di�eren
e with the Fibona

i sear
h is that the numberof elimination stages is not pres
ribed.The basis of the golden-sear
h method is the Fibona

i sequen
e. Indeed, thegolden-sear
h strategy is derived from the Fibona

i sear
h under the assumptionthat n in the Fibona

i sear
h is \large"; we denote a large n appropriately by N .The length of the interval of un
ertainty is shrunken at every iteration by the sameproportion, as opposed to the Fibona

i sear
h.In order to �nd the length Lk of the interval Ik at the kth iteration of thegolden sear
h, we 
ompute the 
orresponding lengths of the Fibona

i sear
h forn = N !1, namely,L2 = limN!1 FN�1FN (2.19a)L3 = limN!1 FN�2FN = limN!1 FN�2FN�1 FN�1FN = limN!1�FN�1FN �2 (2.19b)In general, Lk = limN!1�FN�1FN �k�1 (2.19
)Hen
e, all we need to implement this method is the above limit, whi
h is 
omputedbelow:Re
all eq.(2.5b), for k = N : FN = FN�1 + FN�2 (2.20a)Therefore, FNFN�1 = 1 + FN�2FN�1 (2.20b)42



Now we de�ne the golden se
tion or golden ratio � as� � limN!1 FNFN�1 (2.20
)Upon taking limits, eq.(2.20b) 
an be rewritten as� = 1 + 1�or �2 � �� 1 = 0; � > 0 (2.20d)when
e, with three de
imals,� = 1:618 or � = �0:618 (2.20e)Obviously, we need only the positive root, and hen
e, Lk be
omesLk = � 1��k�1 = (0:618)k�1 (2.21)Greeks in the 
lassi
al period, around the �fth 
entury B.C.E., 
oined the ex-pression golden se
tion to refer to a re
tangle of divine proportions, whose base band height h observe the relation b + hb = bh (2.22)
Figure 2.5: A re
tangle withsides obeying the divine pro-portion

The foregoing equation readily leads to one onthe ratio b=h identi
al to eq.(2.20d), namely,� bh�2 � bh � 1 = 0thereby showing that the positive solution toeq.(2.22) is, indeed, �, the golden se
tion.This relation is 
laimed to appear in the fa
adeof the Parthenon, although Livio (2002) disputedbrilliantly this 
laim and others along the samelines. Nevertheless, the golden se
tion is irrefutablypresent in nature and in many artifa
ts4. Shown in Fig. 2.5 is a re
tangle with sidesobeying the divine proportion.To implement the sear
h, we need the quantity L�2, whi
h is de�ned below:L�2 = FN�2FN = FN�2FN�1 FN�1FN = 1�2 = 0:382 (2.23)4For example, Mi
rosoft Word uses the golden-se
tion ratio to proportion its margins.43



2.5.1 Example 6: Finding the Maximum Dexterity Postureof a Two-Phalanx Roboti
 FingerWe implement below the golden-se
tion sear
h strategy by means of a Maple work-sheet. We shall resort to the K, � and x pro
edures introdu
ed earlier.Let us 
al
ulate �:> eq:=(x^2 - x - 1); eq := x2 � x� 1> r:=<solve(eq, x)>; r := 2664 12 + 12 p512 � 12 p5 3775> phi:=evalf(r[1℄); � := 1:618033989> ihp :=1.0/phi; #we'll also need the re
ipro
al of phiihp := :6180339887> Lstar[2℄:=ihp ^2; Lstar 2 := :3819660112Now let us �nd n from the problem spe
i�
ation: Ln = 0:05, whi
h leads to1�n�1 = 0:05 (2.24)> eq:= (n-1)*ln(ihp ) - ln(0.05)=0;eq := �:4812118251n+ 3:476944099 = 0> n:=
eil(solve(eq, n)); n := 8> l:=0; r:=1; #extremes of initial normal> interval l := 0r := 1> L[0℄:= r - l; #length of initial intervalL0 := 1> x[1℄:=l+Lstar[2℄; x[2℄:=r-Lstar[2℄;44



x1 := :3819660112x2 := :6180339888> theta[1℄:=evalf(thet(x[1℄)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x2)); K2:=K(theta[2℄);> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;�1 := 1:970790199K1 := " 3� :7788253964p2 1� :3894126982p21� :3894126982p2 1 #�2 := 2:218000007K2 := " 3� 1:205915875p2 1� :6029579377p21� :6029579377p2 1 #
� := " :81389911482:084675447 #� := " :93899102001:355586395 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 2:561343794f2 := 1:443662789f1 > f2 ) drop the left end:> L[2℄:=L[0℄ - Lstar[2℄; Lstar[3℄:= x[2℄ - x[1℄;> # You should be able to prove that ihp ^3 = x_2 - x_1L2 := :6180339888Lstar 3 := :2360679776> x3:= r - Lstar[3℄;> # x[2℄ is now a distan
e Lstar_3 from new left end, x[1℄,> to the left of x[3℄ x3 := :7639320224> theta[3℄:=evalf(th(x[3℄)); K3:=K(theta[3℄);> lambda:=<eigenvals(K3)>;�3 := 2:370784070K3 := " 3� 1:434695103p2 1� :7173475515p21� :7173475515p2 1 #45



� := " :96503582371:005998904 #> f[3℄:=lambda[2℄/lambda[1℄;f[2℄;> #evaluate f[3℄ & re
all f[2℄f3 := 1:042447212f2 := 1:443662789f2 > f3 ) drop left end:> L[3℄:=L[2℄ - Lstar[3℄;> Lstar[4℄:= x3 - x2; L3 := :3819660112Lstar 4 := :1458980336> x[4℄:= r - Lstar[4℄; x4 := :8541019664> theta[4℄:=evalf(thet(x[4℄)); K4:=K(th4);> lambda:=<eigenvals(K4)>;�4 := 2:465209815K4 := " 3� 1:559684146p2 1� :7798420728p21� :7798420728p2 1 #
� := " :75166618061:042607347 #> f[4℄:=lambda[2℄/lambda[1℄;f[3℄;> #evaluate f[4℄ & re
all f[3℄f4 := 1:387061669f3 := 1:042447212Again, for brevity we introdu
e only the last two experiments. We have the interval[ x5; x6 ℄ and hen
e,> L[6℄:=L[5℄ - Lstar[6℄; Lstar[7℄:= x6 - x3;L6 := :0901699440Lstar 7 := :0344418544> x[7℄:= x[5℄ + Lstar[7℄;x7 := :742645787246



> theta[7℄:=evalf(thet(x[7℄));> K7:=K(theta[7℄);lambda:=<eigenvals(K7)>;�7 := 2:348493177K7 := " 3� 1:403280430p2 1� :7016402150p21� :7016402150p2 1 #
� := " :99679775961:018664025 #> f[7℄:=lambda[2℄/lambda[1℄;f[3℄;> #evaluate f[7℄ & re
all f[3℄:f7 := 1:021936511f3 := 1:042447212f7 < f3 ) drop right end and perform last experiment:> L[7℄:=L[6℄ - Lstar[7℄; Lstar[8℄:=x3-x7;L7 := :0557280896Lstar 8 := :0212862352> x[8℄:= x[5℄ + Lstar[8℄;x8 := :7294901680> theta[8℄:=evalf(thet(x8)); K8:=K(theta[8℄);> lambda:=<eigenvals(K8)>;�8 := 2:334716645K8 := " 3� 1:383515463p2 1� :6917577317p21� :6917577317p2 1 #
� := " :99100873501:052404934 #> f[8℄:=lambda[2℄/lambda[1℄;f[7℄;> #evaluate f[8℄ & re
all f[7℄:f8 := 1:061953237f7 := 1:021936511f8 > f7 ) delete left end and a

ept midpoint, of abs
issa xo, as best estimate ofoptimum:> x[o℄:= (x[8℄ + x[3℄)/2; 47



xo := :7467110952Evaluate fo = f(xo):> theta[o℄:=evalf(thet(x[o℄));> Ko:=K(th[o℄); lambda:=<eigenvals(Ko)>;�o := 2:352750357Ko := " 3� 1:409334444p2 1� :7046672222p21� :7046672222p2 1 #
� := " :99857093941:008329177 #> L[8℄:= x[3℄ - x[8℄;> #Length of final i.o.u.L8 := :0344418544Noti
e that length of �nal i.o.u. is 3.4% the length of original i.o.u.> f[opt℄:=lambda[2℄/lambda[1℄;fopt := 1:009772203> theta[opt℄:= evalf(thet[o℄*180/Pi);> # theta_optimum in degrees�opt := 134:8026657
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Chapter 3Numeri
al Equation Solving
3.1 Introdu
tionMultivariable optimization frequently 
alls for the solution of systems of equationsthat 
an be linear, nonlinear, or a 
ombination thereof. If linear, then a solution
an be found numeri
ally by means of a dire
t method1, as opposed to iterativemethods. This is a major di�eren
e, be
ause dire
t methods involve a �xed numberof operations; on the 
ontrary, iterative methods involve a �xed number of operationsper iteration, but the number of iterations the method will take until 
onvergen
eis rea
hed 
annot be predi
ted. Furthermore, if the nonlinear equations of a systemare algebrai
, i.e., multivariate polynomials, then the system 
an be redu
ed, at leastin prin
iple, to a single univariate polynomial, if of a degree higher than that of anyof the individual equations.When the obje
tive fun
tion and the 
onstraints are multivariate polynomialsin the design variables, the optimization problem leads to a system of multivariatepolynomials, if with extra variables, namely, the Lagrange multipliers, to be intro-du
ed in Ch. 5. Under these 
onditions, it is possible to use elimination methods,as implemented in 
omputer-algebra 
ode, to eliminate all but one of the designvariables, thereby ending up with a single univariate polynomial. Having redu
edthe optimization problem to polynomial-root �nding is advantageous, be
ause theroots of the polynomial provide all stationary points|as de�ned in Ch. 2 and Ch. 4,these are points where the obje
tive fun
tion 
eases to 
hange lo
ally|and, hen
e,1Some linear systems of a large number of unknowns and weakly 
oupled equations, frequentlyarising in some 
ontexts, like stru
tural me
hani
s, 
an be solved to a great advantage using aniterative method like Gauss-Seidel's. 49



all lo
al minima. The global minimum 
an then be found by inspe
tion.As an alternative to univariate-polynomial redu
tion, the optimization problemat hand 
an be redu
ed to two (or more) bivariate equations, polynomial or trigono-metri
, whose plots appear as 
ontours in the plane of those two variables. Allsolutions 
an then be obtained visually, by 
ontour-interse
tion.Prior to the dis
ussion of equation-solving, we revisit the fundamental 
on
eptsof linear algebra that will be needed in the sequel. Then, we re
all the basi
 problemof solving a system of n linear equations in n unknowns, what is 
alled a determinedsystem. The issue of roundo�-error ampli�
ation is given due attention, whi
h takesus to the 
on
ept of 
ondition number.As a natural extension of the above problem, we undertake the problem of linearleast squares. That is, we now study the solution of a system of q linear equations in nunknowns, when q > n, what is 
alled an overdetermined system of linear equations.In this 
ase, in general, it is not possible to �nd a single ve
tor x that veri�es theredundant and, most likely in
onsistent, set of equations. Hen
e, we aim at �ndingthe best �t in the least-square sense, i.e., the ve
tor x that approximates the wholeset of q equations with the minimum Eu
lidean norm. We derive a 
losed-formexpression, i.e., a formula, for the best �t x dire
tly from the normality 
onditions(NC) of the problem at hand. This derivation readily leads to the left Moore-Penrosegeneralized inverse (LMPGI) of the 
oeÆ
ient matrix, whi
h is re
tangular, and forwhi
h an inverse proper 
annot be de�ned. It is shown that 
omputing the best �tdire
tly from the NC is prone to ill-
onditioning, a phenomenon 
hara
terized by a\large" roundo�-error ampli�
ation. Hen
e, the reader is strongly advised against
omputing the best �t with the said formula. Instead, orthogonalization algorithmsare to be used. The di�eren
e between a formula, like that giving the best �t interms of the LMPGI, and an algorithm is stressed here: The LMPGI is seldomneeded as su
h, in the same way that the inverse of a nonsingular (square) matrixis seldom needed. Therefore, the 
omputation of su
h a generalized inverse is to beavoided.3.2 Ba
kground Fa
ts and De�nitionsWe begin by re
alling the 
on
ept of ve
tor and matrix norms:A norm is to an array of numbers, be it a 
olumn ve
tor, a row ve
tor, or a matrix,what the absolute value is to real numbers and the module is to 
omplex numbers.50



Ve
tor norms 
an be de�ned in various ways:The Eu
lidean norm: The best known. For a n-dimensional ve
tor a with
omponents ai, for i = 1; : : : ; n:kakE �qa21 + � � �+ a2n (3.1)Computing this norm thus requires n multipli
ations, n additions, and onesquare root. Not very \
heap" to 
ompute!The Chebyshev norm, a.k.a. the maximum norm, or the in�nity norm:kak1 � maxi fjaijgn1 (3.2)Noti
e that this norm requires no 
oating-point operations (
ops): quite e
o-nomi
al.The p-norm: kakp �  nXj=1 jaijp!1=p (3.3)This is the most general 
ase. For p = 2, the p-norm be
omes the Eu
lideannorm; for p!1, the p-norm be
omes the Chebyshev norm.Likewise, matrix norms 
an be de�ned in various ways:� The Eu
lidean norm, a.k.a. the 2-norm: the square root of the largest (non-negative) eigenvalue of the positive-semide�nite produ
t of the matrix by itstranspose, regardless of the ordering of the fa
tors. For example, for the n�nmatrix A, kAkE � maxi fp�ig (3.4)where f�i gn1 is the set of non-negative eigenvalues ofAAT , or ofATA for thatmatter. This norm is also 
alled the spe
tral norm. Noti
e that �i is identi
alto the square of the module of the ith eigenvalue of A itself.� The Frobenius norm: the square root of the sum of the squares of the entriesof the matrix. For the same matrix A,kAkF �vuut nXj=1 nXi=1 a2ij �ptr(AAT ) (3.5)51



� The Chebyshev norm or in�nity norm: the maximum absolute value of theentries of the matrix. For the above matrix A,kAk1 � maxi;j fjaijjg (3.6)� The p-norm: kAkp �  nXj=1 nXi=1 jaijjp!1=p (3.7)For p = 2, the p-norm be
omes the Frobenius norm; for p ! 1, the p-normbe
omes, su
h as in the ve
tor 
ase, the Chebyshev norm.Remarks:� The tra
e of A, tr(A), is de�ned as the sum of its diagonal entries:tr(A) �Pni=1 aii.� The 
ounterpart of the ve
tor Eu
lidean norm is not the Eu
lidean matrixnorm, but rather the Frobenius norm.� The 
ounterpart of the ve
tor Chebyshev norm is the matrix Chebyshev norm.Furthermore,De�nition 3.2.1 A n�n matrixA is symmetri
 if it equals its transpose: A = ATDe�nition 3.2.2 A n � n matrix A is skew-symmetri
 if it equals the negative ofits transpose: A = �ATFa
t 3.2.1 (The Matrix Cartesian De
omposition) Every n�nmatrixA 
anbe de
omposed into the sum of a symmetri
 and a skew-symmetri
 
omponents:A = As +Ass (3.8a)As = 12(A+AT ) (3.8b)Ass = 12(A�AT ) (3.8
)Equation (3.8a) is termed the Cartesian de
omposition of A, be
ause of its resem-blan
e with the Cartesian representation of a 
omplex number Z as x + jy, withx; y 2 IRand j = p�1. Noti
e that the eigenvalues of the symmetri
 
omponentAs are all real, but those of Ass are imaginary. Also noti
e that the Cartesiande
omposition is unique. 52



De�nition 3.2.3 A quadrati
 form q of a n-dimensional ve
tor x is asso
iated witha n� n matrix A: q � xTAx (3.9)Fa
t 3.2.2 The quadrati
 form asso
iated with a skew-symmetri
 matrix vanishesidenti
ally. That is, if A = �AT , then, for any n-dimensional ve
tor x,xTAx = 0 (3.10)Proof: Note that, sin
e q � xTAx is a s
alar, q = qT , and hen
e,(xTAx)T = xTAxExpanding the left-hand side, xTATx = xTAxHowever, by assumption, AT = �A, and hen
e,�xTAx = xTAxwhen
e the proof follows immediately.De�nition 3.2.4 A n � n matrix A is positive-de�nite (positive-semide�nite) if itis symmetri
 and, for every n-dimensional ve
tor x, the quadrati
 form xTAx isgreater than (or equal to) zero.Chara
terization of positive-de�niteness (semide�niteness): A n� n (sym-metri
) matrix A is positive-de�nite (positive-semide�nite) if and only if its eigen-values are all positive (nonnegative).Remarks:� Negative-de�niteness and negative-semide�niteness are de�ned and 
hara
ter-ized likewise;� If a matrix is neither positive- nor negative-de�nite, or semide�nite, then it issaid to be sign-inde�nite. 53



3.3 Ba
kground on Linear TransformationsThe general form of a linear transformation mapping a ve
tor spa
e U of dimensionn into a m-dimensional ve
tor spa
e V isv = Lu (3.11)where u and v are n- and m-dimensional ve
tors, respe
tively, with u 2 U andv 2 V. Apparently, L is a m� n matrix.We distinguish two ve
tor subspa
es asso
iated with L, namely,The range of L, denoted by R(L): the set of ve
tors v that are images ofu under transformation (3.11). Noti
e that, if the n 
olumns of L are notlinearly independent, then R(L) is not all of V, but only a proper subspa
e ofit, of dimension m0 < n, i.e., R(L) � V. The dimension of R(L), known asthe rank of L, is denoted by �(L).The nullspa
e or kernel of L, denoted by N (L): the set of all ve
tors u of Uthat are mapped by L into 0m, the zero of V. The dimension of N is termedthe nullity of L, and is denoted by �(L). Obviously, � < n, with � = no

urring only when L = Omn, Omn denoting the m� n zero matrix.A fundamental result of linear algebra follows:�(L) + �(L) = n (3.12)The most frequent linear transformations used in optimum design are studied inthe balan
e of this se
tion. They all pertain to square matri
es.3.3.1 RotationsA rotationQ is an orthogonal transformation of U into itself, with a 
onstraint on itsdeterminant, as we shall outline presently. Orthogonality requires that the inverseof Q be its transpose, i.e., QQT = QTQ = 1 (3.13)where 1 denotes the n� n identity matrix. Hen
e, taking the determinant of bothsides of the above equation,det(QQT ) = det(QTQ) = det(Q)Tdet(Q) = [det(Q)℄2 = 154



when
e det(Q) = �1A proper orthogonal matrix Q is one whose determinant is positive, and hen
e,det(Q) = +1 (3.14)Proper orthogonal transformations of U into itself represent rotations about theorigin of U .The best-known rotations are those in two and three dimensions. Thus, for twodimensions, the 2 � 2 matrix Q rotating ve
tors through an angle � 

w takes theform Q = � 
os� � sin�sin� 
os � � (3.15a)whi
h 
an be expressed alternatively asQ = (
os�)12 + (sin�)E2 (3.15b)with 12 de�ned as the 2 � 2 identity matrix and E2 as a skew-symmetri
 matrix,namely, E2 � � 0 �11 0 � (3.15
)In three dimensions, the rotation matrix takes the formQ = eeT + 
os�(13 � eeT ) + sin�E3 (3.16a)where e is the unit ve
tor indi
ating the dire
tion of the axis about whi
h therotation takes pla
e, 13 is the 3 � 3 identity matrix, and E3 is the 
ross-produ
tmatrix (CPM) of ve
tor e, expressed asE3 � CPM(e) (3.16b)The Cross-Produ
t MatrixWe will start by de�ning the partial derivative of a ve
tor with respe
t to anotherve
tor. This is a matrix, as des
ribed below: In general, let u and v be ve
tors ofspa
es U and V, of dimensions m and n, respe
tively. Furthermore, let t be a realvariable and f be real-valued fun
tion of t, u = u(t) and v = v(u(t)) being m- andn-dimensional ve
tor fun
tions of t as well, with f = f(u;v). The derivative of uwith respe
t to t, denoted by _u(t), is an m-dimensional ve
tor whose ith 
omponent55



is the derivative of the ith 
omponent of u in a given basis, ui, with respe
t to t.A similar de�nition follows for _v(t). The partial derivative of f with respe
t tou is an m-dimensional ve
tor whose ith 
omponent is the partial derivative of fwith respe
t to ui, with a 
orresponding de�nition for the partial derivative of fwith respe
t to v. The foregoing derivatives, as all other ve
tors, will be assumed,hen
eforth, to be 
olumn arrays. Thus,�f�u � 26664 �f=�u1�f=�u2...�f=�um
37775 ; �f�v � 26664 �f=�v1�f=�v2...�f=�vn

37775 (3.17)Furthermore, the partial derivative of v with respe
t to u is an n � m arraywhose (i; j) entry is de�ned as �vi=�uj, i.e.,�v�u � 26664 �v1=�u1 �v1=�u2 � � � �v1=�um�v2=�u1 �v2=�u2 � � � �v2=�um... ... . . . ...�vn=�u1 �vn=�u2 � � � �vn=�um
37775 (3.18)Hen
e, the total derivative of f with respe
t to u 
an be written asdfdu = �f�u + ��v�u�T �f�v (3.19)If, moreover, f is an expli
it fun
tion of t, i.e., if f = f(u; v; t) and v = v(u; t),then, one 
an write the total derivative of f with respe
t to t asdfdt = �f�t + ��f�u�T dudt + ��f�v�T �v�t + ��f�v�T �v�u dudt (3.20)The total derivative of v with respe
t to t 
an be written, likewise, asdvdt = �v�t + �v�u dudt (3.21)Example 3.3.1 Let the 
omponents of v and x in a 
ertain referen
e frame F begiven as [v ℄F = 24 v1v2v3 35 ; [x ℄F = 24 x1x2x3 35 (3.22a)Then [v � x ℄F = 24 v2x3 � v3x2v3x1 � v1x3v1x2 � v2x1 35 (3.22b)56



Hen
e, � �(v � x)�x �F = 24 0 �v3 v2v3 0 �v1�v2 v1 0 35 (3.22
)Hen
eforth, the partial derivative of the 
ross produ
t of any 3-dimensional ve
-tors v and x will be denoted by the 3�3 matrixV. For obvious reasons, V is termedthe 
ross-produ
t matrix of ve
tor v. Thus, the foregoing 
ross produ
t admits thealternative representations v� x = Vx (3.23)Note that given any 3-dimensional ve
tor a, its 
ross-produ
t matrix A is uniquelyde�ned. Moreover, this matrix is skew-symmetri
. The 
onverse also holds, i.e.,given any 3� 3 skew-symmetri
 matrix A, its asso
iated ve
tor is uniquely de�nedas well. This result is made apparent from Example 3.3.1.The 
ross-produ
t matrix is de�ned only for three-dimensional ve
tors. Let aand v be two arbitrary three-dimensional ve
tors. We de�neCPM(a) � �(a � v)�v � A 8v (3.24)Be
ause of the relation a� v = �v � a, the CPM is skew-symmetri
.Rotations in higher dimensions 
an be de�ned as well, but then, the axis andthe angle of rotation are not unique.3.3.2 Re
e
tionsRe
e
tions are improper orthogonal matri
es, preserving the distan
e between anytwo points of the n-dimensional spa
e. For any n� n re
e
tion R, we havedet(R) = �1 (3.25)In two dimensions, a re
e
tion R about a line passing through the origin normalto the unit ve
tor e maps a ve
tor p into p0 in the formp0 = p� 2(pTe)e = (1� 2eeT )p � Rpand hen
e, the re
e
tion R sought is given byR = 1� 2eeT (3.26)57



In three dimensions, the re
e
tion about a plane passing through the origin,of unit normal e, takes exa
tly the same form as R in the two-dimensional 
ase,eq.(3.26). However, in this 
ase, e is three-dimensional, while R is of 3 � 3, and 1is the 3� 3 identity matrix.In all foregoing instan
es, the re
e
tions are represented by symmetri
 matri
es,and are hen
e termed pure re
e
tions. However, this need not always be the 
ase,for re
e
tions 
an 
ombine with rotations, thereby yielding a new re
e
tion|noti
ethat the produ
t of a rotation by a pure re
e
tion is a re
e
tion!|but this time,the matrix representing the re
e
tion is no longer symmetri
. A rotation 
an bedistinguished from a re
e
tion by the sign of its determinant.3.3.3 Proje
tionsHen
eforth, a proje
tion P means an orthogonal proje
tion onto a plane in n di-mensions, whi
h we 
all the proje
tion plane. When n = 2, the \proje
tion plane"be
omes a line in the plane.Let us 
onsider a plane � in a n-dimensional spa
e, of unit normal n. Any pointP in this spa
e is given by its n-dimensional position ve
tor p. Let the proje
tionof P onto � be P 0, whi
h is given by its position ve
tor p0, namely,p0 = p� (nTp)n = (1� nnT )p � Pp (3.27)where P is obviously de�ned as P � 1� nnT (3.28)Matrix P is also 
alled a proje
tor. A proje
tor P is represented by a symmetri
,singular, idempotent matrix. Symmetry is obvious; singularity is less so, but ratherstraightforward. To prove that P is singular, all we have to do is prove that itsnullspa
e is non-empty. However, this is so be
ause all ve
tors r of the form �n, fora s
alar � 6= 0, are mapped by P onto the zero ve
tor. Indeed,Pr = �Pn = �(1� nnT )n = �(n� n) = 0A matrix is idempotent of degree k when it equals its kth power, but is di�erentfrom any lower power. When k = 2, the degree is self-understood and need not bespelled out. To prove idempoten
y, let us 
al
ulateP2 = (1� nnT )(1� nnT ) = 1� 2nnT + nnTn|{z}=1 nT = 1� nnT � P58



thereby 
ompleting the proof.The foregoing proje
tion has a nullity of 1, its nullspa
e being spanned by ve
torn. In three-dimensional spa
e, we 
an have proje
tions onto a subspa
e of dimension1, namely, a line L passing through the origin and parallel to the unit ve
tor e. Inthis 
ase, the proje
tion P 0 of P onto L is given byp0 = (pTe)e � e(eTp) = (eeT )pwhen
e the proje
tion P sought takes the form:P = eeT (3.29)Noti
e that this proje
tion is symmetri
, singular and idempotent as well, its nullspa
ebeing of dimension two. Indeed, we 
an �nd two mutually-orthogonal unit ve
torsf and g, lying in a plane normal to e, whi
h are mapped by P onto the zero ve
tor.These two linearly-independent ve
tors lie in the nullspa
e of P. For n dimensions,the proje
tion \plane" 
an in fa
t be a subspa
e of dimension � � n� 1.Also noti
e that the proje
tion of eq.(3.27) maps ve
tors in three-dimensionalspa
e onto the nullspa
e of the rank-one matrix nnT , while that of eq.(3.29) doesso onto the range of the rank-one matrix eeT . Now, the range of this matrix is thenullspa
e of a matrix A de�ned as A � � fTgT � (3.30)where f and g are mutually orthogonal unit ve
tors normal to e. Then, we 
ande�ne a proje
tor P in the formP = 1�ATA = 1� (�T + ggT ) (3.31)This proje
tor maps three-dimensional ve
tors onto the nullspa
e of A, whi
h isve
tor e, as the reader 
an readily verify.In general, if we have a full-rank m�n matrix A, with m < n, then, rank(A) =minfm; n g = m. This means that the m n-dimensional rows of A are linearlyindependent. By virtue of the basi
 relation (3.12), then, � = n �m. A proje
torthat maps n-dimensional ve
tors onto the nullspa
e of A is de�ned below:P = 1�AT (AAT )�1A (3.32)Note that, by virtue of the de�nition of f and g, matrix A of eq.(3.30) produ
esAAT = 12, the 2� 2 identity matrix. 59



Exer
ise 3.3.1 Prove that P, as given by eq.(3.32), is a proje
tor; then prove thatits proje
tion maps n-dimensional ve
tors onto the nullspa
e of A.Example 3.3.2 Let A = � 1 0 10 1 �1 � � �aT1aT2 �The nullspa
e of A is spanned by a unit ve
tor u that 
an be found asu � bkbk ; b � a1 � a2The proje
tor P mapping ve
tors in three-dimensional spa
e onto the nullspa
e ofA, spanned by u, is given byP = 1�AT (AAT )�1A = 13 24 1 �1 �1�1 1 1�1 1 1 35In this 
ase, b = 24�111 35 ; u = p33 24�111 35Noti
e that the image of any ve
tor p = [ x; y; z ℄T under P 
an be expressed as theprodu
t of a s
alar times u:Pp = 13 24 x� y � z�x + y + z�x + y + z 35 = 13(�x + y + z)24�111 35 = p33 (�x + y + z)u3.4 The Numeri
al Solution of Determined Lin-ear Systems of EquationsWe 
onsider the system Ax = b (3.33)whereA: n� n matrix of known 
oeÆ
ients,b: n-dimensional right-hand side known ve
tor,x: n-dimensional ve
tor of unknowns.60



De�nition 3.4.1 If det(A) = 0 (3.34)then A is said to be singular. Otherwise, A is nonsingular.Fa
t 3.4.1 If A is nonsingular, then eq.(3.33) has a unique solution, whi
h is givenby x = A�1b (3.35)Caveat: Never 
ompute A�1 expli
itly ... , unless instru
ted to do so. The inverseis seldom needed as su
h, and in
urs a waste of pre
ious CPU time! Instead, �nda good numeri
al approximation to the solution, while taking into a

ount that Aand b are usually known only up to a random roundo� error.Avoid roundo�-error ampli�
ation!3.4.1 Roundo� Error of the Solution and Condition Num-bersRegarding the roundo�-error ampli�
ation when solving the system (3.33), let ÆAbe the matrix roundo� error in A, Æb be the ve
tor roundo�-error in b, and Æx bethe ve
tor roundo�-error in
urred when solving eq.(3.33), by virtue of ÆA and Æb.The relative roundo� errors in the data, �A and �b, and in the 
omputed solution,�x, are de�ned as �A � kÆAkkAk ; �b � kÆbkkbk ; �x � kÆxkkxk (3.36)where k � k denotes any ve
tor or matrix norm.The relative roundo� error in the 
omputed solution is known to be related tothe relative roundo� error in the data via the relation (Golub and Van Loan, 1983)�x � �(A)(�A + �b) (3.37)with �(A) de�ned as the 
ondition number of matrix A, whi
h is de�ned, for non-singular square matri
es, as �(A) � kAkkA�1k (3.38)where kAk is a norm of a matrix A. 61



Now, if the Eu
lidean norm is adopted for the 
ondition number, then we have� � �E =r�l�s �r�l�s (3.39)in whi
h �s is the smallest and �l is the largest eigenvalue of AAT . It is nowapparent that �E is bounded from below but unbounded from above:�E � 1 (3.40)In fa
t, the above result holds for � de�ned based on any norm. Moreover, if �(A)is based on the Frobenius norm kAkF , then� = �F (A) =r 1ntr(AAT )r 1ntr(A�1A�T )= 1nptr(AAT )tr[(AAT )�1℄ � 1nptr(ATA)tr[(ATA)�1℄ (3.41)Remarks:� The 
ondition number of a singular matrix is unbounded (tends to 1)� If a matrixAAT has all its eigenvalues identi
al, then A is said to be isotropi
.Isotropi
 matri
es have a � = 1 for � de�ned in any matrix norm. Isotropi
matri
es are optimally 
onditioned.3.4.2 Gaussian EliminationVarious methods for 
omputing a good approximation to the solution (3.35):Iteratively : Various types of methods, by the names Gauss-Jordan, Gauss-Seidel, su

essive-overrelaxation (SOR), et
. Used mainly for \large" systems(thousands of unknowns) that are weakly 
oupled; we will not handle su
hsystems.Symboli
ally : Only possible for 
ertain 
lasses of A matri
es, like tridiagonal,and for arbitrary matri
es of modest size (n is below 5 or so.)Gaussian elimination, a.k.a. LU-de
omposition: This is based on the observa-tion that a triangular system is readily solved by either ba
kward or forwardsubstitution. A is de
omposed into a lower-triangular and an upper-triangularfa
tor, L and U, respe
tively. 62



If A is nonsingular, but otherwise arbitrary, of n� n, then, using Gaussian elim-ination we de
ompose A into A = LU (3.42)where L is lower-triangular and U is upper-triangular, namely,L = 26664 1 0 � � � 0l21 1 � � � 0... ... . . . ...ln1 ln2 � � � 1
37775 (3.43)

U = 26664 u11 u12 � � � u1n0 u22 � � � u2n... ... . . . ...0 0 � � � unn
37775 (3.44)Now, eq.(3.33) is rewritten asLUx = b ) ( Ly = bUx = y (3.45)and hen
e, x is 
omputed in two stages: First y is 
omputed from a lower-triangularsystem; then, x is 
omputed from an upper-triangular system. The lower-triangularsystem is solved for y by forward substitution; the upper-triangular system is solvedfor x by ba
kward substitution. Note thatdet(A) = det(L)det(U) (3.46a)But, apparently,det(L) = 1; det(U) = nY1 uii ) det(A) = det(U) = nY1 uii (3.46b)Hen
e, A is singular i� any of the diagonal entries of U vanishes.3.4.3 Cholesky De
ompositionIf A is symmetri
 and positive-de�nite, then it admits the Cholesky de
omposi-tion: A = LTL (3.47)L = 26664 l11 0 � � � 0l21 l22 � � � 0... ... . . . ...ln1 ln2 � � � lnn
37775 (3.48)63



where L is a real, lower-triangular matrix.The solution of system (3.33) pro
eeds as in the general 
ase, in two steps:LTy = b (3.49)Lx = y (3.50)3.5 The Least-Square Solution of OverdeterminedLinear SystemsWe start withDe�nition 3.5.1 A system of linear equations of the formAx = b (3.51)is overdetermined if A is re
tangular, of q � n, with q > n.This means that the system has more equations than unknowns. In general, no xthat veri�es all the equations is available.De�nition 3.5.2 A is of full rank if its n (< q) q-dimensional 
olumns are linearlyindependent.Remark: If A is of full rank, i.e., if rank (A) = n, then� The produ
t ATA is nonsingular, and hen
e, positive-de�nite; moreover,� as a 
onsequen
e, det(ATA) > 0 (3.52)For an arbitrary x, there will be an error e:e � b�Ax (3.53)3.5.1 The Normal EquationsProblem: Find a parti
ular x, xL, that minimizes the Eu
lidean norm of the error,or its square, for that matter: kek2 = eTe.Solution: De�ne the obje
tive fun
tion f to be minimized asf � 12kek2 ! minx (3.54)64



The normality 
onditions (NC) of Problem (3.54) are obtained upon zeroing thegradient of f with respe
t to x: rf � �f�x = 0 (3.55)Moreover, rf is obtained from the \
hain rule":�f�xi = �ej�xi �f�ej ; i = 1; : : : ; nwhere the repeated index j indi
ates summation, for j = 1; : : : ; q. The foregoingrelation 
an be written in 
ompa
t form asrf � ��e�x�T �f�e (3.56)Apparently, from the de�nitions of f and e,�e�x = �A; �f�e = e � b�Ax (3.57)Upon plugging expressions (3.57) into eq.(3.55),ATAx = ATb (3.58)whi
h is a system of n linear equations in n unknowns. This set of equations yieldsthe NC of the problem at hand; the set is known as the normal equations of thegiven problem.IfA is of full-rank, then eq.(3.58) admits one unique solution|determined 
ase|whi
h is the least-square solution of the given system:xL = AIb (3.59a)with AI de�ned as AI � (ATA)�1AT (3.59b)Here, AI is termed the left Moore-Penrose generalized inverse (LMPGI) of the re
t-angular matrix A.Remarks:� The 
ondition number �E of the re
tangular matrix A of q � n, with q > n,based on the Eu
lidean norm, is de�ned in a similar way to that of a squarematrix, with the di�eren
e that, in the 
ase at hand, this is done in terms ofthe eigenvalues of ATA; 65



� The 
ondition number �E of ATA is the square root of the ratio of the largestto the smallest eigenvalues of (ATA)(ATA)T = (ATA)2;� Hen
e, �E is given by the ratio of the largest to the smallest eigenvalues of(ATA), i.e., �E(ATA) = �2E(A) (3.60)� Thus, the roundo�-error ampli�
ation fa
tor in
urred in solving the normalequations (3.58) is the square of that in
urred when \solving" eq.(3.33) in thedetermined 
ase.� Not only this. Formula (3.59a) is 
omputationally expensive, for it involves:{ the multipli
ation of A by its transpose from the left, whi
h 
onsumes n2s
alar produ
ts of two q-dimensional ve
tors. Hen
e, ATA requires n2qprodu
ts and n2(q � 1) additions;{ the 
omputation of the right-hand side of eq.(3.58), whi
h entails, in turn,n s
alar produ
ts of two q-dimensional ve
tors, i.e., q� n multipli
ationsand (q � 1)n additions.� In 
onsequen
e,solving numeri
ally normal equations should be avoided!� In some 
ases, the normal equations allow for handling them with 
omputeralgebra, in whi
h 
ase roundo�-error ampli�
ation is not an issue. In these
ases it is safe to work with these equations.3.5.2 Householder Re
e
tionsThe good news is that there are alternatives to numeri
al normal-equation solving.One of these relies on Householder re
e
tions, to be des
ribed presently.Premultiply both sides of eq. (3.51) by n Householder re
e
tions|q�q improperorthogonal matri
es| Hi, for i = 1; : : : ; n, i.e.,HAx = Hb (3.61)where H = HnHn�1 : : :H166



The set fHi gn1 is 
hosen so thatHA = �UO � ; Hb = �bUbL � (3.62)in whi
h� U: a n� n upper-triangular matrix� O: the (q � n)� n zero matrix� bU : a n-dimensional ve
tor 
ontaining the upper n 
omponents of Hb� bL: a (q�n)-dimensional ve
tor 
ontaining the lower q�n 
omponents of HbThus, eq.(3.61) leads to two subsystems of equations:Ux = bU (3.63a)Ox = bL 6= 0 (3.63b)The least-square solution 
an be readily 
al
ulated by ba
kward substitutionfrom eq.(3.63a), and symboli
ally expressed asxL = U�1bU : (3.64)Remark: Equation (3.63b) expresses a 
ontradi
tion: The left-hand side is theprodu
t of the (q � n) � n zero matrix times the unknown ve
tor; the right-handside is not ne
essarily zero. Thus, eq.(3.63b) yields the least-square error asso
iatedwith the solution xL: kbLk. Now we have an important result:Theorem 3.5.1 (The Proje
tion Theorem) Let e0 denote the error ve
tor ofminimum Eu
lidean norm, i.e., e0 � b�AxL (3.65)Then, e0 is orthogonal to the image of xL under A.Proof: We have eT0AxL = (b�AxL)TAxLUpon expansion, eT0AxL = bTAxL � xTLATAxL67



Plugging expressions (3.59a & b) into the above equation,eT0AxL = bTA(ATA)�1ATb� bTA(ATA)�1ATA(ATA)�1ATb= bTA(ATA)�1ATb� bTA(ATA)�1ATb = 0 (3.66)thereby 
ompleting the proof. The Proje
tion Theorem is illustrated in Fig. 3.1.Remark: A n� n improper orthogonal matrix represents a re
e
tion, i.e., a linear

Figure 3.1: The Proje
tion Theoremtransformation of a n-dimensional ve
tor spa
e that preserves both the magnitudeof ve
tors|their Eu
lidean norm|and the inner produ
t of any two ve
tors.Problem: Find a linear transformation of the 
olumns of the q � n matrix Athat will render this matrix in upper-triangular form without 
hanging the geometri
relations among the 
olumns, i.e., while preserving the inner produ
ts of any two ofthese 
olumns, in
luding the produ
t of a 
olumn by itself.Solution: Assume that we have applied re
e
tions H1, H2, : : :, Hi�1, in this order,to A that have rendered its �rst i� 1 
olumns in upper-triangular form, i.e.2,Ai�1 � Hi�1 : : :H2H1A2The entries of Ai�1 are supers
ripted with an asterisk to distinguish them from the entries ofthe original A. 68



=
266666666666664
a�11 a�12 � � � a�1;i�1 a�1i � � � a�1n0 a�22 � � � a�2;i�1 a�2i � � � a�2n0 0 � � � a�3;i�1 a�3i � � � a�3n... ... . . . ... ... . . . ...0 0 � � � a�i�1;i�1 a�i�1;i � � � a�i�1;n0 0 � � � 0 a�i;i � � � a�i;n... ... . . . ... ... . . . ...0 0 � � � 0 a�q;i � � � a�qn

377777777777775 (3.67)
The next Householder re
e
tion, Hi, is determined so as to render the last q� i
omponents of the ith 
olumn of HiAi�1 equal to zero, while leaving its �rst i � 1
olumns un
hanged. We do this by setting�i = sgn(a�ii)q(a�ii)2 + (a�i+1;i)2 + � � �+ (a�qi)2 (3.68)ui = [ 0 0 � � � 0 a�ii + �i a�i+1;i � � � a�qi ℄T (3.69)Hi = 1� 2 uiuTikuik2 (3.70)where the signum of x, sgn(x), is de�ned as +1 if x > 0, as �1 if x < 0, and is leftunde�ned when x = 0.Noti
e that 12kuik2 = �i(ui)i = �i(a�ii + �i) � �iand hen
e, the denominator appearing in the expression for Hi is 
al
ulated withone single addition and one single multipli
ation.Exer
ise: Show that HiHTi = HTi Hi = 1 and det(Hi) = �1.Remark: Hi re
e
ts ve
tors in q-dimensional spa
e onto a hyperplane of unit nor-mal n � ui=kuik, as depi
ted in Fig. 3.2. It is noteworthy that(a) �i is de�ned with the sign of a�ii be
ause �i is a multiple of the ith 
omponentof ui, whi
h is, in turn, the sum of a�ii and �i, thereby guaranteeing that theabsolute value of this sum will always be greater than the absolute value ofea
h of its terms. If this provision were not made, then the resulting sum
ould be of a negligibly small absolute value, whi
h would thus render �i avery small positive number, thereby introdu
ing unne
essarily an inadmissiblylarge roundo�-error ampli�
ation upon dividing the produ
t uiuTi by �i;69



Figure 3.2: The geometri
 interpretation of the ith Householder re
e
tion(b) an arbitrary q-dimensional ve
tor v is transformed by Hi with unusually few
ops, namely, Hiv = v � 1�i (vTui)uiUpon appli
ation of the n Householder re
e
tions thus de�ned, the system at handbe
omes HAx = Hb (3.71)with H de�ned as H � Hn : : :H2H1 (3.72)Noti
e that HA is in upper-triangular form. That is,HA = � UOq0n � ; Hb = �bUbL � (3.73)where: q0 � q�n; Oq0n is the (q�n)�n zero matrix; bU is a n-dimensional ve
tor;and bL is a (q � n)-dimensional ve
tor, normally di�erent from zero.The unknown x 
an thus be 
al
ulated from eq.(3.71) by ba
k-substitution.Remarks:� The last m0 
omponents of the left-hand side of eq.(3.71) are zero.� However, the 
orresponding 
omponents of the right-hand side of the sameequation are not ne
essarily zero. What went wrong?� Nothing! Re
all that the overdetermined system (3.51) in general has nosolution. The lower part of b, bL, is then nothing but a q0-dimensional array70




ontaining the nonzero 
omponents of the approximation error in the new
oordinates. That is, the least-square error e0 in these 
oordinates, takes theform e0 = � 0nbL � (3.74a)Therefore, ke0k = kbLk (3.74b)3.6 Nonlinear-Equation Solving: The DeterminedCaseDe�nition 3.6.1 A system of algebrai
 equations 
ontaining some that are notlinear is termed nonlinear. If the number of equations is identi
al to the number ofunknowns, the system is determined.Example: Find the interse
tion of the 
ir
le and the hyperbola depi
ted in Fig. 3.3.Solution: The equations of the 
ir
le and the hyperbola are

Figure 3.3: Interse
tion of a 
ir
le and a hyperbola�1(x; y) � x2 + y2 � 4 = 0�2(x; y) � x2 � y2 � 1 = 0The solution to a nonlinear system of equations, when one exists at all, is usuallymultiple: The 
ir
le and the hyperbola of Fig. 3.3 interse
t at four points fPig41,71



Pi xi yi1 p5=2 p3=22 p5=2 �p3=23 �p5=2 p3=24 �p5=2 �p3=2Table 3.1: The four interse
tion points of the 
ir
le and the hyperbola of Fig. 3.3of 
oordinates (xi; yi), as displayed in Table 3.1. The problem may have no realsolution, e.g., the 
ir
le and the hyperbola of Fig. 3.4 do not interse
t. The systemof equations from whi
h the 
oordinates of the interse
tion points are to be 
omputedis given below: �1(x; y) � x2 + y2 � 1 = 0�2(x; y) � x2 � y2 � 16 = 0This system of equations admits no real solution!

Figure 3.4: A 
ir
le and a hyperbola that do not interse
tIn general, a determined nonlinear system of equations takes the form�(x) = 0 (3.75)72



where x and � are both n-dimensional ve
tors:x � 26664 x1x2...xn
37775 ; � � 26664 �1(x1; x2; : : : ; xn)�2(x1; x2; : : : ; xn)...�n(x1; x2; : : : ; xn)

37775 (3.76)
3.6.1 The Newton-Raphson MethodWe outline below the method of solution of determined nonlinear systems usingthe Newton-Raphson method. This is an iterative method, whereby a sequen
e ofapproximations is obtained that, if 
onverging, it approa
hes the solution in a �nitenumber of iterations within a pres
ribed toleran
e.A value x0 of x is given as an initial guess:x0 � [ p1 p2 : : : pn ℄Tand � is evaluated at x0: �0 � �(x0)If the value x0 was 
hosen randomly, most likely it will not verify the given systemof equations, i.e., �0 6= 0Next, we look for a \small" in
rement �x of x (the in
rement is small if its norm|any norm|is small): �x � [�x1 �x2 : : : �xn ℄TNow, �(x0 + �x) is evaluated up to its linear approximation (all quadrati
 andhigher-order terms are dropped from its series expansion):�(x0 +�x) � �(x0) + ���x ���x=x0�x (3.77)The Ja
obian matrix of � with respe
t to x is de�ned as the matrix of partialderivatives of the 
omponents of � with respe
t to all the 
omponents of x:� � ���x = 26664 ��1=�x1 ��1=�x2 � � � ��1=�xn��2=�x1 ��2=�x2 � � � ��2=�xn... ... . . . ...��n=�x1 ��n=�x2 � � � ��n=�xn

37775 (3.78)73



In the next step, we �nd �x that renders zero the linear approximation of�(x0 +�x): �0 +�(x0)�x = 0or �(x0)�x = ��0 (3.79)when
e �x 
an be found using, for example, Gaussian elimination:�x = ���10 �0; �0 � �(x0) (3.80)Next, x is updated: x  x0 +�x (3.81)the pro
edure stopping when k�xk � �x (3.82)for a pres
ribed toleran
e �x.Remarks:� Use the maximum norm to test 
onvergen
e in eq.(3.82), for it 
osts virtuallynothing;� no guarantee that the Newton-Raphson method will 
onverge at all;� whether the Newton-Raphson method 
onverges is dependent upon the initialguess, x0;� the boundary between regions of 
onvergen
e and divergen
e is a fra
tal (Man-delbrot, 1983; Glei
k, 1988);� when the Newton-Raphson method 
onverges, it does so quadrati
ally : Atevery iteration, two de
imal pla
es of a

ura
y are gained (Dahlquist andBj�or
k, 1974).3.7 Overdetermined Nonlinear Systems of Equa-tionsA system of nonlinear equations of the form�(x) = 0 (3.83)74



where x is a n-dimensional ve
tor and � is a q-dimensional ve
tor, is overdeterminedif q > n. Just as in the linear 
ase, in general, no ve
tor x 
an be found that veri�esall the q s
alar equations of the system. However, approximations 
an be found thatminimize the least-square error of the approximation, as des
ribed in the balan
e ofthis Se
tion. The method of solution adopted here is the overdetermined 
ounterpartof the Newton-Raphson method.3.7.1 The Newton-Gauss MethodProblem: Find an approximate solution to system (3.83) that veri�es those equa-tions with the least-square error :f(x) = 12�TW� ! minx (3.84)where W is a q � q positive-de�nite weighting matrix.Solution: We follow a pro
edure similar to Newton-Raphson's, whi
h is known asthe Newton-Gauss method, as des
ribed below:First, an initial guess x0 of x is given; then, we produ
e the sequen
ex1; x2; : : : ; (3.85)su
h that xk+1 = xk +�xk (3.86)Cal
ulation of �xk:� Fa
tor W into its two Cholesky fa
tors:W = VTV (3.87)whi
h is possible be
ause W is assumed positive-de�nite.� Compute �xk as the least-square solution of the un
onstrained overdeterminedlinear system V�(xk)�xk = �V�(�xk) (3.88)with �(x) de�ned as the q � n Ja
obian matrix of the ve
tor fun
tion �(x),i.e., �(x) = ��(x)�x (3.89)Drop supers
ripts for the sake of notation-simpli
ity and re
all eqs.(3.59a &b): �x = �(�TW�)�1�TW� (3.90)This pro
edure is iterative, stopping when a 
onvergen
e 
riterion is met.75



The Damping Fa
torWhen implementing the Newton-Gauss method, the obje
tive fun
tion f may in-
rease upon 
orre
ting xk a

ording to eq.(3.86), i.e.f(xk+1) > f(xk) (3.91)This in
rease gives rise to os
illations and sometimes even leads to divergen
e. Oneway to 
ope with this situation is by introdu
ing damping. Instead of using thewhole in
rement �xk, we use a fra
tion of it, i.e.xk+1 = xk + ��xk; 0 < � < 1 (3.92)where � is known as the damping fa
tor.3.7.2 Convergen
e CriterionCal
ulate �rst rf(x): rf(x) � �f�x = ����x�T �f�� (3.93)���x � �; �f�� =W� (3.94)Hen
e, the 
ondition for a stationary point is�TW� = 0 (3.95)whi
h is the normality 
ondition of eq.(3.84).It is thus apparent that, at a stationary point of f , �(x) need not vanish, asis the 
ase of un
onstrained optimization, to be dis
ussed in Chapter 4;however,�(x) must lie in the nullspa
e of �TW. Moreover, from eqs.(3.90) and (3.95)follows that, at a stationary point, �x vanishes. Hen
e, the 
onvergen
e 
riterion isk�xk < � (3.96)where � is a pres
ribed toleran
e.Remarks:� The normality 
ondition (3.95) alone does not guarantee a minimum, but onlya stationary point. 76



� However, as it turns out, if the pro
edure 
onverges, then it does so, to ase
ond-order approximation, to a minimum, and neither to a maximum nor ato saddle point, as we prove below.The sequen
e f(x0), f(x1), . . . , f(xk), f(xk+1), . . . , obtained from the sequen
e ofx values, evolves, to a �rst order, as �f(x), given by�f = ��f�x�T �x (3.97)i.e., �f = �TW��x (3.98)Upon plugging expression (3.90) of �x into eq. (3.98), we obtain�f = ��T W�(�TW�)�1�TW| {z }M � = ��TM� (3.99)where, apparently, M is a q � q positive-de�nite matrix. As a 
onsequen
e, �TM�be
omes a positive-de�nite quadrati
 expression of �; hen
e, �f is negative de�nite.Thus, the se
ond-order approximation of f(x) is negative-de�nite, and hen
e, thesequen
e of f values de
reases monotoni
ally. That is, in the neighbourhood of astationary point the �rst-order approximation of �(x) is good enough, and hen
e,if the pro
edure 
onverges, it does so to a minimum.The reader may wonder whether the Newton-Raphson method 
an be used tosolve nonlinear least-square problems. Although the answer is yes, the Newton-Raphson method is not advisible in this 
ase, as made apparent below.Re
all rf from eqs.(3.84) and (3.85):rf(x) = �f�x = �T (x)| {z }n�q W|{z}q�q �(x)| {z }q�dimrf(x) = 0 ) �T (x)W�(x)| {z }� (x)2IRn = 0 (NC)thereby obtaining a determined system of n equations in n unknowns. This system
an be solved using Newton-Raphson method whi
h requires r (x):r (x = � �x = ��x [ �T (x)| {z }(��=�x)T W�(x)℄77



That is, r (x) involves se
ond-order derivatives of  with respe
t to x:�2�i�xj�xi ; i = 1; : : : ; nIn summary, the Newton-Raphson method is too 
umbersome and prone to ill-
onditioning, for it is based on the normality 
onditions of the problem at hand.3.8 Computer Implementation Using ODA|C-Library of Routines for Optimum DesignODA is a C library of subroutines for optimization problems. The sour
e �le ofthis pa
kage, implemented in C, 
onsists of a number of subroutines designed and
lassi�ed based on their appli
ation. At the beginning of ea
h subroutine a detaileddes
ription of the purpose and usage of the subroutine is in
luded. Moreover, datavalidation has been 
onsidered in the software. In order to solve a problem, the usersimply 
alls one 
orresponding C subroutine.Sin
e the solutions for linear problems are dire
t|as opposed to iterative|theuse of ODA to solve linear problems requires only information on the problem pa-rameters, su
h as matri
es A, C, and W, as well as ve
tors b and d, as appli
able.For nonlinear problems, the solution is iterative, and hen
e, the user is required toprovide fun
tions des
ribing �(x); h(x); �(x); J(x); as needed. These fun
tionsare provided via subroutines in forms that 
an be 
alled by the pa
kage. In additionto this information, the user is also required to provide an initial guess x0 of x, sothat the iterative pro
edure 
an be started.1. Un
onstrained linear problems: Subroutine MNSLS is used to �nd theminimum-norm solution of an underdetermined linear system, while subrou-tine LSSLS is used to �nd the least-square approximation of an overdeterminedlinear system. LSSLS 
an also handle determined systems, i.e., systems of asmany equations as unknowns.2. Un
onstrained nonlinear problems: Subroutine LSSNLS is used to solvethis type of problems. Sin
e the nonlinear fun
tions and their asso
iated gra-dient matri
es are problem-dependent, the user is required to provide twosubroutines that are used to evaluate the foregoing items, namely,� FUNPHI: This subroutine is used to evaluate the q-dimensional ve
torfun
tion �(x) in terms of the given n-dimensional ve
tor x.78



� DPHIDX: This subroutine is used to evaluate the q � n gradient matrix �of the ve
tor-fun
tion �(x) with respe
t to x, at the 
urrent value of x.Moreover, an initial guess of x is required when 
alling this subroutine.3. Constrained linear problems: Subroutine LSSCLS is used to solve this typeof problems.4. Constrained nonlinear problems: Subroutine LSSCNL is used for solvingthis type of problems. Before 
alling LSSCNL, the user is required to providefour problem-dependent subroutines: Two of these are FUNPHI and DPHIDX,already ders
ribed in item 2 above. The other two are used to evaluate theleft-hand sides of the 
onstraint equations and their gradient matrix, as listedbelow:� FUNH: This subroutine is used to evaluate the l-dimensional 
onstraintfun
tion h in terms of the given n-dimensional ve
tor x.� DHDX: This subroutine is used to evaluate the l � n gradient matrix J ofthe ve
tor-fun
tion h(x) in terms of the given n-dimensional ve
tor x.Moreover, an initial guess of x is required when 
alling LSSCNL.5. Constrained problems with arbitrary obje
tive fun
tion: SubroutineARBITRARY is used for solving this type of problems. Before 
alling ARBITRARY,the user is required to provide four problem-dependent subroutines: Two ofthese are FUNPHI and DPHIDX, as des
ribed in item 2 above. The other twosubroutines are used to evaluate the left-hand sides of the 
onstraint equationsand their gradient matrix, as listed below:� phi: Subroutine used to evaluate the obje
tive fun
tion �(x) in termsof the given n-dimensional ve
tor x.� h: Subroutine used to evaluate the l-dimensional 
onstraint fun
tion hin terms of the given n-dimensional ve
tor x.� J: Subroutine used to evaluate the l�n gradient matrix J of the ve
tor-fun
tion h(x) at the 
urrent value of x.� gradient: Subroutine used to evaluate the n-dimensional gradient rfof the obje
tive fun
tion f(x) at the 
urrent value of ve
tor x.79



� Hessian: Subroutine used to evaluate the n�n Hessian matrix rrf ofthe obje
tive fun
tion f(x) at the 
urrent value of ve
tor x. Moreover,an initial guess of x is required when 
alling ARBITRARY.
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Chapter 4Un
onstrained Optimization
4.1 Introdu
tionWe start by studying the simplest problem in multivariable optimization, namely,the un
onstrained minimization of a smooth s
alar obje
tive fun
tion f(x) of the n-dimensional design-variable ve
tor, or design ve
tor (DV) for brevity, that we denoteby x. The main result here is the normality 
onditions (NC) of the problem at hand.We derive the �rst-order (FONC), whi
h are ne
essary for a stationary point (SP);then, we derive the se
ond-order (SONC), whi
h are suÆ
ient for a minimum, amaximum or a saddle point. These three kinds of SP are duly 
hara
terized.4.2 The Normality ConditionsUnder the smoothness assumption, the obje
tive fun
tion is 
ontinuous and has
ontinuous �rst- and se
ond-order derivatives. The problem at hand is, moreover,f(x) ! minx (4.1)Sin
e the problem under study is un
onstrained, the sear
h of the minimum is
ondu
ted over the whole design spa
e Rn , whi
h eases the sear
h tremendously.Noti
e that every point of the design spa
e is 
hara
terized by a position ve
torx, whi
h de�nes a design, and hen
e, every su
h point represents one design. For
on
iseness, we will refer to a point and the design that the point represents by itsposition ve
tor.Now, for f(x) to attain a minimum at a 
ertain point xo of the design spa
e, thepoint must be, �rst and foremost, stationary, i.e., the gradient rf of the obje
tive81



fun
tion with respe
t to the design ve
tor must vanish:rf � �f�x ����xo = 0 (4.2a)whi
h is known as the �rst-order normality 
ondition. As a matter of fa
t, the aboverelation is short-hand for n normality 
onditions, one for ea
h 
omponent of the rfve
tor, namely, rf � �f�x = 26664 �f=�x1�f=�x2...�f=�xn
37775 (4.2b)However, a stationary point 
an be a minimum, a maximum or a saddle point, to ase
ond-order approximation. To 
hara
terize ea
h 
ase, we expand, to this order ofapproximation, f(x) around x = xo:f(x) = f(xo) +rf jxo (x� xo) + 12(x� xo)Trrf jxo(x� xo) + HOT (4.3a)where HOT stands for \higher-order-terms", while rrf , the Hessian of f withrespe
t to x, is a matrix of se
ond derivatives, namely,rrf � �2f�x2 = 26664 �2f=�x21 �2f=�x1�x2 � � � �2f=�x1�xn�2f=�x2�x1 �2f=�x22 � � � �2f=�x2�xn... ... . . . ...�2f=�xn�x1 �2f=�xn�x2 � � � �2f=�x2n

37775 (4.3b)Noti
e that, by virtue of the smoothness assumption,�2f�xi�xj = �2f�xj�xi ; for i; j = 1; 2; : : : ; n (4.4)whi
h follows after S
hwartz's Theorem: Given a 
ontinuous fun
tion f(x) with �rst-and se
ond-order 
ontinuous derivatives, the order of di�erentiation in 
omputingthe se
ond derivatives is immaterial.As a 
onsequen
e of eq.(4.4), then,� The Hessian of f with respe
t to x is a symmetri
 n� n matrix, and� the eigenvalues of the Hessian matrix are all real and its eigenve
tors aremutually orthogonal. 82



At a stationary point xo, then, and up to a se
ond-order approximation, eq.(4.3a)leads to �f � f(x)� f(xo) � 12(x� xo)Trrf jxo(x� xo) (4.5)Now we have that� If, for any �x � x � xo, �f(x) > 0, then the stationary point (SP) xo is alo
al minimum of f(x);� if, for any �x � x � xo, �f(x) < 0, then the SP xo is a lo
al maximum off(x); and� otherwise, the SP xo is a saddle point.It is not pra
ti
al to test a stationary point for the sign of �f for every possible�x. However, it is possible to 
hara
terize the nature of the stationary point xoby means of the signs of the eigenvalues of the Hessian matrix. To this end, we re-
all the 
hara
terization of positive-de�nite, positive-semide�nite and sign-inde�nitematri
es given above. In this light, then,� the stationary point xo is a lo
al minimum if the Hessian evaluated at thispoint is positive-de�nite;� the SP is a lo
al maximum if the Hessian evaluated at this point is negative-de�nite;� the SP is a saddle point if the Hessian evaluated at this point is sign-inde�nite.4.3 Methods of SolutionThe variety of methods available is immensely ri
h. In a nutshell, the various meth-ods 
an be 
lassi�ed a

ording to one 
riterion: the requirement of partial derivativesof the obje
tive fun
tion. We thus have:(i) Dire
t methods: No derivatives are required.(ii) Gradient Methods: Only �rst-order derivatives of the obje
tive fun
tionwith respe
t to all design variables are required.(iii) Newton methods: First- and se
ond-order derivatives of the obje
tive fun
-tion with respe
t to all all design variables are required.83



Needless to say, dire
t methods are the most general|the least demanding|andsimplest to implement, the pri
e to be paid for the la
k of information on deriva-tives being the speed of 
onvergen
e. These methods are the slowest to 
onverge.Gradient methods are faster, with a linear 
onvergen
e rate, whi
h means that theerror between the 
urrent iterate xk and the 
losest lo
al minimum de
reases by oneorder of magnitude at ea
h iteration. The Newton-Raphson method, and variationsthereof, generi
ally termed Newton methods, resort to �rst- and se
ond-order deriva-tives. Newton methods 
onverge quadrati
ally, whi
h means that the aforementionederror de
reases by two orders of magnitude per iteration.4.4 Dire
t MethodsDire
t methods are based on fun
tion evaluations and nothing else. While thesemethods are slow to 
onverge, they 
an handle dis
ontinuous fun
tions. There arevarious of these: random (random jumps, random walks); Hooke and Jeeves; Powell;and the simplex (Nelder-Mead) method. We outline the last three of these methodsbelow.The main 
on
ept behind dire
t methods is the pattern dire
tions, namely, thedire
tions of sear
h, along whi
h the minimum is approa
hed. These three methodsdi�er on the way of de�ning the pattern dire
tions.4.4.1 The Hooke and Jeeves MethodIn this method, the sear
h dire
tions are �xed. The method thus starts by de�ninga set of unit ve
tors fuign1 in the dire
tions of the n design variables, along whi
hthe sear
h is 
ondu
ted.Hooke & Jeeves Algorithm1. Define starting base point x1 and pres
ribed length �x of sear
hstep2. fk  f(xk); 1 i; yk;0  xk3. For i = 1 to n dof+  f(yk;i�1 + ui�xi)f�  f(yk;i�1 � ui�xi)if f+ < f(yk;i�1) then yk;i  yk;i�1 + ui�xi84



if f� < f(yk;i�1) then yk;i yk;i�1 � ui�xielse yk;i  yk;i�1enddo4. if yk;n = xk then �x 12�x go to 3else xk+1  yk;n5. s xk+1 � xk % pattern dire
tionFind � that minimizes f(xk+1 + �s)yk+1;n + �s6. k  k + 1; fk  f(yk;0); 1 irepeat 3if f(yk;n) < f(xk) then xk+1  yk;nelse xk+1  xk; �x 12�x go to 27. if k�xk < � then stopelse go to 24.4.2 The Powell Method (Conjugate Dire
tions)Let A = AT 2 IRn�n be positive-de�nite. Ve
tors x; y 2 IRn are said to beA-
onjugate if xTAy = yTAx = 0 (4.6)In the area of me
hani
al systems under linear vibrations, for n degrees of freedom,the ith and jth modal ve
tors ui and uj are K- and M-
onjugate, i.e.,(ui)TKuj = 0; and (ui)TMuj = 0where K and M are the n� n positive-de�nite sti�ness and mass matri
es, respe
-tively.Theorem 4.4.1 (
f. Rao's Theorem 6.1)Let x 2 IRn and f(x) = 12xTAx+ bTx+ 
; A = AT > O85



Further, let �1 and �2 be two hyperplanes in IRn parallel to ea
h other. If xi is theminimum of f(x), with xi 2 �i; i = 1; 2, then x2 � x1 is A-
onjugate with anyve
tor y 2 IRn lying in a hyperplane normal to �1 and �2, i.e.,(x2 � x1)TAy = 0Proof : �1 and �2 are de�ned by�i : Cx = di; i = 1; 2; C 2 IRp�n; p < n (4.7)The algebrai
 interpretation of y lying in a plane perpendi
ular to �1 and �2 is thaty 2 R (CT ), i.e., there exists a v 2 IRp su
h thaty = CTvand hen
e, if L is an orthogonal 
omplement of C, i.e., ifC|{z}p�n L|{z}n�n0 = O|{z}p�n0 ; n0 � n� pthen we 
an write y = Lu; u 2 IRn�pNow, xi is found as the solution to minx f(x)subje
t to eq.(4.7). We solve the foregoing problem as an un
onstrained problem bymeans of the Lagrangian1Fi � f(x) + (�i)T (Cx+ di)! minx ; i = 1; 2subje
t to no 
onstraints, and denote the solution xi. The normality 
onditions ofthe foregoing problem are, for i = 1; 2,rFi = Ax+ b +CT�i = 0n; (4.8a)Cx� di = 0p (4.8b)whi
h yield a system of p + n equations for the p + n unknowns x and �i. Uponsolving for x = xi from eq.(4.8a), for i = 1; 2, we obtainxi = �AT (CT�i + b) (4.9)1Details on 
onstrained optimization are given in Chapter 5.86



Substitution of the foregoing expression into eq.(4.7) yields, always for i = 1; 2,�CA�1(CT�i + b) = dior CA�1CT�i = �CA�1b� diHen
e, �i = �(CA�1CT )�1(CA�1b + di) (4.10)Substitution of eq.(4.10) into eq.(4.9) leads toxi = A�1[CT (CA�1CT )�1(CA�1b+ di) + b℄= A�1[CT (CA�1CT )�1CA�1 + 1℄b +A�1[CT (CA�1CT )�1diTherefore, x2 � x1 = A�1CT (CA�1CT )�1(d2 � d1)Hen
e,(x2 � x1)TAy � (x2 � x1)TALu = (d2 � d1)T (CA�1CT )�1CA�1A| {z }1 L| {z }CL=Opn0 uThat is, (x2 � x1)TAy = 0thereby 
ompleting the proof.The Powell AlgorithmData: A set of linearly independent dire
tions D = f�ign and an initial guess x01. For k = 1 to n dofind minimizer �k of f(xk�1 + �k�k)xk  xk�1 + �k�kenddo2. Find m 2 f1; : : : ; ng su
h that f(xm�1)� f(xm) is a maximum; then�  f(xm�1)� f(xm)3. f1  f(x0); f2  f(xn); f3  f(2xn � x0)4. if ( f3 � f1; or(f1 � 2f2 + f3)(f1 � f2)2 � 12(f1 � f3)2�then keep D; else 87



5. �  xn � x0find � that minimizes f(xn + ��)D  f�1; : : : ; �m�1; �m+1; : : : ; �n; �gx0  xn + ��if x0 is a minimum, stop; else, go to 1.Note: As initial D, use the 
oordinate axes.Theorem 4.4.2 For quadrati
 obje
tive fun
tions, Powell's dire
tions are (rrf)-
onjugate.4.4.3 The Nelder-Mead Simplex MethodWith a few 
hanges in the notation, this subse
tion is taken from (Rao, 1996). Thismethod, �rst proposed by Spendley et al. (1962), and later improved by Nelder andMead (1965), is based on the 
on
ept of simplex Sn. A simplex is a (n + 1)-vertexhyperpolyhedron in IRn. The sear
h for the minimum of the obje
tive fun
tion f(x)is 
ondu
ted by means of fun
tion evaluations at all n + 1 verti
es of the simplex.The strategy followed is outlined below.We start by de�ning an initial simplex, whi
h is done by means of a base pointP0 2 IRn, of position ve
tor x0. The remaining n verti
es of Sn are generated so asto yield a regular hyperpolyhedron of unit-length edges. To this end, letp = 1p2n(pn+ 1 + n� 1); q = 1p2n(pn+ 1� 1) (4.11a)Then, if ei denotes the unit ve
tor in the dire
tion of the ith 
oordinate axis, 
orre-sponding to xi, let xi = x0 + pei + nXj=1;j 6=i qej; i = 1; 2; : : : ; n (4.11b)Shown in Fig. 4.1 are displays of the simplexes in IR2 and IR3, respe
tively,de�ned as des
ribed in eqs.(4.11a & 4.11b), with the base point at the origin.The sear
h strategy is based on three operations: a) re
e
tion; (b) 
ontra
tion;and (
) expansion.Re
e
tionLet fi = f(xi), for i = 0; 1; : : : ; n, andfM = maxi f fi gn0 ; fm = mini f fi gn0 (4.12)88



Figure 4.1: The initial simplex in IR2 The initial simplex in IR3the 
orresponding verti
es being PM and Pm, of position ve
tors xM and xm, respe
-tively. With the foregoing information, we now seek a new simplex, by repla
ing theworst vertex PM of the 
urrent simplex by a new one, Pn+1, of position ve
tor xn+1.The new vertex is found by means of a re
e
tion of PM about the 
entroid P , ofposition ve
tor x, of all the simplex verti
es, ex
ept for PM , namely,x = 1n nXi=0; i6=M xi (4.13)Let, moreover, � > 0 be the user-pres
ribed re
e
tion 
oeÆ
ient, whi
h is used tode�ne the new vertex a distan
e �kx�xMk from the 
entroid P , the position ve
torxn+1 of the new vertex thus beingxn+1 = x+ �(x� xM) (4.14)The e�e
t will be that Pn+1 will lie the farthest from the worst vertex PM , andhen
e, the new vertex is very likely to be the best of all the verti
es of the new simplex,fPi gn+1i=0; i6=M . An unlikely, although quite possible s
enario, is that fn+1 = fM , andhen
e, no gain will be made by de�ning the new simplex. In this 
ase, we 
an de�nethe new vertex in one of two possible ways:1. PM is preserved, the reje
ted vertex being PM 0, whi
h is the next worst vertex,i.e., with the subs
ript M 0 de�ned su
h thatfM 0 = maxi f fi gni=0; i6=M (4.15)89



2. Alternatively, rede�ne �|make it either larger or smaller|while reje
tingalways the same worst vertex PM .ExpansionIf the out
ome of the re
e
tion stage yields fn+1 � f(xn+1) < fm, then the dire
tionde�ned by the ve
tor di�eren
e xn+1�x is very likely to point towards the minimum,and hen
e, it may be advisable to pla
e a new vertex Pe away from P in the saiddire
tion, i.e., by de�ning the position ve
tor xe of the new vertex Pe in the formxe = x+ 
(xn+1 � x) (4.16)
 > 1, for expansion.Now, there are two possible out
omes:� If fe � f(xe) < f(xm), then repla
e PM by Pe and start a new re
e
tion;� if fe > f(xm), then the expansion failed, and the new simplex obtained by there
e
tion, with PM repla
ed by Pn+1, is kept, and a new re
e
tion is started.The alternative out
ome of the re
e
tion is des
ribed below.Contra
tionIf fn+1 > fi � f(xi), for i = 0; 1; : : : ;M � 1;M + 1; : : : ; n, and fn+1 < fM , then werepla
e PM by Pn+1. In this 
ase, we de�ne a new vertex P
, of position ve
tor x
,a distan
e �kxM � xk from P , with 0 � � � 1. That is,x
 = x + �(xM � x) (4.17)whi
h 
an be readily proven to yield a P
 lying between PM and P , for x
 has beende�ned as a 
onvex 
ombination2 of x
 and x. Now,� If f
 � f(x
) > fM , then no vertex of the simplex is 
hanged, and we keep thenew vertex with Pn+1, as obtained in the re
e
tion operation;� if f
 < minffM ; fn+1g, then PM is repla
ed by P
, a new simplex thus beingobtained, and a new re
e
tion operation is started;2See Se
tion 5.4 for a de�nition of this term.90



� if f
 > minffM ; fn+1g, then the 
ontra
tion failed, in whi
h 
ase Pi is repla
edby P i, of position ve
tor xi, halfway between Pi and Pm, i.e.,xi = 12(xi + xm) (4.18)thereby de�ning a new simplex, and a new re
e
tion is started.Convergen
e 
riterionThe method 
onverges when the rms value frms of the obje
tive fun
tion is smallerthan a pres
ribed toleran
e �, i.e., whenvuut 1n+ 1 n+1X1 jfi � f j2 < � (4.19)where (i) a relabelling of the verti
es has been assumed, with the order f1 � f2 �: : : � fn+1 and (ii) f is the mean value of the obje
tive fun
tion evaluated at all theverti
es of the 
urrent 
omplex, i.e.,f � 1n + 1 n+1X1 fi (4.20)4.5 Gradient Methods4.5.1 The Method of Steepest Des
ent (Cau
hy)Algorithm:1. Pi
k up an initial guess x1 to start the iterations. Set the iteration
ounter i at i = 12. Define the ith sear
h dire
tion si assi = �rf jx=xi (4.21)3. Define the next test point, xi+1, asxi+1 = xi + �si = xi � �rf ��x = xi (4.22)To find �, 
ondu
t a one-dimensional sear
h along the dire
tion siso that �opt is the value of � that minimizes F (�) = f(xi��rf jx=xi)91



4. If xi+1 satisfies the 
onvergen
e 
riteria adopted at the outset,stop; else, go to step 5.5. Update the iteration 
ounter: i + 1  i. Go to step 2.Convergen
e 
riteria: Use one or more of those appli
able, namely,jf(xi+1)� f(xi)j � �1jf(xi)j (4.23a)krf jx=xi k � �2 (4.23b)kxi+1 � xik � �3 (4.23
)Remark: In 
riteria (4.23b & 
), any norm 
an be used ) Use the most e
onomi
one, i.e., the Chebyshev or maximum norm.4.5.2 The Conjugate-Gradient Method (Flet
her-Reeves)We use here the 
on
ept of A-
onjuga
y introdu
ed in Subse
tion 4.4.2, for a sym-metri
, positive-de�nite A.Preliminary Remarks:� The 
onjugate-gradient method of Flet
her-Reeves (FR method) is aimed atminimizing a C2-
ontinuous fun
tion f(x) under no 
onstraints.� The FR method works on the 
on
ept of sequential quadrati
 programming(SQP).� The FR method is based on the quadrati
 approximation of f(x): It is assumedthat f(x) = 12xTAx+ bTx + f0 +HOT (4.24)where HOT stands for higher-order terms� It is assumed that A in eq.(4.24) is positive-de�niteAlgorithm Overview: The FR algorithm works on the base of two items:� A sear
h dire
tion si at ea
h iteration, and� a step of optimum length �� in dire
tion si that minimizes f in that dire
tion92



Begin with an initial guess x1Next, a sear
h dire
tion s1 is de�ned in the dire
tion of steepest des
ent of f(x), i.e.,along �rf at x1, namely, s1 � �rf jx=x1 (4.25)Further, a new iterate, x2 is sought along the above dire
tion, from the 
urrentiterate x1: x2 � x1 + �s1 (4.26)where � is a real number, as yet to be determined. This is done by imposing thatrf , when evaluated at x = x2, be normal to s1, i.e.,(rf ��x=x2)T s1 = 0 (4.27)Now susbtitute x2 as given by eq.(4.26) and the quadrati
 approximation of f(x)into eq.(4.27), to obtain, with rf � Ax+ b,[A(x1 + �s1| {z }x2 ) + b℄T s1 = 0 (4.28)when
e the optimum value of �, ��, is readily derived:�� = �(Ax1 + b)T s1(s1)TAs1 � �(s1)Trf jx=x1(s1)TAs1 (4.29)where, from the assumed positive-de�niteness of A,(s1)TAs1 > 0and hen
e, s1 
an be expressed, upon re
alling eq.(4.26), ass1 = 1�� (x2 � x1) (4.30)The new sear
h dire
tion, s2, is de�ned as a linear 
ombination of s1 and �rf jx=x2 ,i.e., s2 � �rf ��x=x2 + �2s1 (4.31)where �2 is 
hosen so as to make s2 
onjugate to s1 with respe
t to A:(s1)TAs2 = 0 ) (s1)TA(�rf jx=x2 + �2s1) = 0or (�rf jx=x2 + �2s1)TAs1 = 0 (4.32)93



Re
all eq.(4.30) and substitute that expression into eq.(4.32), to obtain(�rf jx=x2 + �2s1)TA � 1�� (x2 � x1)� = 0 (4.33)Next, we �nd an expression for the di�eren
e x2 � x1 in terms of the gradients atx1 and x2. Indeed, re
alling the quadrati
 approximation, eq.(4.24),rf jx=x2 �rf jx=x1 � Ax2 � b� (Ax1 � b) = A(x2 � x1) (4.34)Substitute expression (4.34) into eq.(4.33), after 
learing the denominator:(�rf jx=x2 + �2s1)T (rf jx=x2 �rf jx=x1 ) = 0 (4.35)Upon expansion,�(rf jx=x2 )Trf jx=x2+(rf jx=x1| {z }�s1 )Trf jx=x2| {z }0 +�2 (rf jx=x2 )T s1| {z }0 ��2(rf jx=x1 )T s1 = 0where we have re
alled eqs.(4.25) and (4.27). Hen
e, the above equation simpli�esto (rf jx=x2 )Trf jx=x2 + �2(rf jx=x1 )T s1|{z}�rfjx=x2 = 0when
e we 
an solve for �2 as�2 = (rf jx=x2 )Trf jx=x2(rf jx=x1 )T s1 � (rf jx=x2 )Trf jx=x2(rf jx=x1 )Trf jx=x1or �2 = krf jx=x2 k2krf jx=x1 k2 (4.36)A third sear
h dire
tion s3 is now de�ned as a linear 
ombination of s2 and�rf jx=x3 :s3 = �rf jx=x3 + �3s2 (4.37)Now impose the 
onjuga
y 
ondition (4.6):(s2)TAs3 = 0 ) �3 = (rf jx=x3 )Trf jx=x3(rf jx=x2 )trf jx=x2 = krf jx=x3 k2krf jx=x2 k2 (4.38)In general, we havesi = �rf jx=xi + �isi; �i = krf jx=xi k2krf jx=xi�1 k2 ; i = 2; 3; ; : : : (4.39)The pro
edure stops when krf jx=xi k < �, for a user-pres
ribed toleran
e �, whi
hindi
ates that the normality 
ondition (4.2a) has been satis�ed.94



Summary of the Flet
her-Reeves Algorithm1. Choose an initial guess x12. Let s1 = �rf jx=x13. Let x2 = x1 + ��s1 (4.40)where �� is the value of � that makes (s1)Trf jx=x2 = 04. Let i = 25. Let si = �rf jx=xi + krf jx=xi k2krf jx=xi�1 k2 si�16. Find the value of �, ��, that makes (si)Trf jx=xi+1 = 0. Then,xi+1 = xi + ��si7. If krf jx=xi+1 k < �, stop; else i i + 1 and go to step 54.5.3 Quasi-Newton MethodsAs we will see in Se
tion 4.6, Newton methods rely on the normality 
onditions,whi
h lead to a determined system of n nonlinear equations in n unknowns. Inapplying those methods it is assumed that the Hessian of the obje
tive fun
tion,whi
h is the Ja
obian � of the Newton-Raphson method, is available, and hen
e,the Hessian 
an be used to update the iterations. Quasi-Newton methods repla
ethe update �x = ���10 �0 of eq.(3.80) by an expression that a) does not relyon the Hessian, but only on the gradient of the obje
tive fun
tion and b) doesnot require any matrix inversion. These features make quasi-Newton methods quiteattra
tive, and many times, preferable over Newton methods. The two quasi-Newtonmethods outlined below di�er only in the form in whi
h the update of the solution is
omputed. These two methods aim at �nding an approximation to (rrf)�1 usingonly information on rf .Moreover, while the Newton-Raphson method is known to have a quadrati
 
on-vergen
e rate, quasi-Newton methods show a 
onvergen
e rate that lies betweengradient methods and Newton methods. That is, quasi-Newton methods have asuperlinear 
onvergen
e rate. 95



The Davidon-Flet
her-Powell MethodThe method is summarized below:Algorithm1. Give an initial guess: x02. Define an initial sear
h dire
tion: s0 = �rf jx=x03. Define an initial Hessian-inverse: B0 = 1, the n�n identity matrix4. Find �i that minimizes3 f(xi+1). Then, letxi+1 = xi � �iBirf jx=xi5. gi = rf jx=xi+1 �rf jx=xi6. Mi = �i si(si)T(si)Tgi ; Ni = �Bigi(Bigi)T(gi)TBigi ; Bi+1 = Bi +Mi +Ni7. si+1 = Bi+1gi8. if 
onvergen
e 
riterion rea
hed, stop; else, go to 4The Broyden-Flet
her-Goldfarb-Shanno MethodThis is an improved DFP method, but still with superlinear 
onvergen
e. Onlydi�eren
e with the DFP Algorithm lies in step 6, whi
h is repla
ed by:M0i = �i si(si)T(si)Tgi ; �i = 1 + (gi)TBigi(si)TgiN0i = �si(gi)TBi(si)TgiBi+1 = Bi +M0i +N0i + (N0i)T3In this step, any of the methods studied in Chapter 2 
an be applied. A thorough dis
ussionof univariable minimization is available in (Brent, 1972).96



4.6 Newton Methods4.6.1 The Newton-Raphson MethodHere, we resort to the normality 
ondition (4.2a), and let�(x) � rfthe normality 
ondition thus leading to a system of n nonlinear equations in nunknowns of the form of eq.(3.75), repeated below for qui
fk referen
e:�(x) = 0whi
h 
an be solved using the Newton-Raphson method be
ause, by assumption,se
ond-order derivatives of the obje
tive fun
tion are available, and hen
e, the Ja-
obian � of �(x) with respe
t to x is nothing but the Hessian matrox of f(x),i.e., � = rrfThis method, while o�ering a quadrati
 
onvergen
e, is not as favoured as methods ofthe gradient type, mostly be
ause of the 
ost of solving a system of linear equations,namely, eq.(3.79) at ea
h iteration.4.6.2 The Levenberg-Marquardt MethodThe Levenberg-Marquardt method aims at enhan
ing the robustness of the Newton-Raphson method, when the Hessian be
omes ill-
onditioned, by adding to the Hes-sian, whi
h is assumed positive-de�nite, a symmetri
, isotropi
 matrix �1, where� > 0 and 1 is the n� n identity matrix:rrf  rrf + �1 (4.41)Noti
e that the eigenvalues4 of rrf , denoted by f�i gn1 , and those of rrf , denotedby f�i gn1 , are related by �i = �i + �; i = 1; 2; : : : ; nIf we denote by � the 2-norm 
ondition number of rrf and by � that of rrf , wehave � = �M�m ; � = �M + ��m + � (4.42)4By virtue of the assumed positive-de�niteness of the Hessian, its eigenvalues are identi
al totheir singular values. 97



the result being that � < �, and hen
e, the numeri
al behaviour of the Hessian isstabilized.
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Chapter 5Equality-ConstrainedOptimization:Normality Conditions
5.1 Introdu
tionIn this 
hapter we solve the simplest 
lass of 
onstrained-optimization problems,namely, those subje
t to equality 
onstraints. The problem statement at hand isf(x) ! minx (5.1a)subje
t to h(x) = 0l (5.1b)where h is a smooth1 l-dimensional ve
tor fun
tion of the n-dimensional ve
torargument x, 0l denoting the l-dimensional zero ve
tor. Moreover, l < n, for ann-dimensional design ve
tor x.The main out
ome is the derivation of the normality 
onditions of the problemsat hand. We derive these in two forms: (i) the dire
t form, in terms of the gradientsof the obje
tive fun
tion f(x) to be minimized and of the 
onstraints (5.1b); and(ii) the dual form, in terms of an orthogonal 
omplement of the gradient of h withrespe
t to x.As a spe
ial 
ase, that lends itself to a 
losed-form solution, we study minimum-norm problems, whereby a weighted Eu
lidean norm of the design ve
tor is to be1Smoothness implies that h(x) is 
ontinuous and has a 
ontinuous gradient with respe
t to x.99



minimized subje
t to l linear equality 
onstraints. In this vein, we introdu
e theright Moore-Penrose generalized inverse.5.2 The First-Order Normality Conditions5.2.1 The Primal FormWe now derive the normality 
onditions of problem (5.1a) in primal form. To thisend, we resort to Lagrange multipliers �1; �2, : : :, �l, one for ea
h s
alar 
onstrainthi(x) = 0, and group them in the l-dimensional array �. Upon adjoining the l
onstraints to the obje
tive fun
tion f(x), we obtain the Lagrangian F (x;�) thatwe aim at minimizing under no 
onstraints, while 
hoosing � in su
h a way that thel equality 
onstraints are satis�ed. That is,F (x;�) � f(x) + �Th ! minx; � (5.2)subje
t to no 
onstraints. We thus have transformed the equality-
onstrained min-imization problem into an un
onstrained one. We derive now the normality 
on-ditions of the problem at hand by re
alling those of Chapter 2, requiring that a)the gradient of the obje
tive fun
tion with respe
t to the design variables vanishand b) the Hessian of the obje
tive fun
tion with respe
t to the same variables bepositive-de�nite. However, note that we now have l additional variables besides theoriginal n design variables. We thus have to augment the design-variable ve
tor
orrespondingly, whi
h we do by de�ning an augmented (n+ l)-dimensional designve
tor y: y � � x� � (5.3)Therefore, the un
onstrained minimization problem (5.2) 
an be formulated ina more 
ompa
t form, namely, F (y) ! miny (5.4)subje
t to no 
onstraints. The �rst-order normality 
onditions of the above problemare, thus, �F�y = � �F=�x�F=�� � = 0n+l (5.5a)100



where 0n+l denotes the (n+ l)-dimensional zero ve
tor. Upon expansion, the aboveequation yields �F�x = 0n (5.5b)�F�� = 0l (5.5
)To gain insight into the geometri
 signi�
an
e of the foregoing normality 
ondi-tions, we expand the left-hand side of eq.(5.5b) 
omponentwise:�F�x1 � �f�x1 + �1�h1�x1 + �2�h2�x1 + � � �+ �l �hl�x1 = 0�F�x2 � �f�x2 + �1�h1�x2 + �2�h2�x2 + � � �+ �l �hl�x2 = 0...�F�xn � �f�xn|{z}rf +�1 �h1�xn + �2 �h2�xn + � � �+ �l �hl�xn = 0 (5.6)where the the �rst term of the ith equation 
an be readily identi�ed as the ith
omponent of rf = �f=�x. The remaining terms of the same equation 
an beidenti�ed as the ith 
omponent of an inner produ
t pi de�ned aspi � [ �h1=�xi �h2=�xi � � � �hl=�xi ℄26664�1�2...�l
37775Therefore, if we let p = h p1 p2 : : : pn iT , thenp = 26664 �h1=�x1 �h2=�x1 � � � �hl=�x1�h1=�x2 �h2=�x2 � � � �hl=�x2... ... . . . ...�h1=�xn �h2=�xn � � � �hl=�xn

37775| {z }(rh)T : n�l
26664�1�2...�l

37775| {z }� (5.7)
whi
h 
an be readily identi�ed, in turn, as the produ
t (rh)T�. The �rst n nor-mality 
onditions, displayed in eq.(5.5b), thus amount torf + JT� = 0n (5.8a)101



where J � rh is the gradient of h with respe
t to x. The remaining l normal-ity 
onditions, displayed in eq.(5.5
), yield nothing but the 
onstraints themselves,namely h(x) = 0l (5.8b)Equation (5.8a) is the ve
tor representation of the �rst-order normality 
onditions(FONC) sought. What eq.(5.8a) represents has a geometri
 signi�
an
e that will bemade apparent upon rewriting it in the alternative formJT� = �rf (5.9)The foregoing equation states that, at a stationary point x0, �rf , or rf for thatmatter, lies in the range of the transpose of the gradient of the 
onstraints. Noti
ethat the range J 0 of JT is a subspa
e of the n-dimensional spa
e of design variables.In fa
t, dim[R(JT )℄ = l < n, for this subspa
e is spanned by l linearly independentve
tors, the 
olumns of JT , or the n-dimensional rows of J.Algebrai
ally, what eq.(5.9) represents is an overdetermined system of n linearequations in the l < n unknowns f�i gl1. The normality 
ondition then states thatthe least-square approximation of this overdetermined system yields a zero error.That is, at a stationary point, the n (> l) equations (5.9) be
ome all 
onsistent. Notethat the least-square approximation �0 of the foregoing equations 
an be expressedin terms of the left Moore-Penrose generalized inverse of JT , namely,�0 = �(JJT )�1Jrf (5.10)The least-square error e0 of this approximation is thuse0 = JT�0 � (�rf) = �JT (JJT )�1Jrf +rf = [1� JT (JJT )�1J℄rf (5.11)with 1 denoting the n� n identity matrix.We 
an now express the �rst-order normality 
ondition (5.9) in yet one morealternative form: [1� JT (JJT )�1J℄rf = 0n (5.12)The matrix inside the bra
kets in the foregoing equation 
an be readily identi�edas a proje
tor. This proje
tor maps ve
tors in Rn onto the nullspa
e of J. Inother words, at a stationary point P0 the gradient of the obje
tive fun
tion need notvanish; only its proje
tion onto the nullspa
e of the gradient of the 
onstraints mustvanish, whi
h is an alternative form of stating the �rst-order normality 
ondition.Sometimes the produ
t rf , de�ned asrf � [1� JT (JJT )�1J℄rf 2 Rn (5.13)102



is referred to as the 
onstrained gradient. The FONC (5.12) 
an then be simplystated as: At a stationary of the equality-
onstrained problem (5.1a & b), the 
on-strained gradient vanishes.Exer
ise 5.2.1Prove that P � 1� JT (JJT )�1J (5.14)indeed maps ve
tors in Rn onto the nullspa
e of J and that P is a proje
tor.5.2.2 The Dual FormOne more form of the FONC of the problem at hand is now derived in what we 
anterm dual form. To this end, we realize that the solution sought x0 must lie in asubset of the spa
e Rn of design variables, of redu
ed dimension n�l, whi
h 
ontainsall design ve
tors x satisfying the 
onstraints. Now, this set need not be a ve
torspa
e, and in general it is not. Indeed, if the 
onstraints are nonlinear, then the sumof two distin
t ve
tors x1 and x2 will most likely not satisfy the 
onstraints, evenif these two designs do so independently. Neither need the zero ve
tor satisfy the
onstraints, whi
h thus disquali�es the set from being a subspa
e of Rn . What wehave as a feasible subset of the design spa
e is a manifold F , i.e., a smooth surfa
eembedded in Rn . We shall term this subset the feasible manifold.Finding F may be a tremendous task when the 
onstraints are nonlinear andalgebrai
ally 
ompli
ated. The good news is that we do not a
tually need the feasiblemanifold to obtain a feasible solution. What we really need is a feasible subspa
etangent to the said manifold at a feasible point. We dis
uss below how to obtainthis subspa
e. Assume that we have a feasible point PF , of position ve
tor xF , i.e.,h(xF ) = 0l (5.15)An arbitrary \move" �x from xF will most likely take PF away from the 
onstraintsh(x) = 0l. What we would like to �nd is a feasible move, i.e., a ve
tor �xF su
hthat xF +�xF still veri�es the 
onstraints, i.e.,h(xF +�xF ) = h(xF ) + J(xF )�xF +HOT = 0l (5.16)Sin
e we assumed at the outset that xF is feasible, eq.(5.15), we have, from theforegoing equation and to a �rst-order approximation, i.e., negle
ting HOT,J(xF )�xF = 0l (5.17)103



Moreover, J is of l� n, with l < n, and hen
e, it is possible to �nd n� l linearlyindependent ve
tors of Rn lying in N (J(xF )), i.e., in the nullspa
e of J(xF ). Theseve
tors 
an be produ
ed in many ways. We will not dwell, for the time being, in thepertinent 
omputing methods, but rather on the 
on
epts behind the produ
tionof those n � l ve
tors. Let us thus assume that we have found su
h n � l linearlyindependent ve
tors, arrayed in the n� n0 matrix L, with n0 � n� l, and hen
e,JL = Oln0 (5.18)matrix L being termed an orthogonal 
omplement of J and Oln0 denoting the l� n0zero matrix.Now, if we de�ne �xF = L�u (5.19a)for arbitrary �u 2 Rn0 , we will haveJ�xF = JL�u = 0n0 (5.19b)the \move" �xF thus verifying the 
onstraints to a �rst degree. Now, the �rst-ordernormality 
ondition of the problem at hand 
an be 
ast in the form�f � (rf)T�xF = (rf)TL�u = (LTrf)T�u = 0 8 �uHen
e, the alternative form of the FONC isLTrf = 0n0 (5.20)That is, at a stationary point, the gradient of f need not vanish; it must lie in thenullspa
e of LT , i.e., in the range of L. We 
an thus 
all LTrf the feasible gradient,and represent it by ruf , i.e., ruf = LTrf (5.21)whi
h is a (n � l)-dimensional ve
tor. Noti
e that, from eq.(5.19a), L has thedi�erential interpretation L = �x�u (5.22)and hen
e, the FONC (5.20) 
an be restated as��x�u�T ��f�x� � �f�u = 0n0 or ruf = 0n0 (5.23)104



That is, the FONC (5.23) states that, at a stationary point of problem (5.1a & b),the gradient of f(x) with respe
t to the ve
tor of independent design variables uvanishes.Remark: When 
omparing the two forms of the FONC, eqs.(5.12) and (5.20),the simpli
ity of the latter with respe
t to the former is apparent. This simpli
-ity, however, is more than formal, for eq.(5.12) involves n s
alar equations, whileeq.(5.20) involves only n� l s
alar equations.5.3 The Se
ond-Order Normality Conditions5.3.1 The Primal FormThe se
ond-order normality 
onditions (SONC) of the problem at hand require thatthe Hessian of the Lagrangian F (x;�) with respe
t to the (n+ l)-dimensional aug-mented design-variable ve
tor � � [xT �T ℄T be positive-de�nite. The said Hessiantakes the form �2F��2 � F = �rrf + �(JT�)=�x JTJ Ol � (5.24)where, as usual, rrf represents the Hessian of f(x) with respe
t to x, and Oldenotes the l � l zero matrix. Noti
e that 
omputing the above Hessian requiresthe 
omputation of rrf and �(JT�)=�x, whi
h involves the se
ond derivatives ofh(x) with respe
t to x. Moreover, in order to verify the se
ond-order normality
onditions, the n+ l eigenvalues of �2F=��2 must be 
omputed. We 
an now statethe SONC in primal form: A stationary point x0(i) is a lo
al minimum if and only if F(x0) is positive-de�nite;(ii) is a lo
al maximum if and only if F(x0) is negative-de�nite;(iii) is a saddle point if and only if F(x0) is sign-inde�nite.Thus, the se
ond-order normality 
onditions in primal form are extremely 
ostly toverify.5.3.2 The Dual FormAlternatively, we resort to the form (5.19a) of �xF and assume that we have founda stationary point verifying eq.(5.20). Upon expansion of f(xF + �xF ) to se
ond105



order, we obtain�f = f(xF +�xF )� f(xF ) � (rf jx=x0)T�xF + 12(�xF )Trrf ����x=x0 �xFwhi
h must be positive if the 
urrent value x0 is a minimum. Thus, upon substitutingeq.(5.19a) into the above expression, we obtain�f � (rf jx=x0)TL�u + 12�uTLTrrf ����x=x0 L�u > 0Now, sin
e we have assumed that the FONC holds at the stationary point x0,eq.(5.20) holds, and hen
e, (rf jx=x0)TL�u = 0the se
ond-order normality 
ondition thus be
oming�uTLTrrf ��x=x0 L�u > 0 8 �u (5.25)We term the produ
t LTrrf ��x=x0 L the feasible Hessian of f . That is, a stationarypoint x0 is a lo
al minimum if its feasible Hessian is positive-de�nite. As a 
onse-quen
e, then, at a minimum, the Hessian itself need not be positive-de�nite, but itsfeasible 
omponent must be. This 
onstitutes the dual form of the SONC.We 
an now represent the (n� l)� (n� l) feasible Hessian asruruf � LTrrfL = ��x�u�T (rrf) �x�u (5.26)the SONC thus lending themselves to a more straightforward interpretation:A stationary point x0 of problem (5.1a & b) is a minimum i� the Hessian off(x) with respe
t to the independent design-variable ve
tor u is positive-de�nite.Remark: At a minimum, the Hessian of f with respe
t to x need not be positive-de�nite. However, if rrf is positive-de�nite, then ruruf is ne
essarily positive-de�nite as well.Example 5.3.1 (The Design of a Positioning Robot for a Given Rea
h)In designing the manipulator of Fig. 5.1 (Angeles, 2002), we want to �nd the valueof the length a that will produ
e the rea
h of a Puma 560 robot, namely, 0.8772 m.It is apparent that the maximum rea
h is independent of �1, the angle of rotationof the �rst joint, for motions about the �rst joint do not a�e
t the rea
h. So, we lo
kthe �rst joint and, in the posture of Fig. 5.1, rotate the third joint through one full106



Figure 5.1: Manipulator 
on�guration for C(0; a; 0).turn, point C thus des
ribing a 
ir
le C of radius a lying in the Y1-Z1 plane, with
entre at point O03 of 
oordinates (0; a; �a). Next, upon performing a full rotationof the se
ond joint, the 
ir
le des
ribes a toroid of axis Z2, the problem now redu
ingto one of �nding the point of the surfa
e of the toroid lying the farthest from the Z1axis. Figure 5.2 in
ludes side views of 
ir
le C.Let the tra
e of the toroid with the X2-Z2 plane be the 
ontour T of Fig. 5.3.It is most 
onvenient to represent this 
ontour with the aid of the non-dimensionalvariables u and v, whi
h are de�ned asu � x2a ; v � z2a (5.27)In terms of these new variables, the equation of T be
omesT : h(u; v) � (u2 + v2)(u2 + v2 � 4v)� 4(u2 � v2 � 1) = 0 (5.28)The 
ontour T de�ned by the impli
it fun
tion h(u; v) = 0 is displayed in Fig. 5.3.Now, the maximum distan
e rM of O1 to T 
an be found as the solution of the107



Figure 5.2: Side views of 
ir
le C: (a) and (b) at the position of Fig. 5.1; and (
) atan arbitrary position for a given value of �2optimization problem de�ned below:f(u; v) � 12[(u+ 1)2 + v2℄ ! maxu;v (5.29)subje
t to eq.(5.28). We thus have an equality-
onstrained maximization problem.In order to �nd the normality 
onditions of this problem, we resort to Lagrangemultipliers, thus de�ning a new, un
onstrained, maximization problem:F (u; v; �) � f + �h ! maxu;v;� (5.30)The normality 
onditions of the foregoing problem are, thus,�F�u � u+ 1 + 4�u(u2 + v2 � 2v � 2) = 0 (5.31a)�F�v � v + 4�(v � 1)(u2 + v2 � 2v) = 0 (5.31b)�F�� � (u2 + v2)((u2 + v2 � 4v)� 4((u2 � v2 � 1) = 0 (5.31
)the last equation being just a restatement of the 
onstraint, eq.(5.28). Now we elim-inate �, the Lagrange multiplier, dialyti
ally (Salmon, 1964) from eqs.(5.31a & b).We do this by rewriting these two equations in linear homogeneous form in the\variables" � and 1, namely,� 4u(u2 + v2 � 2v � 2) u+ 14(v � 1)(u2 + v2 � 2v) v � ��1 � = � 00 � (5.32a)108



Obviously, the foregoing equation requires a nontrivial solution|note that one 
om-ponent of the ve
tor of \unknowns" is unity!|whi
h in turn requires that the 
oef-�
ient matrix be singular, i.e.,det � 4u(u2 + v2 � 2v � 2) u+ 14(v � 1)(u2 + v2 � 2v) v � = 0 (5.32b)Upon expansion,4u(u2 + v2 � 2v � 2)v � 4(v � 1)(u2 + v2 � 2v)(u+ 1) = 0or S : (u2 + v2 � 2v � 2)(u� v + 1)� 2uv = 0 (5.32
)

T T

Figure 5.3: Contour of the tra
e T of the toroid on the u-v planeNow, the maximum rea
h is found via the solution of the system of polynomialequations (5.28) and (5.32
). The former is a quarti
 equation, the latter being109




ubi
. The Bezout number2 of the foregoing system of equations is de�ned as theprodu
t of the degrees of those equations, i.e., 4 � 3 = 12, whi
h gives an upperbound of 12 for the number of solutions, both real and imaginary, of the problem athand. One graphi
al means of obtaining estimates of the real solutions of this system
onsists in plotting the two 
orresponding 
ontours in the u-v plane, as shown inFig. 5.4. The maximum rea
h o

urs apparently, at point A, of 
oordinates (2:2; 1:4)estimated by inspe
tion, whi
h leads to a visual estimate of rM , namely,rm � 3:5a (5.33)The four interse
tions of these two 
urves 
orrespond to the four stationary valuesof the distan
e from a point in the tra
e T to the point O1 in the u-v plane. Of thesefour interse
tions, two are lo
al maxima and two lo
al minima. The normality ofrf , whi
h in this 
ase is identi
al to the ve
tor from O1 to T at the interse
tionpoints, is to be highlighted.The foregoing system is solved more pre
isely using 
omputer algebra, thus ob-taining the four real solutions given below:(u)A = 2:132242; (v)A = 1:148990(u)B = �1:578095; (v)B = 1:975316(u)C = �1:132242; (v)C = 0:116796(u)D = 1:025308; (v)D = 0:366325whi
h lead to rea
h values ofrA = 3:459606a; rB = 2:058171a; rC = 0:176435a; rD = 2:058171afor a global maximum rea
h of rM = 3:459606aThe value of a that will yield the foregoing maximum rea
h is thus found as3:460a = 0:8772 ) a = 0:2535 m2To de�ne the Bezout number of a system of p polynomial equations in p variables x1, x2,: : :, xp, we look �rst at the ith equation: A typi
al term of this equation involves the produ
txd1i1 xd2i2 � � �xdpip . The degree di of this equation is the maximum of d1i + d2i + : : : + dpi, fori = 1; : : : ; Ni, where Ni denotes the number of terms of the ith equation. The Bezout number NBof this system is de�ned as NB = d1d2 : : : dp. 110



T T
S

Figure 5.4: Plots of the two 
ontours, S and Tthereby 
ompleting the solution.The veri�
ation of the �rst- and se
ond-order normality 
onditions is left as anexer
ise.Example 5.3.2 (The Equilibrium Con�guration of a Four-Link Chain)We 
onsider here the problem of determining the equilibrium 
on�guration of a 
hain
omposed of four identi
al links of length L ea
h, suspended at two points lo
ated atthe same level, a distan
e d apart. This problem was proposed by Luenberger (1984)to illustrate methods of nonlinear programming. Here, we use a simpli�ed versionof this problem with the purpose of obtaining a solution by simple equation-solving.At the outset, we exploit the symmetry of the problem, whi
h enables us to redu
ethe number of design variables to only two, namely, the in
lination of the two linkson the left half of the 
hain. Let �i, for i = 1; 2, denote the angle made by the axisof the ith link from the verti
al and � denote the mass distribution per unit length,111



while g represents the gravity a

eleration. The potential energy V of the whole 
hainis, thus, for an arbitrary 
on�guration of the 
hain,V (�1; �2) = �2�gL�12 
os �1 + 
os �1 + 12 
os �2�whi
h is a minimum at an equilibrium 
on�guration. However, noti
e that the twodesign variables are not independent, for their horizontal span must be exa
tly d=2,i.e., L(sin �1 + sin �2)� d2 = 0The optimum design problem at hand now has the formf(�1; �2) � V�gL = �3 
os �1 � 
os �2 ! min�1;�2subje
t to h(�1; �2) = sin �1 + sin �2 � p = 0; p � d2LThe Lagrangian of the problem is to be minimized, i.e.,F (�1; �2) = �3 
os �1 � 
os �2 + �(sin �1 + sin �2 � p) ! min�1;�2;�subje
t to no 
onstraints. The normality 
onditions of the un
onstrained problemare, thus �F��1 = 3 sin �1 + � 
os �1 = 0�F��2 = sin �2 + � 
os �2 = 0�F�� = sin �1 + sin �2 � p = 0The problem has thus been redu
ed to solving the foregoing system of three nonlinearequations in three unknowns, �1, �2 and �. While this nonlinear system 
an besolved using the Newton-Raphson method, the simpli
ity of the equations lends itselfto a more 
omprehensive approa
h. Indeed, the Newton-Raphson method yields onesingle solution at a time, the user never knowing whether any other solutions exist.Moreover, there is no guarantee that the solution found is a minimum and not amaximum or a saddle point.For starters, we 
an eliminate � from the above equations, for it appears linearlyin the �rst two of those. We thus rewrite those two equations in the formAx = 02112



with 02 denoting the two-dimensional zero ve
tor, while A and x are de�ned asA � � 
os �1 3 sin �1
os �2 sin �2 � ; x � ��1 � 6= 02Sin
e the solution sought 
annot be zero, the above homogeneous system must admita nontrivial solution, whi
h 
alls for A to be singular, i.e.,�(�1; �2) � det(A) = 0Upon expansion, �(�1; �2) = 
os �1 sin �2 � 3 sin �1 
os �2 = 0whi
h we shall 
all the redu
ed normality 
ondition. We thus have eliminated �dialyti
ally (Salmon, 1964), the problem thus redu
ing to a system of two equationsin two unknowns, h(�1; �2) = 0 and �(�1; �2) = 0. We 
an further redu
e thesame system to one single equation in one single unknown, whi
h 
an be done bydialyti
 elimination as well. However, noti
e that dialyti
 elimination is appli
able tosystems of polynomial equations, while the two equations at hand are not polynomial;they are trigonometri
. Nevertheless, by appli
ation of the well-known trigonometri
\half-tan" identities:
os x � 1� T 21 + T 2 ; sin x � 2T1 + T 2 ; T � tan�x2�the two equations 
an be transformed into polynomial equations. We will not pursuehere this elimination pro
edure. Instead, we plot the two foregoing fun
tions inthe �1-�2 plane, the solutions sought being found visually at the interse
tion of the
orresponding 
ontours. In order to plot the 
ontours, however, we must assign anumeri
al value to parameter p. By assuming d = 1:25 m and L = 0:5 m, we obtainp = 1:25. These 
ontours are plotted in Fig. 5.5.The 
ontours apparently interse
t at two points, of 
oordinates estimated visuallyat �1 = 0:45; �2 = 1:00 and �1 = 2:70; �2 = 2:20with all values in radians. These values are quite rough. Better values 
an be ob-tained by means of Newton-Raphson's method applied to the two nonlinear equations,using the foregoing estimates as initial guesses. Alternatively, the two equations 
anbe solved dialyti
ally by means of 
omputer algebra. For example, upon invokingMaple's \solve" pro
edure, the real roots below were reported:�1 = 0:4449420670; �2 = 0:9607027573 and �1 = 2:696650587; �2 = 2:180889896113
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Figure 5.5: The redu
ed normality 
ondition and the equality 
onstraint (dashed
ontour)Translated into degrees, the foregoing angles read:�1 = 25:49330256Æ; �2 = 55:04421335Æ and �1 = 154:5066974Æ; �2 = 124:9557866ÆThe �rst solution 
orresponds, apparently, to a minimum, the se
ond to a maximum.If this is the 
ase, then the sum of the 
orresponding roots for the two solutions shouldbe �, whi
h is the 
ase. Moreover, upon evaluation of the obje
tive fun
tion at thetwo solutions, we obtainf(0:4449420670; 0:9607027573) = �1:640425478f(2:696650587; 2:180889896) = 1:640425479whi
h 
learly shows that the �rst solution is a maximum, the se
ond a minimum.Noti
e the symmetry of the obje
tive fun
tion at the two foregoing extrema.The �rst- and se
ond-order normality 
onditions should be veri�ed numeri
ally.The 
hain at its equilibrium 
on�guration is displayed in Fig. 5.6.114



Figure 5.6: The equilibrium 
on�guration of a four-link 
hain5.4 Linear-Quadrati
 Problems5.4.1 The Minimum-Norm Solution of Underdetermined Sys-temsWe start by re
alling a 
on
ept of paramount importan
e in optimization:De�nition 5.4.1 (Convex set) A set of points C is 
onvex if, given any two dis-tin
t points P1 and P2 of the set, then any point P of C 
omprised between P1 andP2 also belongs to the set. Otherwise, the set is non
onvex.More formally, if xi denotes the position ve
tor of Pi, for i = 1; 2, and x that of P ,then, for any s
alar � 
omprised in the interval [ 0; 1 ℄, we 
an express the positionve
tor of P as a 
onvex 
ombination of those of P1 and P2, namely,x = �x1 + (1� �)x2; 0 � � � 1 (5.34)We 
an thus rephrase the de�nition of 
onvex set asDe�nition 5.4.2 (Convex set|An alternative de�nition) A set of points Cis 
onvex if, given any two distin
t points of position ve
tors x1 and x2, then thepoint whose position ve
tor is a 
onvex 
ombination of x1 and x2 also belongs to C.Germane to the 
on
ept of 
onvex set is that de�ned below:De�nition 5.4.3 (
onvex fun
tion) A fun
tion f(x) is 
onvex if, for any x1 andx2, and a x de�ned as a 
onvex 
ombination of x1 and x2, and given, e.g., as in115



eq.(5.34), f(x) � �f(x1) + (1� �)f(x2) (5.35)Now we study the underdetermined system of linear equationsCx = d (5.36)where C is a p�n matrix with p < n, all equations being assumed linearly indepen-dent. Apparently, the system admits in�nitely-many solutions. Noti
e that the setof solutions of this equation does not form a ve
tor spa
e. Indeed, sin
e 0 is not asolution, the solution set does not in
lude the origin, whi
h disquali�es the set frombeing a ve
tor spa
e. However, the same set has a quite interesting property:Fa
t 5.4.1 The set of solutions of the system (5.36) is 
onvex.Proof : Assume that x1 and x2 are two distin
t solutions of eq.(5.36), i.e.,Cx1 = d (5.37a)Cx2 = d (5.37b)Now, for a real � su
h that 0 � � � 1, we haveC(�x1) = �d (5.38a)C[(1� �)x2℄ = (1� �)d (5.38b)Upon adding sidewise eqs.(5.38a & b), we obtainC[�x1 + (1� �)x2℄ = d (5.39)thereby 
ompleting the proof.Geometri
ally, eq.(5.36) represents a plane embedded in n-dimensional spa
e,o�set from the origin. Ea
h point of the plane thus has a position ve
tor that is asolution. Out of the in�nity of solutions satisfying the equation, then, there is onethat lies 
losest to the origin. This is the minimum-norm solution of eq.(5.36). Wederive below this solution upon solving the problem below:f(x) � 12kxk2 ! minx (5.40)116



subje
t to eq.(5.36). As before, we transform the above 
onstrained problem intoan un
onstrained one. We do this by means of Lagrange multipliers:F (x) � f(x) + �T (Cx� d) ! minx;� (5.41)subje
t to no 
onstraints. The normality 
onditions of this problem are, thus,�F�x � rf +CT� = x+CT� = 0n (5.42a)�F�� � Cx� d = 0p (5.42b)the se
ond set of the above equations thus being just a restatement of the systemof underdetermined equations (5.36). Solving for x from eq.(5.42a) yieldsx = �CT� (5.43a)whi
h, when substituted into eq.(5.42b), leads to�CCT�� d = 0p (5.43b)Sin
e we assumed at the outset that the given eqs.(5.36) are linearly-independent,C is of full rank, and hen
e, the p� p symmetri
 matrix is nonsingular. As a result,this matrix is, in fa
t, positive-de�nite, the out
ome being that eq.(5.43b) 
an besolved for � by means of the Cholesky de
omposition. The result is, symboli
ally,the minimum-norm solution x0 sought:x0 = Cyd (5.44a)where Cy = CT (CCT )�1 (5.44b)whi
h is the right Moore-Penrose generalized inverse of the re
tangular matrix C.One 
an see that the straightforward evaluation of Cy by its de�nition, eq. (5.44a),involves the inversion of a matrix produ
t, whi
h is 
omputationally 
ostly andprone to ill 
onditioning, similar to the 
ase of the left Moore-Penrose generalizedinverse of eq.(3.59b). Moreover, the solution of eq. (5.44a) does not hold when C isrank-de�
ient.An eÆ
ient and robust alternative to 
omputing expli
itly the right Moore-Penrose generalized inverse relies in Householder re
e
tions, as explained below:First, a set of n� n Householder re
e
tions3 H1, H2, . . . , Hp is de�ned, su
h that3See Subse
tion 3.5.2 117



the produ
t H = Hp � � �H2H1 transforms CT into upper-triangular form, therebyobtaining HCT = � UOn0p � (5.45)where U is a p � p upper-triangular matrix, whi
h is nonsingular be
ause we haveassumed that C is of full rank, while On0p is the n0� p zero matrix, with n0 � n� p.Further, we rewrite eq.(5.36) in the formCHTHx = d (5.46)whi
h does not alter the original equation (5.36) be
ause H is orthogonal. Lettingy = Hx, from eqs. (5.45) and (5.46), one 
an realize that x and y have the sameEu
lidean norm, and hen
e, minimizing the norm of y is equivalent to minimizingthat of x. Thus, x will be the minimum-norm solution of the underdeterminedsystem (5.36) if y is, 
orrespondingly, the minimum-norm solution of the system(HCT )Ty = d (5.47a)Upon substitution of eq.(5.45) into eq.(5.47a), we obtain, with a suitable partitioningof y, [UT OTn0p ℄ �yUyL � = d; y � �yUyL � (5.47b)whi
h, upon expansion, leads toUTyU +OTn0pyL = d (5.47
)when
e it is apparent that yL is undetermined, and hen
e, 
an be assigned anyvalue, while yU is determined be
ause we have assumed that C is of full rank, Uthus being nonsingular. If our intention is to minimize kxk or, equivalently, kyk,whose square is given by kyk2 = kyUk2 + kyLk2it is apparent that the optimum 
hoi
e of yL is yL = 0n0, with 0n0 denoting the (n�p)-dimensional zero ve
tor. Therefore, the minimum-norm solution y0 of eq.(5.47a)takes on the form: y0 = �U�Td0n0 � (5.48)i.e., the last (n � p) 
omponents of y0 are zero. In this way, y0 veri�es eq. (5.46)and has a minimum norm. Then, the minimum-norm solution x0 
an be readily
omputed as x0 = HTy0 (5.49)118



The Case of a Rank-De�
ient C MatrixIf C is rank-de�
ient, with rank(C) = r < p, then we 
an pro
eed as des
ribedabove with only r Householder re
e
tions, namely, H = HrHr�1 : : :H1, su
h thatHCT = �UO � ; y � Hx (5.50)where U is a full-rank r� p matrix with zero entries in its lower-left \
orner"|thismatrix has an upper-trapezoidal form|andO de�ned as the (n�r)�p zero matrix.Note that, in general, the rank of C is not known in advan
e. It is �rst learnedwhen the p Householder re
e
tions introdu
ed above are de�ned to bring CT intoupper-triangular form. In the presen
e of a rank-de�
ient matrix C, of rank r < p,The last n � r rows of HCT are all zero, and the last p � r Hi matri
es are allidenti
al.Upon appli
ation of the foregoing r Householder re
e
tions, eq. (5.47b) be
omes[UT O ℄ �yUyL � = d; y � �yUyL � (5.51)when
e, UTyU +OyL = d (5.52)Apparently, kxk = kyk, and hen
e, upon minimizing one norm, one minimizes theother one as well. Moreover, kyk2 = kyUk2 + kyLk2Therefore, the optimum 
hoi
e of y is the one for whi
h yL = 0n00, with 0n00 denotingthe n00-dimensional zero ve
tor, and n00 � n� r, eq.(5.52) thus redu
ing toUTyU = d (5.53)where UT is a p � r matrix with zero entries in its upper 
orner, i.e., this matrixhas the form UT = � LM � (5.54)in whi
h L is a nonsingular r � r lower-triangular matrix and M is a (p � r) � rmatrix. Moreover, sin
e U has been assumed of full rank, UT is also of full rank,its last p� r rows being linearly dependent from its �rst r rows. That is, the p� rrows of M are linearly dependent from the r rows of L. This means that yU is119



determined from the �rst r equations of eq.(5.53). We 
an thus use only thoseequations, whi
h are, moreover, in lower-triangular form already, to 
ompute yU byforward substitution. Symboli
ally, then, we haveyU = L�1d; x0 = HT �L�1d0n00 � (5.55)Alternatively, and if CPU time is not an issue, we 
an use all redundant s
alarequations of that ve
tor equation. We do this, then, by appli
ation of another setof r Householder re
e
tions, H1, H2; : : : ;Hr, thereby obtainingHUTyU = Hd; H � H1H2 : : :Hr (5.56)when
e the optimum solution is obtained in the way explained for overdeterminedsystems in Se
tion 3.5. The details are left as an exer
ise.Example 5.4.1 (The Solution of a� x = b)Let a, b, and x be three 3-dimensional Cartesian ve
tors. We would like to solvethe equation a� x = bfor x. It is well known, however, that the foregoing equation 
ontains only twoindependent s
alar equations, whi
h prevents us from �nding \the x" that veri�esthat equation. Thus, we 
an pro
eed by �nding a spe
i�
 x, x0, that veri�es any twoof these three equations and that is of minimum norm. To this end, we expand thatequation into its three 
omponents:a2x3 � a3x2 = b1a3x1 � a1x3 = b2a1x2 � a2x1 = b3Note that the foregoing equation 
an be 
ast in the form of eq.(3.33) if we de�nematrix A as A � 24 0 �a3 a2a3 0 �a1�a2 a1 0 35whi
h is apparently skew-symmetri
, i.e.,AT = �A120



In fa
t, A is the 
ross-produ
t matrix of a. Pi
king up, for example, the �rst twos
alar equations above, we obtain an underdetermined system of the form (5.36),with C � � 0 �a3 a2a3 0 �a1 � ; d = � b1b2 �and hen
e, the 
orresponding minimum-norm solution x0 is given by eqs.(5.44a &b), with CCT = � a22 + a23 �a1a2�a1a2 a21 + a23 �Hen
e, (CCT )�1 = 1� � a21 + a23 a1a2a1a2 a22 + a23 �where � � det(CCT ) = (a22 + a23)(a21 + a23)� a21a22 > 0a relation that the reader 
an readily prove. Therefore,Cy = 1� 24 a1a2a3 (a22 + a23)a3�(a21 + a23)a3 �a1a2a3a2a23 �a1a23 35and x0 = 1� 24 a1a2a3b1 + (a22 + a23)a3b2�(a21 + a23)a3b1 � a1a2a3b2a2a23b1 � a1a23b2 35Noti
e that the foregoing solution depends on the 
ondition a3 6= 0. If a3 = 0, orvery 
lose to 0, then C be
omes either ill-
onditioned or rank-de�
ient, whi
h isbad news. Apparently, the foregoing solution has an element of arbitrariness thatmay lead either to ill-
onditioning or to rank-de�
ien
y. There is no guarantee thatthe two equations 
hosen are the best 
hoi
e from the 
ondition-number viewpoint.Besides, that approa
h leaves aside useful information, that of the deleted equation.The alternative approa
h uses all three equations, to whi
h one fourth equation isadjoined, namely, the minimum-norm 
ondition, as des
ribed below.First we observe that, if x has been found that veri�es the given 
ross-produ
tequation, then any other ve
tor x+�a, for � 2 R, veri�es that equation. Apparently,then, the minimum-norm x is that whose 
omponent along a vanishes, i.e.,aTx = 0121



Upon adjoining the foregoing equation to the original three, we end up with an ap-parently overdetermined system of four equations with three unknowns, of the formMx = nwhere M and n are given by M = � AaT � ; n = �b0 �Hen
e, M is a 4 � 3 matrix, while n is a 4-dimensional ve
tor. The least-squareapproximation of the new system is, then, the minimum-norm solution of the originalsystem, provided the latter is veri�ed exa
tly, whi
h it is, as will be
ome apparent.Indeed, the least-square approximation of the new system takes the formxL = (MTM)�1MTn (5.58)While we have strongly advised against the expli
it 
omputation of generalized in-verses, our advi
e is valid only as pertaining to numeri
al 
omputations. In the 
aseat hand, we will pursue not a numeri
al, but rather a symboli
 
omputation of thesolution sought.The �rst issue now is whether MTM is invertible, but it is so and, moreover, itsinverse is extremely simple to �nd:MTM = [AT a ℄ � AaT � = ATA+ aaTBut, sin
e A is skew-symmetri
,MTM = �A2 + aaTas the reader 
an readily verify; moreover,A2 = �kak21+ aaTHen
e, MTM = kak21whi
h means that M is isotropi
, i.e., optimally-
onditioned. Therefore,(MTM)�1 = 1kak21122



That is , xL = 1kak21 [AT a ℄ �b0 � = 1kak2ATbwhi
h 
an be further expressed as xL = �a� bkak2 (5.59)thereby obtaining a mu
h simpler, and robust, expression than that displayed aboveas x0.5.4.2 Least-Square Problems Subje
t to Linear ConstraintsGiven the system of linear equations Ax = b (5.60)where A is a full-rank q � n matrix, with q > n, and b is a q-dimensional ve
tor,�nd an n-dimensional ve
tor x that veri�es the above system with the least-squareerror, subje
t to the linear equality 
onstraintsCx = d (5.61)with C a full-rank p � n matrix and d a p-dimensional ve
tor. Moreover, W is aq � q positive-de�nite weighting matrix, with q; p and n subje
t toq + p > n and n > p (5.62)The least-square error of eqs.(5.60) is de�ned asf � 12(Ax� b)TW(Ax� b) (5.63)As usual, we solve this problem by introdu
ing Lagrange multipliers:F (x;�) � f(x) + �T (Cx� d) minx;� (5.64)subje
t to no 
onstraints.The �rst-order normality 
onditions of the foregoing problem are�F�x � ATW(Ax� b) +CT� = 0n (5.65a)�F�� � Cx� d = 0p (5.65b)123



Sin
eA is assumed of full rank andW is positive-de�nite, we 
an solve eq.(5.65a)for x in terms of �, namely,x = (ATWA)�1(ATWb�CT�) (5.66)Upon substituting the above expression into eq.(5.65b), we obtainC(ATWA)�1CT� = C(ATWA)�1ATWb� dwhen
e, � = [C(ATWA)�1CT ℄�1[C(ATWA)�1ATWb� d℄ (5.67)Now, the foregoing expression for � is substituted, in turn, into eq.(5.66), therebyobtaining the optimum value of x, x0, namely,x0 = PQb+Rd (5.68a)where P, Q and R are the n� n-, n�m- and n� p matri
es given below:P = 1n �RC (5.68b)Q = (ATWA)�1ATW (5.68
)R = (ATWA)�1CT [C(ATWA)�1CT ℄�1 (5.68d)with 1n standing for the n � n identity matrix. The solution derived above, whilebeing exa
t, for it is symboli
, is unsuitable for numeri
al implementation. Indeed,this solution 
ontains inversions of produ
ts of several matri
es times their trans-poses, whi
h brings about ill-
onditioning. Various approa
hes to the numeri
alsolution of this problem will be studied in Ch. 6.5.5 Equality-Constrained Nonlinear Least SquaresWe 
onsider here the problem of �nding the least-square error f of an overdeterminedsystem of nonlinear equations, namely,�(x) = 0 (5.69a)subje
t to the nonlinear 
onstraints h(x) = 0 (5.69b)124



In general, moreover, the various s
alar equations of eq.(5.69a) have di�erentrelevan
e and are, hen
e, assigned di�erent weights, whi
h then leads to a problemof weighted least squares, namely,f(x) = 12�TW� ! minx (5.70)subje
t to eq.(5.69b).In the foregoing problem, � and x are q- and n-dimensional ve
tors, respe
tively,with q > n, and W is a q � q positive-de�nite weighting matrix. Moreover, h is al-dimensional ve
tor of nonlinear 
onstraints.The normality 
onditions of the problem at hand are derived dire
tly from thoseof the general equality-
onstrained problem, namely, eq.(5.12) or its dual 
ounter-part, eq.(5.20). In our 
ase, rf = ����x�T �f�� (5.71a)where ���x � �(x); �f�� =W�(x) (5.71b)i.e., �(x) denotes the Ja
obian matrix of �(x) with respe
t to x. Hen
e,rf = �TW� (5.71
)where we have dispensed with the argument x for simpli
ity.The normality 
ondition (5.12) thus redu
es to[1� JT (JJT )�1J℄�TW� = 0n (5.72)What this 
ondition states is that, at a stationary point, �, or �TW� for thatmatter, need not vanish; only the proje
tion of the latter onto the nullspa
e of thegradient of the 
onstraints must vanish.The dual form of the same normality 
onditions, in turn, redu
es toLT�TW� = 0n0 (5.73)with L indi
ating an n� (n� l) orthogonal 
omplement of J, as de�ned in eq.(5.18).The se
ond-order normality 
onditions are now derived by assuming that wehave found a stationary value of the design-variable ve
tor, x0. This means thatLT�T (x0)W�(x0) = 0n0 (5.74)125



Next, we impose the 
ondition that, for any feasible move �x, the 
orrespondingin
rement of f , �f , be positive. A feasible move is obtained by resorting to theorthogonal 
omplement L, namely, �x = L�u (5.75)On the other hand, upon expansion of �(x0 +�x) to a �rst order,f(x0 +�x) � 12(�+��)TW(�+��)= 12�TW�| {z }f(x0) +12(�TW��+��TW�) + 12��TW��when
e,�f � f(x0 +�x)� f(x0) � 12(�TW��+��TW�) + 12��TW�� (5.76a)where �� = ��x = �L�u (5.76b)Therefore, �f = 12[�T (x0)W�(x0)L| {z }=0Tn�l �u+�uT LT�T (x0)W�(x0)| {z }=0n�l ℄+12�uTLT�T (x0)W�L�u= 12�uTLT�T (x0)W�(x0)L�u > 0 (5.76
)the terms inside the bra
kets vanishing by virtue of the �rst-order normality 
on-ditions. What 
ondition (5.76
) states is that, for the stationary value x0 to be aminimum, the feasible Hessian LT�T (x0)W�(x0)L must be positive-de�nite. How-ever, at the outset we de�ned W as positive-de�nite, while L is of full rank. Hen
e,the feasible Hessian is ne
essarily positive-de�nite, ex
ept for points at whi
h �be
omes rank-de�
ient, at whi
h the said Hessian be
omes positive-semide�nite. Asa 
onsequen
e, then,Fa
t 5.5.1 To a �rst-order approximation of �(x), a stationary point of the weightedleast-square approximation of the overdetermined nonlinear system �(x) = 0 is aminimum or a saddle point; never a maximum.126



5.6 Linear Least-Square Problems Under Quadrati
ConstraintsAn important family of design problems lends itself to a formulation whereby theobje
tive fun
tion is quadrati
 in a linear fun
tion of the design ve
tor x, while the
onstraints are quadrati
 in x. Contrary to the 
ase of linear least-squares subje
tto linear 
onstraints, this family of problems does not allow, in general, for 
losed-form solutions, the reason being that their normal equations are nonlinear. Let us
onsider f(x) � 12(b�Ax)TW(b�Ax) ! minx (5.77a)subje
t to h(x) = 0l (5.77b)where A is a q � n full-rank matrix, with q > n, W is a q � q positive-de�niteweighting matrix, while h, x and b are l-, n- and q-dimensional ve
tors, respe
tively,with q + l > n; n > l (5.77
)Moreover, in this parti
ular 
ase, the ith 
omponent of ve
tor h is quadrati
, namely,hi(x) � 12xTPix + qi + ri (5.77d)in whi
h Pi is a known n� n symmetri
 matrix, while qi is a n-dimensional givenve
tor and ri is a given s
alar. Apparently, then, the ith row of J, the Ja
obian ofh with respe
t to x, takes the form�hi�x = Pix+ qi (5.78)when
e J is linear in x. The �rst-order normality 
onditions (5.12) now take theform [1n � JT (JJT )�1J℄ATW(b�Ax) = 0n (5.79)It is thus apparent that, although J is linear in x, the normality 
onditions arepolynomial, thereby leading to a problem la
king a 
losed-form solution, ex
ept forspe
ial 
ases, like the one in
luded below.Example 5.6.1 (A Quadrati
 Obje
tive Fun
tion with a Quadrati
 Cons-traint)Consider an optimization problem with an obje
tive fun
tion de�ned asf(x) = 12(9x21 � 8x1x2 + 3x22) ! minx1; x2127



subje
t to the quadrati
 
onditionh(x) = x21 + x22 � 1 = 0 (5.80)The obje
tive fun
tion f(x) 
an be fa
tored asf(x) = 12(b�Ax)TW(b�Ax)with A = 12; b = 02; W = � 9 �4�4 3 � x = �x1x2 � (5.81)Solution: Upon adjoining the 
onstraint to the obje
tive fun
tion, we obtain theLagrangian F (x;�), namely,F (x;�) = 12(9x21 � 8x1x2 + 3x22) + �(x21 + x22 � 1)that we want to minimize subje
t to no 
onstraints. The normality 
onditions are,thus �F�x1 = 9x1 � 4x2 + 2�x1 = 0�F�x2 = �4x1 + 3x2 + 2�x2 = 0�F�� = x21 + x22 � 1 = 0We 
an now eliminate � from the �rst and the se
ond of the above equations. Wedo this dialyti
ally, i.e., we write these two equations in linear homogeneous form in� and 1, i.e., My = 02where M = � 2x1 9x1 � 4x22x2 �4x1 + 3x2 � ; y = ��1 � 6= 02with 02 denoting the 2-dimensional zero ve
tor. Now, the above linear homogeneousequation in y 
annot be zero, for y 6= 02, and hen
e, matrix M must be singular,whi
h is stated as det(M) = 0Upon expansion, the foregoing equation leads todet(M) = 2x1(�4x1 + 3x2)� 2x2(9x1 � 4x2) = 0128



or, after simpli�
ation, x21 + 32x1x2 � x22 = 0thereby redu
ing the problem to the solution of two quadrati
 equations in two un-knowns, the above equation and the third normality 
ondition. Upon eliminating ofx2 from the latter, and substitution of the expression thus resulting into the remain-ing equation, we obtain, after some simpli�
ations,x41 � x21 + 425 = 0whi
h is, in fa
t, a quadrati
 equation in x21, its roots being(x21)1;2 = 15 ; 45when
e the four roots follow:(x1)1;2 = �p55 ; (x2)3;4 = �2p55whi
h yields, 
orrespondingly,(x2)1;2 = �2p55 ; (x2)3;4 = �p55More general problems of this family 
an be solved using the methods dis
ussedin Ch. 6 for arbitrary obje
tive fun
tions subje
t to nonlinear equality 
onstraints.
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Chapter 6Equality-ConstrainedOptimization:The Orthogonal-De
ompositionAlgorithm
6.1 Introdu
tionThe numeri
al solution of equality-
onstrained problems is the subje
t of this 
hap-ter. In this vein, we fo
us on methods stemming from nonlinear least-square prob-lems, that lead to what is known as sequential quadrati
 programming (SQP). SQPappears to be the most 
ommonly used and reliable method in nonlinear program-ming, for it is well suited for the solution of nonlinear programming problems, asreported by (Murray, 1997) and (Lalee et al., 1998). In SQP, the nonlinear opti-mization problem is approximated by a sequen
e of quadrati
 programs (QP), ea
hbeing a sub-quadrati
 program (sub-QP).Motivated by nonlinear least-square problems, QP works under the assumptionthat the feasible Hessian is positive-de�nite at ea
h iteration. If this is not the
ase at a given iteration, then the Hessian matrix is modi�ed to render it so, apro
edure 
alled Hessian-stabilization. Then, the sub-QP is solved by means of anyalgorithm suitable for QP problems. The pro
edure is terminated when a 
riterionis met with a pres
ribed toleran
e. The solution pro
edure of SQP thus involves twophases: the stabilization of the Hessian matrix and the QP solution. The Hessianmatrix 
an be stabilized by methods su
h as that proposed by Broyden (1970),131



Flet
her (1970), Goldfarb (1970), and Shanno (1970), whi
h is known as the BFGSmethod. The BFGS method, implemented in the Matlab Optimization Toolbox, isthought to be very e�e
tive for use in general appli
ations and thus, appears to bethe most popular. In addition, methods for solving QP problems are for example,the 
oordinate-as
ent method (Bertsekas, 1995) and quasi-Newton methods (Rao,1996).The main item introdu
ed in this 
hapter is the orthogonal-de
omposition al-gorithm (ODA), whi
h is derived �rst in the 
ontext of equality-
onstrained linearleast-square problems; then, it is applied to equality-
onstrained nonlinear least-square problems. Several numeri
al te
hniques, su
h as Householder re
e
tions,Cholesky de
omposition, the Newton-Gauss method, et
., are applied in order toobtain numeri
al solutions by means of pro
edures that are both eÆ
ient and robust.What we mean by the former is pro
edures that use as few 
oating-point operations(
ops) as possible; by the latter we mean pro
edures that keep the roundo� error inthe solution as low as possible with respe
t to that of the data, an item that falls inthe realm of numeri
al 
onditioning.The orthogonal-de
omposition algorithm is implemented in a C library of rou-tines, 
alled ODA, in 
ombination with Gers
hgorin stabilization (Teng and Angeles,2001) for arbitrary obje
tive fun
tions, in the framework of sequential quadrati
 pro-gramming (SQP). Gers
hgorin stabilization is based on the Gers
hgorin Theorem(Varga, 2000), whi
h provides a region of the 
omplex plane in whi
h the eigenval-ues of an arbitrary n� n matrix are bound to lie. Moreover, the ODA is applied insolving the underlying sub-QP.6.2 Linear Least-Square Problems Subje
t toEquality Constraints: The ODAWe re
all below the linear least-square problem subje
t to linear equality 
onstraints:Given the overdetermined system of linear equationsAx = b (6.1)�nd a ve
tor x that veri�es the above system with the least-square error, whi
h isde�ned as f � 12(Ax� b)TW(Ax� b)! minx (6.2)132



subje
t to the linear 
onstraints Cx = d (6.3)Here, x is the n-dimensional ve
tor of design variables, while A and C are q � nand p� n matri
es, while b and d are q- and p-dimensional ve
tors. Moreover, Wis a q � q positive-de�nite weighting matrix, with q; p and n subje
t toq > n and p < n (6.4)Note that the �rst of the foregoing inequalities ex
ludes the possibility of a uniquesolution upon solving for x from eq.(6.1), the se
ond preventing a unique solutionfrom eq.(6.3).If A and C are full-rank matri
es, then the forgoing problem was shown tohave a unique solution, given by eqs.(5.68a{d), whi
h is reprodu
ed below for qui
kreferen
e: x = PQb+Rd (6.5a)In the foregoing expression, P, Q and R are the n� n-, n� q- and n� p matri
esthat follow: P = 1n �RC (6.5b)Q = (ATWA)�1ATW (6.5
)R = (ATWA)�1CT [C(ATWA)�1CT ℄�1 (6.5d)and 1n is the n� n identity matrix.As pointed out in Subse
tion 5.4.2, the above expression is unsuitable for nu-meri
al implementation. A 
ommon alternative approa
h to obtain the solutionunder study 
onsists in partitioning C into a p� p and a p� (n � p) submatri
es,where 
are should be taken so as to 
hoose a well-
onditioned p� p matrix, for safeinversion. Correspondingly, ve
tor x should be partitioned into a master part xM ,of n � p 
omponents, and a slave part xS of p 
omponents. Thus, the 
onstraintequations would be solved for the slave part in terms of the master part and theproblem would redu
e to an un
onstrained least-square problem of dimension n�p.However, an arbitrary partitioning of C may lead to an ill-
onditioned p� p blo
k,even if C itself is well-
onditioned. This situation 
an be prevented if, out of allN possible partitionings of C, the one with the lowest 
ondition number is 
hosen.Note that the number of partitionings is given byN = n!p!(n� p)!133



and hen
e, N 
an be
ome quite large, even for modest values of n and p. Sin
e
al
ulating the 
ondition number of a matrix is a 
omputationally 
ostly pro
edure,this approa
h does not seem very attra
tive.Alternatively, by introdu
tion of the singular values of C (Strang, 1988), a sub-system of p equations in p unknowns, whi
h are linear 
ombinations of the 
ompo-nents of x, 
an be found that is optimally 
onditioned. The 
omputation of singularvalues, however, similar to that of eigenvalues, is a problem even more diÆ
ultto solve than the one at hand, for it is nonlinear and must be solved iteratively.Therefore, it is not advisable to follow the singular-value approa
h either.One more approa
h is followed here, whi
h stems from the geometri
al inter-pretation of the solution (6.5a). Indeed, ve
tor Qb of that solution represents theun
onstrained least-square approximation of eq.(6.2). The se
ond term of the right-hand side of eq.(6.5a) is the minimum-norm solution of the underdetermined system(6.3), based on the norm de�ned askxk2W = xTATWAx (6.6)Thus, P is a proje
tor1 onto the nullspa
e of C. Indeed, one 
an readily prove thatevery n-dimensional ve
tor x is mapped by P onto the nullspa
e of C. Moreover, P2
an be proven to equal P, thereby making apparent that P is, in fa
t, a proje
tor.Furthermore, for any p � n matrix C, the range of C and the nullspa
e of C areorthogonal subspa
es2 of Rn , their dire
t sum produ
ing all of Rn ; i.e., every n-dimensional ve
tor x 
an be uniquely de
omposed into a ve
tor lying in the range ofCT and a se
ond one lying in the nullspa
e of C. Now let L be a n� (n� p) matrixspanning the nullspa
e of C, i.e., CL = Opn0 (6.7)where Opn0 represents the p � (n � p) zero matrix. Matrix L is known as an or-thogonal 
omplement of matrix C. Thus, the solution to the above problem 
an bede
omposed into two parts, namely,x = x0 + xU (6.8)1Note that P is apparently not symmetri
!2Note that R(C) need not be orthogonal to N (C); in fa
t, for two subspa
es to be orthogonal,they must be embedded in the same spa
e, but R(C) � Rp and N (C) � Rn , and, in our 
ase,n 6= p. 134



in whi
h x0 represents the minimum-norm solution to the 
onstraint equation (6.3),i.e., x0 lies in the range of CT , while xU lies in the nullspa
e of C. Ve
tor x0 is 
om-puted by means of an orthogonalization method rendering CT in upper-triangularform, as dis
ussed in Subse
tion 5.4.1, while ve
tor xU is 
omputed by means of alinear least-square problem. We outline below the 
omputation of xU .Let us de�ne a q � q matrix V as the Cholesky fa
tor of the given weightingmatrix W, i.e., W = VTVMoreover, with x0 known, xU is found as the least-square approximation ofVAxU = V(b�Ax0) (6.9)subje
t to the 
onstraints CxU = 0 (6.10)Further, let us represent xU as the image of a (n � p)-dimensional ve
tor under atransformation given by a n� (n� p) matrix L, namely,xU = Lu (6.11)with L de�ned, in turn, as introdu
ed in eq.(6.7). Equation (6.9) thus be
omesVALu = V(b�Ax0) (6.12)whi
h is an overdetermined system of n linear equations in n � p unknowns. It isthus apparent that u 
an be 
omputed as the un
onstrained least-square solution ofeq.(6.12).However, matrix L, an orthogonal 
omplement of C, is not unique. We have thusrea
hed a 
ru
ial point in the solution of the 
onstrained linear least-square problemat hand: How to de�ne L. While L 
an be de�ned in in�nitely many forms|noti
ethat, on
e any L has been found, a multiple of it also satis�es eq.(6.7). We de�nehere a distin
t L su
h that HL = �O1 � (6.13)where 1 is the (n�p)� (n�p) identity matrix and O is the p� (n�p) zero matrix,while H is de�ned as the produ
t of Householder re
e
tions rendering CT in upper-triangular from|see Subse
tion 5.4.1. From eq.(6.13), one 
an obtain matrix Lwithout any additional 
omputations, forL = HT �O1 � (6.14)135



when
e it is apparent that L is isotropi
, i.e., its 
ondition number is equal to unity.This means that the left Moore-Penrose generalized inverse LI of L 
an be 
omputedwithout roundo�-error ampli�
ation. In fa
t, this inverse redu
es to LT , forLI = �[OT 1℄HHT �O1 ���1 [OT 1℄H| {z }LT = LT (6.15)On
e L is known, equation (6.12) 
an be solved for u as the least-square approx-imation of that system. Then, xU is 
al
ulated from equation (6.11).As the reader 
an readily prove, the two 
omponents of x, xU and xL, areorthogonal. For this reason, the foregoing pro
edure is known as the Orthogonal-De
omposition Algorithm (ODA).6.3 Equality-Constrained Nonlinear Least-SquareProblemsThe solution of nonlinear least-square problems by means of the ODA is now straight-forward: The problem 
onsists in �nding the least-square error f of an overdeter-mined system of nonlinear equations, �(x) = 0, i.e.,f(x) = 12�TW� ! minx (6.16a)subje
t to the nonlinear 
onstraints h(x) = 0 (6.16b)where � and x are q- and n-dimensional ve
tors, respe
tively, with q > n, and Wis a q � q positive-de�nite weighting matrix. Moreover, h is a l-dimensional ve
torof nonlinear 
onstraints.The normality 
ondition of the foregoing 
onstrained problem was derived inCh. 3 in its dual form, eq.(5.73), and re
alled below for qui
k referen
e:LT�TW� = 0n0 (6.17)with 0n0 denoting the (n� l)-dimensional zero ve
tor.The solution of the problem at hand is obtained iteratively: From an initial guessx0, not ne
essarily feasible, i.e., with h(x0) 6= 0, the sequen
e x1, x2; : : : ; xk; xk+1is generated as xk+1 = xk +�xk (6.18)136



The in
rement �xk is 
omputed as the solution of an equality-
onstrained linearleast-square problem, namely, min�xk 12ekTWek (6.19a)subje
t to J(xk)�xk = �h(xk) (6.19b)with ek de�ned as ek � ��(xk)��(xk)�xk (6.19
)Now, for 
ompa
tness, we introdu
e a few de�nitions:hk � h(xk); �k � �(xk); �k � �(xk); Jk � J(xk) (6.20)while Lk is de�ned as the isotropi
 orthogonal 
omplement of Jk �a la eq.(6.13).Moreover, �k and Jk will be assumed to be of full rank throughout, the solution�xk of problem (6.19a{
) thus being expressed as�xk = �vk + Lk�uk (6.21)where �vk and �uk are the minimum-norm and the least-square solutions to anunderdetermined and an overdetermined system, namely,Jk�vk = �hk (6.22a)V�kLk�uk = V(��k ��k�vk) (6.22b)The stopping 
riteria of the pro
edure are, then,jj�xkjj � �1 and jjh(xk)jj � �2 (6.23)for pres
ribed toleran
es �1 and �2. These 
riteria are veri�ed when both the nor-mality 
ondition (6.17) and the 
onstraint (6.16b) are veri�ed within the given tol-eran
es. Moreover, we 
an rewrite eq.(6.22a) (for simpli
ity, we drop the subs
riptk) as JHTH�v = �hor (HJT )T H�v| {z }w = �h (6.24)Furthermore, note thatHJT = " Up�pO(n�p)�p # ; w = " wUwL #137



where wU and wL are, 
orrespongingly, p- and n � p-dimensional ve
tors. Hen
e,eq.(6.24) 
an be written in the formh UT OT i " wUwL # = �hor UTwU +OTwL = �hLast eqaution 
an be solved for wU : wU = �U�Th. When
e, from Hv � w we 
anobtain v = HTw. Now, from eq.(6.22b) �xk 
an be expressed as�xk = (M�TW�� 1n)Jyh�M�TW� (6.25)where subs
ripts and supers
ripts have been dropped from the right-hand side for
ompa
tness, 1n represents the n�n identity matrix, Jy is the right Moore-Penrosegeneralized inverse of J, and M is the n� n matrix de�ned asM = L(LT�TW�L)�1LT (6.26)Upon 
onvergen
e, the 
onstraint equations hold. Therefore, h = 0 and the nor-mality 
ondition (6.17) holds. Therefore, upon 
onvergen
e, �xk ! 0.The sequen
e f�xkg produ
es a sequen
e ffkg, the in
rement �f between two
onse
utive values of the sequen
e being given by�f = (rf)T�x (6.27)where rf is the gradient of f , i.e., rf = �TW�, and hen
e,�f = (�TW�)T�x= ��TW�M�TW�� �TW�(1�M�TW�)Jyh (6.28)From eq.(6.28), if the 
urrent value of x is feasible, i.e., if h = 0, then �f is negative-de�nite, and the pro
edure yields an improved value of f . On the other hand, one
an readily verify that�(hTh) � hTk+1hk+1 � hTk hk = �2hTh = 0 (6.29)whi
h is negative de�nite. Therefore, the pro
edure gives a sequen
e of x valuesthat approa
hes the 
onstraints. 138



Example 6.3.1 (A Quadrati
 Obje
tive Fun
tion with a Quadrati
 Con-straint)We re
all Example 5.6.1, whi
h is reprodu
ed below for qui
k referen
e:f(x) = 12(9x21 � 8x1x2 + 3x22) ! minx1; x2subje
t to h(x) = x21 + x22 � 1 = 0While the obje
tive fun
tion is quadrati
 in a linear fun
tion of the design-variableve
tor, the 
onstraint is nonlinear, whi
h disquali�es this problem from a dire
tsolution, as found in Se
tion 6.2 for linear least-squares subje
t to linear 
onstraints.This problem, due to its simpli
ity, 
ould be solved exa
tly in Chapter 3. Here, wesolve this problem numeri
ally, using the ODA. First, note that the obje
tive fun
tionf(x) 
an be fa
tored as f(x) = 12�TW�with W = � 9 �4�4 3 � and � = � x1x2 �i.e, f(x) is a spe
ial 
ase of the f(x) de�ned in eq.(6.2), with A = 1 and b = 0.We in
lude below a Maple worksheet des
ribing the step-by-step implementation ofthe ODA in solving the foregoing problem iteratively.> restart:with(linalg):Warning, the prote
ted names norm and tra
e have been redefined andunprote
ted> with(plots): with(plottools):Warning, the name 
hange
oords has been redefinedWarning, the name arrow has been redefinedLinear-least square problem subje
t to a quadrati
 
onstraintf(x) = (1=2)(9x21 � 8x1x2 + 3x22) ! minx1;x2subje
t to h(x1; x2) = x21 + x22 � 1 = 0139



> obj:= pro
(x) (1/2)*(9*x[1℄^2 - 8*x[1℄*x[2℄ +> 3*x[2℄^2)> end; #pro
edure to 
ompute the obje
tive fun
tionobj := pro
(x) 9=2 � x12 � 4 � x1 � x2 + 3=2 � x22 end pro
> 
onstr:= pro
(x) x[1℄^2+x[2℄^2 - 1 end;> #pro
edure 
omputing the 
onstraint
onstr := pro
(x) x12 + x22 � 1 end pro
> dhdx:= pro
(x) matrix([[2*x[1℄, 2*x[2℄℄℄)> end; #pro
edure 
omputing the gradient of the 
onstraintdhdx := pro
(x)matrix([[2 � x1; 2 � x2℄℄) end pro
> alfa:= pro
(J)> evalf(signum(J[1,1℄)*sqrt(J[1,1℄^2 + J[1,2℄^2))> end; #pro
edure 
omputing "alpha" of Householder refle
tions in> least-square solution at ea
h iterationalfa := pro
(J) evalf(signum(J1; 1) � sqrt(J1; 12 + J1; 22)) end pro
> W:=matrix([[9, -4℄, [-4, 3℄℄); #weighting matrixW := " 9 �4�4 3 #> V:=transpose(
holesky(W)); #Maple returns a> lower-triangular matrix with pro
edure "
holesky"!V := 2664 3 �430 13 p11 3775> V:= map(evalf, V);V := " 3: �1:3333333330: 1:105541597 #> ID:=Matrix(2,2,shape=identity);> E:= matrix([[0℄, [1℄℄);> Phi:= ID;> B:=evalm(V&*Phi); #Defining various auxiliary matri
esID := " 1 00 1 #E := " 01 #140



� := " 1 00 1 #B := " 3: �1:3333333330: 1:105541597 #> x:=ve
tor([2, 2℄); x0:= evalm(x); #initial> guess, x^0, stored as x0 for plottingx := [2; 2℄x0 := [2; 2℄> f:= evalf(obj(x)); #f_0 f := 8:> phi:= evalm(x); #phi^0 � := [2; 2℄> h:= 
onstr(x); #h^0 h := 7> J:= dhdx(x); #J_0 J := h 4 4 i> alpha:= alfa(J); #lo
al variable� := 5:656854248> t:=ve
tor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithm, a lo
al variablet := [9:656854248; 4℄> normt2:=evalf(dotprod(t,t)/2); #half of> Eu
lidean norm-squared of t, a lo
al variablenormt2 := 54:62741700> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder refle
tionH := " �:707106781 �:7071067812�:7071067812 :7071067811 #> P:=evalm(H&*transpose(H)); #
he
king whether H> is a refle
tionP := " :9999999997 0:0: :9999999999 #> detH:=det(H); detH := �:9999999998141



H is indeed a re
e
tion!> HJT:=evalm(H&*transpose(J));HJT := " �5:656854249�:1 10�8 #> HJT[2,1℄:=0; print(HJT); #setting last entry> of HJ^T equal to zero HJT 2; 1 := 0" �5:6568542490 #> w:= ve
tor([-h/HJT[1,1℄, 0℄); #w = Hvw := [1:237436867; 0℄> v:=evalm(H&*w); #v^0v := [�:8749999997; �:8750000000℄> L:= evalm(H&*E);> BL:=evalm(B&*L); #L_0 & (BL)_0L := " �:7071067812:7071067811 #
BL := " �3:064129385:7817359600 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [1:125000000; 1:125000000℄> r:= evalm(-V&*p);> #RHS of overdetermined system to 
ompute u in ODAr := [�1:875000000; �1:243734297℄> u:= leastsqrs(BL, r); #u^0u := [:4772970772℄> Deltax:= matadd(v, L&*u); #Deltax^0Deltax := [�1:212500000; �:5375000001℄First iteration is 
omplete. Update x:> x:= evalm(x + Deltax); x1:= evalm(x); #x^1142



x := [:787500000; 1:462500000℄x1 := [:787500000; 1:462500000℄> f:= evalf(obj(x)); #f_1f := 1:392187500> phi:= evalm(x); #phi^1� := [:787500000; 1:462500000℄> h:= 
onstr(x); #h^1 h := 1:759062500> J:= dhdx(x); #J_1J := h 1:575000000 2:925000000 i> alpha:= alfa(J); � := 3:322085189> t:=ve
tor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithmt := [4:897085189; 2:925000000℄> normt2:=evalf(dotprod(t,t)/2);normt2 := 16:26853418> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder refle
tionH := " �:474099823 �:8804710997�:8804710997 :4740998233 #> HJT:=evalm(H&*transpose(J));HJT := " �3:322085188:1 10�8 #> HJT[2,1℄:=0; print(HJT);HJT 2; 1 := 0" �3:3220851880 #> w:= ve
tor([-h/HJT[1,1℄, 0℄); #w = Hvw := [:5295055366; 0℄> v:=evalm(H&*w); # v^1v := [�:2510384812; �:4662143221℄> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);> #L_1 & (BL)_1 143



L := " �:8804710997:4740998233 #
BL := " �3:273546397:5241370758 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [:5364615188; :9962856779℄> r:= evalm(-V&*p);> #RHS of overdetermined system to 
ompute u in ODAr := [�:281003652; �1:101435259℄> u:= leastsqrs(BL, r); #u^1u := [:03116921755℄> Deltax:= matadd(v, L&*u); #delta x^1Deltax := [�:2784820764; �:4514370016℄Se
ond iteration is 
omplete. Update x:> x:= matadd(x, Deltax); x2:= evalm(x); #x^2x := [:5090179236; 1:011062998℄x2 := [:5090179236; 1:011062998℄> f:= obj(x); #f_2 f := :640722436> phi:= evalm(x); #phi^2� := [:5090179236; 1:011062998℄> h:= 
onstr(x); #h^2 h := :281347632> J:= dhdx(x); #J_2J := h 1:018035847 2:022125996 i> alpha:= alfa(J); � := 2:263932537> t:=ve
tor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithmt := [3:281968384; 2:022125996℄> normt2:=evalf(dotprod(t,t)/2);144



normt2 := 7:430155005> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder> refle
tion H := " �:449675877 �:8931918088�:8931918088 :4496758759 #> HJT:=evalm(H&*transpose(J));HJT := " �2:263932538�:12 10�8 #> HJT[2,1℄:=0; print(HJT);HJT 2; 1 := 0" �2:2639325380 #> w:= ve
tor([-h/HJT[1,1℄, 0℄); #w = Hvw := [:1242738586; 0℄> v:=evalm(H&*w); #v^2v := [�:05588295635; �:1110003925℄> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);> #L_2 & (BL)_2 L := " �:8931918088:4496758759 #
BL := " �3:279143260:4971353860 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [:4531349672; :9000626055℄> r:= evalm(-V&*p);> #RHS of overdetermined system to 
ompute u in ODAr := [�:159321428; �:9950566503℄> u:= leastsqrs(BL, r); #u^2u := [:002523646038℄> Deltax:= matadd(v, L&*u); #Deltax^2Deltax := [�:05813705632; �:1098655698℄Third iteration is 
omplete. Update x: 145



> x:= matadd(x, Deltax); x3:=evalm(x); #x^3x := [:4508808673; :9011974282℄x3 := [:4508808673; :9011974282℄> f:= obj(x); #f_3 f := :5077254992> phi:= evalm(x); #phi^3� := [:4508808673; :9011974282℄> h:= 
onstr(x); #h^3 h := :015450361> J:= dhdx(x); #J_3J := h :9017617346 1:802394856 i> alpha:= alfa(J); � := 2:015391139> t:=ve
tor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithmt := [2:917152874; 1:802394856℄> normt2:=evalf(dotprod(t,t)/2);normt2 := 5:879204055> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder refle
tionH := " �:447437580 �:8943151635�:8943151635 :4474375804 #> HJT:=evalm(H&*transpose(J));HJT := " �2:015391138:2 10�9 #> HJT[2,1℄:=0; print(HJT);HJT 2; 1 := 0" �2:0153911380 #> w:= ve
tor([-h/HJT[1,1℄, 0℄); #w = Hvw := [:007666184846; 0℄> v:=evalm(H&*w); #v^3v := [�:003430139195; �:006855985354℄146



> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);> L_3 & (BL)_3 L := " �:8943151635:4474375804 #
BL := " �3:279528930:4946608572 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [:4474507281; :8943414428℄> r:= evalm(-V&*p);> #RHS of overdetermined system to 
ompute u in ODAr := [�:149896927; �:9887316669℄> u:= leastsqrs(BL, r); #u^3u := [:0002276777133℄> Deltax:= matadd(v, L&*u); #Deltax^3Deltax := [�:003633754826; �:006754113789℄Fourth iteration is 
omplete. Update x:> x:= matadd(x, Deltax); x4:=evalm(x); # x^4x := [:4472471125; :8944433144℄x4 := [:4472471125; :8944433144℄> f:= obj(x); #f_4 f := :5000294132> phi:= evalm(x); #phi^4� := [:4472471125; :8944433144℄> h:= 
onstr(x); #h^4 h := :000058822> J:= dhdx(x); #J_4J := h :8944942250 1:788886629 i> alpha:= alfa(J); � := 2:000058822> t:=ve
tor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithm 147



t := [2:894553047; 1:788886629℄> normt2:=evalf(dotprod(t,t)/2);normt2 := 5:789276355> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder> refle
tion H := " �:447233960 �:8944170093�:8944170093 :4472339590 #> HJT:=evalm(H&*transpose(J));HJT := " �2:000058823�:3 10�9 #> HJT[2,1℄:=0; print(HJT);HJT 2; 1 := 0" �2:0000588230 #> w:= ve
tor([-h/HJT[1,1℄, 0℄); #w = Hvw := [:00002941013500; 0℄> v:=evalm(H&*w); #v^4v := [�:00001315321114; �:00002630492499℄> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);> #L_4 & (BL)_4 L := " �:8944170093:4472339590 #
BL := " �3:279562973:4944357453 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [:4472339593; :8944170095℄> r:= evalm(-V&*p);> #RHS of overdetermined system to 
ompute u in ODAr := [�:149145866; �:9888152091℄> u:= leastsqrs(BL, r); #u^4u := [:00002069770909℄> Deltax:= matadd(v, L&*u); #Deltax^4Deltax := [�:00003166559420; �:00001704820661℄148



Fourth iteration is 
omplete. Update x:> x:= matadd(x, Deltax); x4:= evalm(x); #x^4x := [:4472154469; :8944262662℄x4 := [:4472154469; :8944262662℄> f:= obj(x); #f_4 f := :5000000006Given the norm of Deltax, we de
lare 
onvergen
e here, and plot the iterationhistory in x [1℄-x [2℄ plane:> o0:= evalm(x0); o1:= evalm(x1);> o2:= evalm(x2); o3:= evalm(x3); o4:= evalm(x4);o0 := [2; 2℄o1 := [:787500000; 1:462500000℄o2 := [:5090179236; 1:011062998℄o3 := [:4508808673; :9011974282℄o4 := [:4472154469; :8944262662℄> p0:=point(
onvert(o0,list), symbol=
ir
le,> 
olor=blue);> p1:=point(
onvert(o1,list), symbol=
ir
le, 
olor=blue);> p2:=point(
onvert(o2,list), symbol=
ir
le, 
olor=blue);> p3:=point(
onvert(o3,list), symbol=
ir
le, 
olor=blue);> p4:=point(
onvert(o4,list), symbol=
ir
le, 
olor=blue);p0 := POINTS([2:; 2:℄; COLOUR(RGB ; 0:; 0:; 1:00000000); SYMBOL(CIRCLE))p1 := POINTS([:787500000; 1:462500000℄; COLOUR(RGB ; 0:; 0:; 1:00000000);SYMBOL(CIRCLE))p2 := POINTS([:5090179236; 1:011062998℄; COLOUR(RGB ; 0:; 0:; 1:00000000);SYMBOL(CIRCLE))p3 := POINTS([:4508808673; :9011974282℄; COLOUR(RGB ; 0:; 0:; 1:00000000);SYMBOL(CIRCLE))p4 := POINTS([:4472154469; :8944262662℄; COLOUR(RGB ; 0:; 0:; 1:00000000);SYMBOL(CIRCLE)) 149



> l1 :=> arrow(
onvert(o0,list),
onvert(o1,list), 10.0, 0.1, .1, arrow,> 
olor=red, thi
kness=2):> l2 := arrow(
onvert(o1,list),
onvert(o2,list), 6.0, 0.1, .2, arrow,> 
olor=green, thi
kness=2):> l3 := arrow(
onvert(o2,list),
onvert(o3,list), 6.0, 0.1, .7, arrow,> 
olor=red, thi
kness=2):> l4 := arrow(
onvert(o3,list),
onvert(o4,list), 6.0, 0.1, 6.0, arrow,> 
olor=green, thi
kness=2):> 
1 := ar
([0,0℄, 1,-Pi/6..4*Pi/6,
olor=bla
k, thi
kness=2):> obj_plot:= pro
(ax,ay) (1/2)*(9*ax^2 - 8*ax*ay + 3*ay^2)> end:f1:=impli
itplot(obj_plot-3,-0.5..2,-0.5..2.5,numpoints=3000,> linestyle=4,
olor=blue):> f2:=impli
itplot(obj_plot-2,-0.5..2,-0.5..2,> numpoints=3000,linestyle=4,
olor=blue):> f3:=impli
itplot(obj_plot-1,-0.5..2,-0.5..2,numpoints=6000,> linestyle=4,
olor=blue):f4:=impli
itplot(obj_plot-0.5,-0.5..2,-0.5..2,> numpoints=6000, linestyle=4,
olor=blue):> display(f
1,p0,p1, p2, p3, p4, p1, l1, l2,> l3, l4,f1,f2,f3,f4g,> insequen
e = false, 
olor=red, s
aling=
onstrained);The plots produ
ed by the plotting 
ommands in the Maple worksheet are repro-du
ed in Fig. 6.1. A plot of the 
ontours of the obje
tive fun
tion and the 
onstraint,showing all four stationary points, is displayed in Fig. 6.2.Example 6.3.2 (Finding the Eigenvalues and Eigenve
tors of a Symmet-ri
 Matrix)The problem of �nding the eigenvalues and 
orresponding eigenve
tors of a n �n symmetri
 positive-de�nite matrix M is solved as a linear least-square problemsubje
t to quadrati
 
onstraints: For i = 1; 2; � � � ; n, and k = 1; 2; � � � ; i, �nd �i andxi su
h that �i = minxi 12xTi Mxisubje
t to xTk xi = ( 0; if k = 1; 2; � � � ; i� 1;1; if k = i:where �i is the ith eigenvalue of matrix M and xi is the 
orresponding eigenve
tor.150
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Figure 6.1: The four iterations leading to the solution of the linear least-squareproblem subje
t to one quadrati
 
onstraintIn order to use the ODA pa
kage to solve the problem, we de�ne, for i = 1; 2; � � � ; n:q = n and l = i; (6.30)x = xi;�(x) = x;h(x) = [xT1 x � � � xTi�1x xTx� 1 ℄T ;W =Mwhere xk, for k = 1; 2; � � � ; i � 1, are the previously 
al
ulated eigenve
tors of M,and hen
e, are known. With the above de�nitions, for i = 1; 2; � � � ; n, subroutineLSSCNL of the ODA pa
kage is 
alled n times. After ea
h 
all, one eigenvalue andits 
orresponding eigenve
tor are obtained. Noti
e that, in the last 
all, the numberof 
onstraints is equal to the number of variables, namely, l = n. Matrix M is givenas M = 2666664 4 2 1 1 12 4 2 1 11 2 4 2 11 1 2 4 21 1 1 2 4
3777775 :We use the initial guess x0 = [ 0:1 0:1 0:1 0:1 0:1 ℄T :151



Figure 6.2: The 
ontours of 
onstant f and the 
onstraint h = 0The eigenvalues and the eigenve
tors 
omputed with the ODA pa
kage are listedin Table 6.1. In that table, the number of iterations that the pa
kage took till 
on-vergen
e was rea
hed with �1 = 0:0001 and �2 = 0:0001, is indi
ated.6.4 Equality-Constrained Optimization with Ar-bitrary Obje
tive Fun
tionThe problem to be solved is de�ned as:f = f(x) ! minx (6.31)152



i 1 2 3 4 5�i 1.27738 3.08749 9.63513 2.0 4.01st 
omp. of xi 0.26565 �0:51369 0.40689 0.5 0.52nd 
omp. of xi �0:51853 0.10368 0.46944 �0:5 0.53rd 
omp. of xi 0.56667 0.67138 0.47764 0.0 0.04th 
omp. of xi �0:51853 0.10368 0.46944 0.5 �0:55th 
omp. of xi 0.26565 �0:51369 0.40689 �0:5 �0:5# of iterations 12 11 6 38 54Table 6.1: Eigenvalues and eigenve
tors of Msubje
t to the nonlinear equality 
onstraintsh(x) = 0 (6.32)where x is the n-dimensional design-variable ve
tor, the obje
tive fun
tion f(x)being a nonlinear fun
tion of x, not ne
essarily quadrati
 in the sense of Se
tion 6.3,but with 
ontinuous derivatives up to the se
ond order. Moreover, h(x) is a l-dimensional ve
tor of nonlinear equality 
onstraints, with a 
ontinuous gradient.In the problem de�ned in eq.(6.31), if the 
onstraints in eq.(6.32) are analyti
,then there exists a feasible manifold F � Rn , of dimension l, su
h that, if u 2 F ,then h(x(u)) = 0 (6.33)In the parti
ular 
ase in whi
h h(x(u)) is linear, then F is a ve
tor spa
e, i.e., thefeasible spa
e of the problem at hand.At x = xk, we assume that, in general, h(xk) = hk 6= 0, i.e., the 
urrent x is notfeasible, and note that f(xk +�xk) 
an be expanded, to a se
ond order, asf(xk +�xk) � f(xk) + (rf)Tk�xk + 12(�xk)T (rrf)k�xk ! min�xk (6.34a)subje
t to Jk�xk = �hk (6.34b)We have thus derived a linear least-square problem in �xk subje
t to the linear
onstraints (6.34b). To �nd the in
rement �xk, we resort to the ODA, as introdu
edin Se
tion 6.2. To this end, we de
ompose the foregoing ve
tor into its two orthogonal
omponents: �xk = �xk0 + Lk�uk153



where �xk0 = �JTk (JkJTk )�1hk (6.35)is the minimum-norm solution of eq.(6.34b), and Lk is the isotropi
 orthogonal
omplement of Jk de�ned in eqs.(6.13) and (6.14), while Jk itself is de�ned as thegradient of h with respe
t to x, evaluated at x = xk. Moreover, Lk and �uk arefound with the pro
edure des
ribed in Se
tion 6.2 for linearly-
onstrained linearleast-square problems. Furthermore, with �xk0 given by eq.(6.35), f(xk + �xk)be
omes a fun
tion solely of �uk, i.e.,f(�uk) � ~f(�uk) � f(xk) + (rf)Tk (�xk0 + Lk�uk)+12(�xk0 + Lk�uk)T (rrf)k(�xk0 + Lk�uk)! min�ukwhi
h 
an be 
ast in the form~f(�uk) = 12(�uk)TLTk (rrf)kLk�uk + �LTk (rrf)k�xk0 + LTk (rf)k�T �uk+ 12(�xk0)T (rrf)k�xk0 + (rf)T0�xk0 + f(xk)! min�uk (6.36)subje
t to no 
onstraints, ~f(�uk) being quadrati
 in �uk. Fun
tion ~f(�uk) has aminimum if its Hessian with respe
t to �uk, feasible Hessian Hk = LTk (rrf)kLk,is positive-de�nite. Under the assumption that this is the 
ase, then, the minimum�uk of ~f(�uk) 
an be readily 
omputed upon zeroing its gradient with respe
t to�uk, whi
h yields Hk�uk = �LTk (rrf)k�xk0 � LTk (rf)kUnder the assumption that Hk is positive-de�nite, it is invertible, and hen
e,�uk = �H�1k [LTk (rrf)k�xk0 + LTk (rf)k℄ (6.37)We have thus redu
ed the original problem to a sequen
e of linear-quadrati
programs. This means that we have solved the problem iteratively. At ea
h iteration,moreover, we �nd the 
orre
tion to the 
urrent approximation �xk by means ofa 
ombination of two linear problems, one being a minimum-norm problem, theother involving a determined linear system of equations. For this reason, the abovepro
edure is 
alled sequential quadrati
 programming.The foregoing pro
edure relies on the rather daring assumption that the HessianHk is positive-de�nite. Below we study the more realisti
 
ase of a non-positive-de�nite Hessian. 154



6.4.1 Sequential Quadrati
 Programming with Hessian Sta-bilizationIn the presen
e of a non-positive-de�nite Hessian Hk, we aim at a perturbation �Hkof the Hessian that will render the perturbed Hessian ~Hk positive-de�nite, thusprodu
ing ~Hk � Hk +�Hk (6.38)How to obtain �Hk that is guaranteed to produ
e a positive-de�nite-Hessian is thekey issue here. We des
ribe in the subse
tion below a method for the determinationof �Hk. Note that, on
e the perturbed Hessian, whi
h is most frequently referredto as the stabilized Hessian, is available, �uk is found from~Hk�uk = �LTk [(rrf)k�xk0 + (rf)k℄ (6.39)The pro
ess of �nding a positive-de�nite ~Hk is termed Hessian stabilization. Therationale behind Hessian stabilization lies in the property that, if the eigenvalues ofa n � n matrix M are f�k gn1 , then the eigenvalues of matrix M + �1, where � isa real number and 1 is the n� n identity matrix, are f�k + � gn1 . Thus, the e�e
tof adding the isotropi
 matrix �1 to M is to shift the eigenvalues of the latter tothe right of the 
omplex plane by an amount � if � > 0; if � < 0, then the sameisotropi
 matrix shifts the eigenvalues of M to the left of the 
omplex plane by anamount j�j. If the Hessian of interest is not positive-de�nite, this means that it hassome negative eigenvalues, in whi
h 
ase Hessian stabilization 
onsists in �nding theright value of � in the foregoing s
heme, that will shift the Hessian eigenvalues tothe right of the real axis|sin
e the Hessian is ne
essarily symmetri
, its eigenvaluesare all real|so that none of the shifted eigenvalues will lie on the left half of thereal axis. Noti
e that, if � > 0 is underestimated, then the asso
iated isotropi
matrix will fail to shift some of the negative Hessian eigenvalues to the right; ifoverestimated, then all shifted eigenvalues will lie on the right half of the real axis,but the Hessian will be overly perturbed, and the 
onveregen
e will slow down.Obviously, if we know the eigenvalues of the Hessian Hk, then we 
an �nd theright �k that will shift all its eigenvalues to the right. However, 
omputing eigen-values is an iterative pro
ess, ex
ept for very spe
ial 
ases of simple matri
es, andhen
e, we 
annot rely on knowledge of those eigenvalues. We dis
uss below how toestimate the right amount of shift � without having to 
ompute the Hessian eigen-values. The basis of the pro
edure is a result on positive-de�nite matri
es that were
all below. 155



Diagonal-Dominan
e in Positive-De�nite Matri
esThe Gers
hgorin Theorem (Varga, 2000) establishes a region in the 
omplex plane
ontaining all the eigenvalues of a n � n matrix A, de�ned over the 
omplex �eldC , namely, A = 26664 a11 a12 : : : a1na21 a22 : : : a2n... ... . . . ...an1 an2 : : : ann
37775A

ording to the Gers
hgorin Theorem, all the eigenvalues of A lie within a 
omplexregion S, de�ned as the union of disks Di 
entered at aii, with radius ri, in the
omplex plane, for i = 1; :::; n, ri being given byri = nXj=1;j 6=i j aij jin whi
h j � j denotes the module of ( � ). The Gers
hgorin Theorem is illustrated inFig. 6.3, the region S thus being S = n[i=1DiIf A is symmetri
 and real, whi
h is so for Hessian matri
es, then its eigenvalueslie in the union of the real intervalsIi = [aii � ri; aii + ri℄; i = 1; 2; :::; nA lower bound l of the set f�ign1 of eigenvalues of A is, thus,l � mini faii � rign1 (6.40a)the 
orresponding upper bound beingu � maxi faii + rign1 (6.40b)If A is positive-de�nite, all eigenvalues of A must be positive, whi
h means thatthe lower bound l should be positive as well. If, on the other hand, A is eithersign-inde�nite or positive-de�nite, but 
lose to singular, then l 
an be negative.Now we have, with the foregoing notation,De�nition 6.4.1 (Diagonal-dominan
e) A n�nmatrixA is said to be diagonally-dominant if aii > ri156



Figure 6.3: The Gers
hgorin disks of an arbitrary n� n matrixFurther, we have a result allowing us to 
hara
terize positive-de�nite matri
es with-out the burden of 
omputing their eigenvalues.Theorem 6.4.1 If a symmetri
 matrixA is diagonally-dominant, then it is positive-de�nite.Note, however, that the 
onverse is not true, i.e., a positive-de�nite matrix need notbe diagonally-dominant.6.4.2 Hessian Stabilization with the Aid of Diagonal-Dom-inan
eThe feasible Hessian matrix LTk (rrf)jkLk of the obje
tive fun
tion 
an fail to bepositive-de�nite when the Hessian (rrf)jk fails to be so. However, it may wellhappen that the latter fails to be positive-de�nite and yet the former is positive-de�nite. In this light, it appears that we need not stabilize the Hessian itself, butonly its feasible proje
tion. In pra
ti
e, we have found that stabilizing the Hessian,rather than only its feasible proje
tion, leads to a more robust pro
edure. We willthus pro
eed a

ordingly.We need �rst a 
riterion to tell us when (rrf)k is suspe
ted of being sign-inde�nite. The 
riterion is simple: 157



If (rrf)k fails to be diagonally-dominant, then sign-inde�niteness islikely to o

ur|but not guaranteed!|and hen
e, Hessian stabilization iswarranted.The stabilizing pro
edure is applied by introdu
ing a s
alar �k > 0, that we willterm the Gers
hgorin shift, su
h that a new diagonally-dominant matrixWk is usedto repla
e (rrf)k, with Wk de�ned asWk = (rrf)k + �k1 (6.41)Wk thus being guaranteed to be positive-de�nite, based on the diagonal-dominan
etheorem above.The stabilized Hessian thus yields the feasible Hessian~Hk = LTkWkLk = LTk (rrf)jkLk + �kLTkLk (6.42)Moreover, sin
e Lk is isotropi
, for it has been 
hosen as an isotropi
 orthogonal
omplement of Jk, it turns out thatLTkLk = 1n0 (6.43)with 1n0 denoting the (n � l) � (n � l) identity matrix. Therefore, the stabilizedfeasible Hessian ~Hk redu
es to~Hk = LTkWkLk = LTk (rrf)jkLk + �k1n0 (6.44)whi
h is now a fortiori positive-de�nite, problem (6.36) thus admitting one minimum�uk, whi
h is 
omputed from eq.(6.39).Choi
e of the Gers
hgorin ShiftIn this subse
tion we stress the importan
e of the sele
tion of �k, where subs
ript kdenotes the iteration number. With a proper sele
tion, the number of iterations 
anbe e�e
tively redu
ed. First, we assume that (rrf)k was found to fail the diagonal-dominan
e test, and hen
e, the lower bound lk of its eigenvalues is negative.The sele
tion of �k is suggested to be slightly greater than the lower bound lk ofthe eigenvalues, as obtained by the diagonal-dominan
e 
riterion (or test), i.e.,�k = �(1 + �k)lk (6.45)where �k is a positive number, that is to be 
hosen as small as possible.158



The value of �k is related to the bandwidth bk of the Hessian eigenvalues, withbk de�ned as bk = uk � lkExample 6.4.1 (Powell's Fun
tion)A problem proposed by (Powell, 1969) is solved here:f(x) = ex1x2x3x4x5 ! minx ; x � [ x1 x2 x3 x4 x5 ℄Tsubje
t to the nonlinear equality 
onstraintsh1 = x21 + x22 + x23 + x24 + x25 � 10 = 0h2 = x2x3 + x4x5 = 0h3 = x31 + x32 + 1 = 0A word of 
aution is in order here: while the exponential fun
tion ex is 
onvex|its se
ond derivative with respe
t to x is positive everywhere|the bivariate exponen-tial fun
tion ex1x2 is not 
onvex everywhere, and neither is so the above obje
tivefun
tion. In fa
t, the Hessian of the bivariate exponential be
omes sign-inde�nitein a region of the x1-x2 plane. This statement is illustrated with the plot of thisfun
tion displayed in Fig. 6.4. The 
on
lusion of the foregoing dis
ussion is, then,that the multivariable exponential fun
tion, like Powell's fun
tion, has a Hessianthat is sign-inde�nite in a region of R5 . Optimum solutions were obtained with twodi�erent algorithms, the 
orresponding results being listed in Table 6.2. Results wereobtained under the same environment, a Sili
on Graphi
s 64-bit O
tane SE work-station, with a 250 MHz R10000 pro
essor, running the IRIX 6.5 operating system.An initial guess is taken asx0 = [�1 2 �0:5 1 2 ℄Twith toleran
e of 10�6. The ODA pa
kage requires only 58 iterations, as 
omparedwith 186 required by the Matlab Optimization Toolbox. Moreover, the CPU timerequired by the ODA is only 8.9 % of the CPU time 
onsumed by Matlab.Example 6.4.2 (The Equilibrium Con�guration of a N-link Chain)Shown in Fig. 6.5a is a 
hain with N links in its equilibrium 
on�guration, whi
hspans a distan
e d, with ea
h link of length `. Knowing that the 
hain rea
hes itsequilibrium 
on�guration when its potential energy attains a minimum value, �nd159



Figure 6.4: The bivariate exponential ex1x2
Figure 6.5: An N -link 
hain in: (a) its unknown equilibrium 
on�guration; and (b)a 
on�guration to be used as an initial guessthe said equilibrium 
on�guration. This problem, originally proposed by Luenberger(1984), was solved for the 
ase of two design variable, exa
tly, in Example 5.3.2.Angles �i, used to de�ne the 
on�guration of the 
hain, are measured from theverti
al 

w, with �i 
orresponding to the angle that the axis of the ith link makeswith the verti
al, as shown in Fig. 6.6.If V � �`f(�1; �2 : : : ; �N ) denotes the potential energy of the 
hain, and � isthe mass density of the links per unit length, then minimizing V is equivalent tominimizing f , whi
h is given byf(�1; �2 : : : ; �N) = � � 12 
os �1 + (
os �1 + 12 
os �2) + : : :+(
os �1 + : : :+ 
os �N�1 + 12 
os �N�1)� ! minf �i gN1160



Table 6.2: A performan
e 
omparison based on Powell's fun
tionMatlab ODAf 0:05395 0:05395x1 �1:7172 �1:7171x2 1:5957 1:5957x3 1:8272 �1:8272x4 0:7636 �0:7636x5 0:7636 0:7636# of iterations 186 55CPU time (s) 0.2903 0.0259

Figure 6.6: De�nition of �i for the N -link 
hainor, in 
ompa
t form,f(�1; �2 : : : ; �N ) = �12 NXi=1 [2(N � i) + 1℄ 
os �i ! minf �i gN1subje
t to two 
onstraints: the two ends (1) must lie at the same height, and (2) areseparated by a distan
e d, as shown in Fig. 6.6. The 
onstraints areh1 = NXi=1 
os �i = 0h2 = NXi=1 sin �i � d̀ = 0Under the assumption that the 
on�guration is symmetri
, and that N is even, thenM = N=2 is an integer. Thus, only one half of the 
hain need be 
onsidered. The161



Table 6.3: Luenberger's 
hain with M = 5Matlab The ODA�1 0.0893 0.0893�2 0.1147 0.1147�3 0.1599 0.1599�4 0.2625 0.2625�5 0.67856 0.6785fmin -12.2650 -12.2650Iterations 16 7CPU time (s) 0.2825 0.003261problem is, thus, simpli�ed asf(�1; �2 : : : ; �M ) = � � 12 
os �1 + (
os �1 + 12 
os �2) + : : : + (
os �1 + : : :+ 
os �M�1+12 
os �M)� = �12 MXi=1 [2(M � i) + 1℄ 
os �i ! minf 
os �i gM1The two 
onstraints then redu
e to only one:h = MXi=1 sin �i � d2` = 0This problem, with M = 5, i.e., with N = 10, is solved now using the 
on�gura-tion of Fig. 6.5b as an initial guess. The equilibrium 
on�guration of the 
hain isgiven in Table 6.3 with a 
omparison between ODA and Matlab.With the same toleran
e set at 0.0001, the ODA takes less than half the numberof iterations than Matlab; additionally, the CPU time 
onsumed by ODA is about10% of that 
onsumed by Matlab.It is noteworthy that the 
onvergen
e of ODA is dependent on the 
hoi
e of �kin eq.(6.41), for a given value of d=(2l).Example 6.4.3 (Minimum value of the Rosenbro
k Fun
tion) We in
lude anexample where the ODA pa
kage is used to �nd the minimum value of the Rosenbro
kfun
tion (Rosenbro
k, 1960), a.k.a. the banana fun
tion, de�ned asf(x) = 100(x2 � x21)2 + (1� x1)2 (6.46)162



Figure 6.7: The 
ontours of the Rosenbro
k (a.k.a. the banana) fun
tionThe problem 
an be treated as �nding an \approximate" solution of a system ofnonlinear equations, namely, � = �x2 � x211� x1 � (6.47)su
h that the least-square error f is a minimum, i.e.,f(x) = 12�TW� ! minx1; x2 (6.48)with W = � 200:0 00 2:0 � (6.49)By taking x0 = [0:2 0:2℄T as initial guess, we obtained the sequen
e of valuesx1;x2; : : : shown in Table 6.4. The optimum was rea
hed after 3 iterations, andfound to be xopt = [1 1℄T . The 
ontours of the banana fun
tion are plotted inFig. 6.7. Now, sin
e � = 0 at xopt, the normality 
ondition (3.95) is readily veri�ed.Table 6.4: Interations toward the minimum of the Rosenbro
k fun
tioni 1 2 3xi [1:000000; 0:360000℄T [1:000000; 1:000000℄T [1:000000; 1:000000℄T
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Example 6.4.4 (The Constrained Minimization of the Rosenbro
k Fun
-tion) In this example, we �nd its equality-
onstrained minimum of the Rosenbro
kfun
tion using SQP via the ODA. We thus havef(x1; x2) = 100(x2 � x21)2 + (1� x1)2 ! minx1; x2subje
t to h((x1; x2) = 0:7525x21 � 1:1202x1 � 0:8574x1x2+0:6168x2 + 0:2575x22 + 0:4053The fun
tion is notorious for its ill-
onditioning, whi
h is apparent from its
ontours, as shown in Fig. 6.8, showing elongated valleys. The out
ome is thatthe quadrati
 approximation of this fun
tion within those valleys is a family of el-lipses that have one semiaxis mu
h greater than the other one, thereby leading toill-
onditioning. Noti
e that the 
onstraint is a rather elongated ellipse that 
on-tributes to the ill-
onditioning of the problem.Starting from the initial guess x = [1:5 1:5℄T with a damping ratio of 0.025, theoptimum solution is found in 312 ODA iterations, the result beingxopt = � 0:91760:5873 �whi
h yields fmin = 6:6963
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Figure 6.8: The 
ontours of the Rosenbro
k (banana) fun
tion and its quadrati

onstraint (dashed)
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Chapter 7Inequality-ConstrainedOptimization
7.1 Introdu
tionThe 
onstraints under whi
h a design problem is formulated involve, more often thannot, inequality 
onstraints, in addition to equalities. In fa
t, inequality 
onstraintsarise naturally in design be
ause the resour
es available to a

omplish a design jobare �nite. For example, a designed obje
t must: �t into a designated region; berealizable within a given budget; and be delivered by a 
ertain date.In this 
hapter we address two issues around inequality-
onstrained problems:the normality 
onditions and the methods of solution. As to the former, we will notdwell into their rigorous derivation, whi
h are elusive to a simple analysis with thetools of linear algebra; rather, we will introdu
e the �rst-order normality 
onditionswithout derivation, and illustrate their validity with examples. The se
ond-ordernormality 
onditions will be derived using an intuitive approa
h, more so than amathemati
al formulation.The reason why linear algebra is no longer suÆ
ient to derive the normality 
on-ditions of inequality-
onstrained problems lies in the nature of inequalities, whi
hde�ne a region of Rn that is neither a ve
tor subspa
e nor a manifold, as we en-
ountered when studying equality-
onstrained problems. Now we will speak, moregenerally, of the feasible region RF , whi
h 
an have sharp edges and verti
es, noto

urring in manifolds. For this reason, a simple transformation of the form x(u) isnot suÆ
ient, in general, to guarantee the ful�llment of the inequality 
onstraints.167



7.2 The Karush-Kuhn-Tu
ker ConditionsThe �rst-order normality 
onditions of equality-
onstrained problems are 
lassi
alresults, �rst proposed by Joseph Louis de Lagrange, brilliant mathemati
ian bornin Turin in 1736 and dead in Paris in 1813. Lagrange founded in Turin a so
ietythat would be
ome the A
ademy of S
ien
es; then, Lagrange went to Berlin, tothe A
ademy of Friedri
h II, to su

eed Euler. Rather late in his life, in 1787, didLagrange move to Paris, invited by Louis XVI to tea
h at E
ole normale. Appointedsenator and made 
ount by Napoleon, Lagrange be
ame one of the �rst professorsat E
ole polyte
hnique.The �rst-order normality 
onditions for inequality-
onstrained problems had towait until well into the XX 
entury. These 
onditions were dis
losed �rst by W.Karush in his M.S. thesis in the Department of Mathemati
s at the University ofChi
ago (Karush, 1939). Apparently, these results were never published in thear
hival literature, for whi
h reason they remained unknown. Twelve years later,they were published in the Pro
. Se
ond Berkeley Symposium by Kuhn and Tu
ker(1951). The 
redit of these normality 
onditions has gone mostly to Kuhn andTu
ker, but given their history, these 
onditions are sometimes referred to as theKarush-Kuhn-Tu
ker 
onditions.The problem at hand is formulated asf(x) ! minx (7.1a)subje
t to g(x) � 0p (7.1b)h(x) = 0l (7.1
)where inequality (7.1b) is to be taken with a grain of salt: Arrays not forming orderedsets, this relation has no verbatim meaning. It is to be interpreted as shorthand fora set of m inequalities, namely,g1(x) � g1(x1; x2; : : : ; xn) � 0g2(x) � g2(x1; x2; : : : ; xn) � 0...gp(x) � gp(x1; x2; : : : ; xn) � 0To formulate the normality 
onditions, we pro
eed as before, namely, by de�ning a168



Lagrangian upon adjoining the equality and the inequality 
onstraints to the obje
-tive fun
tion, namely,F (x; �; �) � f(x) + �Th(x) + �Tg(x) ! minx;�;� (7.2)where � is found so that h(x) will vanish at a stationary point, the role played by� being des
ribed below. We start by introdu
ing aDe�nition 7.2.1 (A
tive 
onstraint) When, at a stationary point, the ith 
on-straint of (7.1b) holds with the equality sign, this 
onstraint is said to be a
tive.By extension, we will de�ne as passive any non-a
tive 
onstraint.The 
omponents of � are 
hosen so that the 
ontribution of all passive 
onstraintsto the Lagrangian vanish, that of all a
tive 
onstraints ne
essarily vanishing.While the normality 
onditions 
annot be derived by simply making the gradientof the foregoing Lagrangian equal to zero, these 
onditions look very mu
h like thoseasso
iated with equality-
onstrained problems. Indeed, x0 is a feasible stationarypoint if h(x0) = 0l; g(x0) � 0p (7.3a)rf jx=x0 + JT0�+GT0� = 0n (7.3b)� � 0m; �Tg(x) = 0 (7.3
)where G0 � G(x0) � �g�x ����x=x0 ; J0 � J(x0) � �h�x ����x=x0 (7.3d)i.e., G and J are, respe
tively, the p� n and the l � n gradients of the inequality-and equality-
onstraint fun
tions g(x) and h(x), namely,G � 26664 (rg1)T(rg2)T...(rgp)T
37775 ; J � 26664 (rh1)T(rh2)T...(rhl)T

37775 (7.4)Hen
e, the KKT 
ondition (7.3b) 
an be expressed alternatively asrf jx=x0 + �1rh1jx=x0 + �2rh2jx=x0 + � � �+ �1rhljx=x0+ �1rg1jx=x0 + �2rg2jx=x0 + � � �+ �prgpjx=x0 = 0n (7.5)169



It is noteworthy that, the 
omponents of � being non-negative and those of g(x)non-positive, ea
h �igi(x) is non-positive. Hen
e, �Tg(x) = 0 of eq.(7.3
) implies�igi(x) = 0; i = 1; : : : ; pat a feasible stationary point.Relations (7.3a{
) are the Karush-Kuhn-Tu
ker (KKT) 
onditions. These are the�rst-order normality 
onditions of the inequality-
onstrained problem at hand, andhen
e, guarantee a feasible stationary point of RF , but not a minimum. The latteris guaranteed by the se
ond-order normality 
onditions, to be studied in Se
tion 7.3.Remark: In the absen
e of inequality 
onstraints, eq.(7.3b) redu
es to the FONCof equality-
onstrained problems, eq.(5.8a).In the third row of the KKT, eqs.(7.3
), the third of these relations is referred toas the 
omplementary sla
kness, sometimes as the transversality 
ondition1. Comple-mentary sla
kness thus guarantees that, at a SP, the Lagrangian equals the obje
tivefun
tion, under the assumption that the equality 
onstraints are veri�ed.Further, if a of the m inequality 
onstraints are a
tive, we 
an partition ve
torg(x0), very likely after a reshu�ing of its 
omponents, in the formg(x0) = � gagp0 � ; p0 = p� a (7.6)where ga and gp0 are a- and (p � a)-dimensional ve
tors, respe
tively. Now, theKarush-Kuhn-Tu
ker 
onditions of eq.(7.5) 
an be restated asrf jx=x0 + �1rh1jx=x0 + �2rh2jx=x0 + � � �+ �lrhljx=x0+ �1rg1jx=x0 + �2rg2jx=x0 + � � �+ �argajx=x0 = 0n; ga = 0a (7.7)where the �rst equation resembles the FONC of equality-
onstrained problems, thistime with l + a equality 
onstraints, as derived in eq.(5.8a).Moreover, the KKT 
onditions 
an be 
ast in the 
anoni
al formrxF � �F�x = 0n; r�F � 0p; �Tr�F = 0 (7.8)A proof of the KKT 
an be found in (Culioli, 1994; Boyd and Vandenberghe, 2004).To illustrate the validity of the KKT 
onditions, we give in Fig. 7.1 a me
hani
alinterpretation: A heavy ball of weight w is 
onstrained to lie in a box, under the1Not to be 
onfused with the transversality 
ondition of 
al
ulus of variations.170



a
tion of the gravity �eld g, as depi
ted in Fig. 7.1a; the ball is shown in its equilib-rium position in Fig. 7.1b; in Fig. 7.1
, the weight of the ball, equal to �rV , whereV is the potential energy of the ball, is de
omposed into the two for
es normal tothe box walls. Noti
e that these two 
omponents push the walls, but 
annot pullthem, whi
h is the reason why �i > 0, for i = 1; 2.

(a) The general layout (b) The ball at its equilib-rium position (
) A de
omposition ofthe weight of the ball atequilibrium positionFigure 7.1: A heavy ball inside a box in
lined with respe
t to the verti
al

Figure 7.2: A quadrati
 obje
tive fun
-tion subje
t to linear inequality 
on-straints

Example 7.2.1Consider the problemf = 12(x21 + x22) ! minx1;x2subje
t to x1 + x2 � 10x1 � 0x2 � 0The obje
tive fun
tion and the 
onstraintsare illustrated in Fig. 7.2.For starters, we must express the in-equality 
onstraints in the standard formadopted at the outset, i.e., as gi(x) � 0,when
e, g1 � �x1 � x2 + 10 � 0; g2 � �x1 � 0; g3 � �x2 � 0171



Apparently, the minimum is found at x0 = [5; 5℄T . We evaluate then the itemsentering in the KKT 
onditions at this point x0:rg1 = ��1�1 � ; rg2 = ��10 � ; rg3 = � 0�1 �rf = �x1x2 � ; ) rf jx=x0 = � 55 �By inspe
tion, only the �rst 
onstraint is a
tive, and hen
e,g1(x0) = 0; �1 > 0; �2 = �3 = 0The KKT 
ondition (7.7) thus redu
es torf jx=x0 + �1rg1jx=x0 = 02; �1 > 0or �1rg1jx=x0 = � rf jx=x0whi
h states that, at the SP x0 given above, the two gradients, rf jx=x0 andrg1jx=x0, are linearly-dependent. As a 
onsequen
e, the above overdetermined sys-tem of two equations in one single unknown, �1, admits one solution that veri�esthe two equations. Upon solving this system, in fa
t, we obtain �1 = 5 > 0, therebyverifying the se
ond relation of 
onditions (7.3
).Example 7.2.2 f � 8x21 � 8x1x2 + 3x22 ! minxsubje
t to x1 � 3x2 � 32The obje
tive fun
tion and the 
onstraints of this example are depi
ted in Fig. 7.3Again, we start by restating the inequalities in our standard form:g1 � 3� x1 � 0; g2 � x2 � 32Therefore, rg1 = ��10 � ; rg2 = � 01 �172



Figure 7.3: One more quadrati
 obje
tive fun
tion subje
t to linear inequality 
on-straints
ondition (7.3b) thus leading to�1rg1jx=x0 + �2rg2jx=x0 = �rf jx=x0where, apparently, x0 = � 33=2� ; rf = � 16x1 � 8x2�8x1 + 6x2 �Hen
e, rf jx=x0 = � 36�15 �The above normality 
ondition thus leading to�1 ��10 �+ �2 � 01 � = ��3615 �whi
h, in this 
ase, turns out to be a determined system of two equations in twounknowns, its solution being�1 = 36 > 0; �2 = 15 > 0thereby verifying all KKT 
onditions.Example 7.2.3 (A Linear Program)173



A 
lass of optimization problems �nding a number of appli
ations involves alinear obje
tive fun
tion subje
t to linear equality and inequality 
onstraints. This
lass is studied within the realm of linear programming. These problems 
annot besolved with the tools des
ribed so far, for we have fo
used on least-square problems,with an extension to more general obje
tive fun
tions and equality 
onstraints. Bythe same token, linear programs arise seldom in me
hani
al design. To be true, afamily of design problems in stru
tural engineering, known as limit design, pertain tothe design of stru
tural elements, beams, 
olumns and plates, for minimum weight,in su
h a way that all modes of plasti
 failure are avoided. Problems in limit designlead to linear programs.Linear programming is a �rst instan
e of appli
ation of the KKT 
onditions. Weillustrate the 
on
ept with the problem below.f � 2x1 � x2 ! minx1;x2subje
t to g1(x) � �x1 � 0g2(x) � �x2 � 0g3(x) � x1 + x2 � 1 � 0The obje
tive fun
tion and the 
onstraints of this problem are illustrated in Fig. 7.4.

Figure 7.4: A linear program174



In this 
ase, G = 24�1 00 �11 1 35 ; rf = � 2�1 � ; x0 = � 01 �The KKT 
onditions lead to� 2�1 �+ ��1 0 10 �1 1 �24�1�2�3 35 = � 00 �Apparently, g1 and g3 are a
tive, and hen
e,�1; �3 > 0; �2 = 0thereby ending up with a system of two equations in two unknowns, �1 and �3. Uponsolving this system, we obtain, su

essively,�3 = 1 > 0; �1 = 3 > 0thereby verifying the KKT 
onditions.7.3 Se
ond-Order Normality ConditionsThe simplest way of stating the suÆ
ient 
onditions for a minimum, i.e., the se
ond-order normality 
onditions, is by imposing the 
ondition that, at a stationary pointx0 withinRF , any feasible move�xF will produ
e a growth, and hen
e, a worsening,of the obje
tive fun
tion while respe
ting the 
onstraints. In other words, at afeasible minimum, we 
annot de
rease the obje
tive fun
tion without violating the
onstraints. That is, �f � f(x0 +�xF )� f(x0) > 0 (7.9)�h � h(x0 +�xF )� h(x0) = 0l (7.10)g(x0 +�xF ) � 0p (7.11)A feasible move, moreover, is to be understood here at the �rst-order approximationof the obje
tive fun
tion and the 
onstraint fun
tions g(x) and h(x). In this light,then, eq.(7.10) 
onstrains �xF to lie in the nullspa
e of J, i.e.,J�xF = 0l (7.12)175



If we re
all now the partitioning of g(x) introdu
ed in eq.(7.6), relation (7.11) 
anbe 
orrespondingly partitioned as�ga(x) � ga(x0 +�xF )� ga(x0) = 0a (7.13a)gp0(x) � gp0(x0 +�xF ) < 0p0 (7.13b)the feasible move thus requiring that the passive 
onstraints remain passive and thattheir a
tive 
ounterparts remain a
tive. If we now letGa denote rga, the �rst-orderapproximation of eq.(7.13a) leads toGa(x)�xF = 0a (7.14)and we need not worry about the passive 
onstraints (7.13b), whi
h will be respe
tedas long as k�xFk is \small enough." Now we 
an adjoin eq.(7.14) to eq.(7.12) inthe form J�xF = 0l+a; J � " JGa # (7.15)Further, we introdu
e, 
orrespondingly, a n� (n� l�a) orthogonal 
omplementL of J, i.e., J L = O(l+a)�(n�l�a) (7.16)The suÆ
ient se
ond-order normality 
onditions 
an now be stated in exa
tlythe same form as for equality-
onstrained problems. That is, we de�ne now the(n� l � a)� (n� l � a) feasible Hessian asrrf � LT (rrf)Land hen
e, the suÆ
ient SONC 
an be stated as:A stationary point of an inequality-
onstrained problem is a minimum ifthe feasible Hessian is positive-de�nite.7.3.1 Over
onstrained ProblemsIn the spe
ial 
ase in whi
h l + a > n, the orthogonal 
omplement L does notexist for a full-rank J. In this 
ase, the problem is over
onstrained, and hen
e,ill-de�ned. However, if J is rank-de�
ient, of rank smaller than n, then some of the
onstraints are redundant, at least to a �rst order, and the problem may admit aminimum. If l + a = n, then the equality 
onstraints yield a determined system ofnonlinear equations, whi
h 
an be solved using the Newton-Raphson method. Anyof the solutions thus obtained is a solution 
andidate for the original optimizationproblem. 176



Example 7.3.1 The KKT and Se
ond-Order ConditionsConsider the problem f(x) = (x1 � 1)2 + (x2 + 2)2 ! minx1;x2subje
t to g(x) = x1 � x2 + 0:5 � 0Solution: We start by �nding a feasible stationary point x0 via the KKT 
onditions:rf + �rg = 0where rf = 2" x1 � 1x2 + 2 # ; rg = " 1�1 #Hen
e, the KKT 
onditions lead to2" x1 � 1x2 + 2 #+ �" 1�1 # = " 00 #Now, if we assume that g is a
tive, the above equation yields, with � > 0,2(x1 � 1) + � = 02(x2 + 2)� � = 0whi
h, upon summation, lead to x1 + x2 = �1while the inequality 
onstraint, written as an a
tive 
onstraint, leads in turn tox1 � x2 = �0:5The solution of the two foregoing equations is x1 = �0:25; x2 = �0:75, when
e� = 2:5 > 0 and hen
e, the KKT 
onditions are veri�ed. Now we verify the se
ond-order suÆ
ient 
onditions: In our 
ase,J = [(rga)T ℄ = [ 1 �1 ℄ ) L = " 11 #and rrf = " 2 00 2 #177



Figure 7.5: A quadrati
 obje
tive fun
tion to be minimized under one equality andone inequality 
onstraintTherefore, rrf = [ 1 1 ℄" 2 00 2 #" 11 # = 4 > 0thereby verifying the se
ond-order suÆ
ient 
ondition. Hen
e, x0 = [ �0:25 �0:75 ℄Tis indeed a minimum.Noti
e that, in this 
ase, rrf happens to be positive-de�nite, and hen
e, thefeasible Hessian is bound to be positive-de�nite as well. The 
omputation of rrfin this 
ase 
ould thus have been dispensed with.
7.4 Methods of SolutionTwo 
lasses of methods are available to solve inequality-
onstrained problems: a)dire
t methods, whi
h handle the inequalities as su
h, and b) indire
t methods, whi
htransform the problem into one of two types, either un
onstrained or equality-
onstrained. Indire
t methods being simpler to implement, we will fo
us on these,whi
h we will study �rst. Dire
t methods will be outlined at the end of the 
hapter.178



Inequality-
onstrained problems 
an be solved using the approa
h introdu
ed foreither un
onstrained or equality-
onstrained problems, upon 
onverting the problemat hand into an un
onstrained or, 
orrespondingly, an equality-
onstrained problem.This 
an be done by various methods; we fo
us on two, namely, sla
k variables andpenalty fun
tions.7.5 Indire
t MethodsIn this se
tion, the methods of sla
k variables and of penalty fun
tions are dis
ussed.7.5.1 Sla
k VariablesUpon introdu
ing the sla
k variables s1; s2; � � � ; sp into inequalities (7.1b), we 
on-vert these inequalities into equality 
onstraints, namely,
(x; s) � 26664 g1 + s21g2 + s22...gp + s2p
37775 = 0; x � 26664 x1x2...xn

37775 ; s � 26664 s1s2...sp
37775 (7.17)Noti
e that the sla
k variables being unknown, they have to be treated as additionaldesign variables, the dimension of the design spa
e being 
orrespondingly in
reased.In 
onsequen
e, the design ve
tor is now of dimension n+ p, i.e.,� � �xs � (7.18)Now, the gradient of the obje
tive fun
tion with respe
t to the new design-variable ve
tor takes the form r�f � � rfrsf � (7.19a)where rf � �f�x ; rsf � �f�s = 0p (7.19b)the se
ond relation following be
ause the sla
k variable do not appear expli
itly inthe obje
tive fun
tion.Likewise, the Hessian with respe
t to the new design-variable ve
tor � takes theform r�r�f = � rrf r(rsf)rs(rf) rsrsf � (7.20a)179



with the notationr(rsf) � �2f�x�s = � �2f�s�x�T � [rs(rf)℄T ; rsrsf � �2f�s2 (7.20b)However, sin
e rsf = 0p, the above Hessian expression redu
es tor�r�f = �rrf OnpOTnp Op � (7.21)That is, the Hessian of the obje
tive fun
tion with respe
t to the new design-variable ve
tor � is singular. In 
ase rrf is positive-de�nite, r�r�f is positive-semide�nite. Hen
e, in applying the method of sla
k variables to solve inequality-
onstrained problems, Hessian stabilization|see Se
tion 6.4.1|will always be needed.Now, the problem 
an be formulated as an equality-
onstrained problem, if weadjoin the p inequalities (7.17) to the original l, thereby obtaining a new set ofequality 
onstraints: h(�) = 0l+p (7.22)therefore, the problem at hand 
an be solved using ODA.Example 7.5.1 (Minimization of the Design Error of a Four-Bar Linkagewith an Input Crank)Determine the link-lengths of the four-bar linkage shown in Fig. 7.6, that will produ
ethe set of input-output pairs f i; �igq1 shown in Table 7.1, where  and � denote theinput and output angles.Table 7.1: The input-output pairs of f i; �ig101i 1 2 3 4 5 i 123:8668Æ 130:5335Æ 137:2001Æ 143:8668Æ 150:5335Æ�i 91:7157Æ 91:9935Æ 92:8268Æ 94:2157Æ 96:1601Æi 6 7 8 9 10 i 157:2001Æ 163:8668Æ 170:5335Æ 177:2001Æ 183:8668Æ�i 98:6601Æ 101:7157Æ 105:3268Æ 109:4935Æ 114:2157ÆThe link-lengths are obtained via the Freudenstein parameters k1, k2 and k3,de�ned as k1 = a21 + a22 � a23 + a242a2a4 ; k2 = a1a2 ; k3 = a1a4 (7.23a)180



Figure 7.6: A four-bar linkagewith the inverse relationsa2 = a1k1 ; a3 = pk22 + k23 + k22k23 � 2k1k2k3jk2k3j ; a4 = a1k3 (7.23b)for a given value of a1. The synthesis equations for the planar four-bar linkage 
anbe written in the form: (Liu and Angeles, 1992)Sk = b (7.24)where S is the synthesis matrix, and k is the ve
tor of linkage parameters. Moreover,S, k and b are de�ned asS = 26664 1 
os�1 � 
os 11 
os�2 � 
os 2... ... ...1 
os �q � 
os q
37775 k = 24 k1k2k3 35 b = 26664 
os( 1 � �1)
os( 2 � �2)...
os( q � �q)

37775 (7.25)The design error is de�ned as d � b� Sk (7.26)the purpose of the optimization exer
ise being to minimize the Eu
lidean norm ofthe design error, while ensuring that its input link is a 
rank. The 
onditions forfull mobility of the input 
rank are (Liu and Angeles, 1992)g1(x) = (k1 + k3)2 � (1 + k2)2 < 0g2(x) = (k1 � k3)2 � (1� k2)2 < 0181



By introdu
ing two sla
k-variables s1 and s2, the inequality 
onstraints are 
onvertedinto equality 
onstraints, i.e.,h1(x) = (k1 + k3)2 � (1 + k2)2 + s21 = 0 (7.27a)h2(x) = (k1 � k3)2 � (1� k2)2 + s22 = 0 (7.27b)The design ve
tor � thus be
omes � = [k1 k2 k3 s1 s2℄T . From the initial guess�0 = [0:28 0:74 0:12 1:69 1:2℄T , the solution was found to be �opt = [0:3248 0:5875�0:009725 1:556 0:2415℄T , and the 
orresponding link lengths are a1 � 1, a2 = 1:702,a3 = 103:4 and a4 = 102:8. The Eu
lidean norm of the minimum design error is5� 10�2.The problem with this design is that it leads to a quite disproportionate linkage:two of its links have lengths two orders of magnitude bigger than those of the othertwo!In the foregoing referen
e, a te
hnique is introdu
ed to eliminate this dimensionalunbalan
e by means of a penalty fun
tion.7.5.2 Penalty Fun
tionsThe idea behind penalty-fun
tion methods is to approa
h the optimum solutionasymptoti
ally, by extrapolation of a sequen
e of optimum solutions to un
onstrainedproblems. There are two possibilities: the solution is approa
hed either within thefeasible region or from without, the penalty fun
tion being 
orrespondingly referredto as interior or exterior. It is noteworthy that exterior penalty-fun
tion methodsare appli
able only to problems whereby the optimum �nds itself at the boundaryof the feasible region, but misses interior optima. Hen
e, we fo
us here on interiorpenalty fun
tions.Interior Penalty Fun
tionsGiven an obje
tive fun
tion f(x) subje
t to inequality 
onstraints, as de�ned ineq.(7.1b), a sequen
e of interior penalty fun
tions f�kg�1 is 
onstru
ted as�k(x; rk) � f(x)� rk pXi=1 1gi(x) k = 1; 2; � � � ; � (7.28)where the term �rkPpi=1[1=gi(x)℄ is 
alled the penalty term, and all the rk fa
torsare positive and observe a de
reasing order, i.e.,r1 > r2 > r3 � � � > r� > 0 (7.29)182



The idea here is that the sear
h for the minimum is 
ondu
ted within the feasibleregion. Under these 
onditions, the summation in the penalty term remains negative,and hen
e, a positive penalization is always added to the obje
tive fun
tion. As thedesign-variable ve
tor approa
hes the 
onstraint gi(x) = 0, it does so from the left,i.e., gi(x) ! 0�, and 1=gi(x) ! �1, the penalty term thus be
oming a \large"positive quantity, whose value is kept �nite thanks to the presen
e of the \small"fa
tor rk.Now, a sequen
e of un
onstrained minimization problems is de�ned:�k(x; rk) � f(x)� rk pXi=1 1gi(x) ! minx ; k = 1; 2; � � � ; � (7.30)Let x1o, x2o, : : :, x�o be the sequen
e of 
orresponding un
onstrained minima. Next,these minima are interpolated to a ve
tor fun
tion xo(r):xo(r) � 
0 + ��1X1 
krk=2 (7.31)thereby obtaining a system of �n equations in �n unknowns, the n 
omponents ofthe � unknown ve
tor 
oeÆ
ients f 
k g��10 . Note that the foregoing equations areall linear in the unknowns, and hen
e, they 
an be solved for the unknowns usingGaussian elimination, as des
ribed below. First, eq.(7.31) is written for r = ri, withi = 1; 2; : : : ; �: xo(ri) � 
0 + 
1r1=2i + 
2r2=2i + � � �+ 
��1r(��1)=2i (7.32)or xo(ri) � [ 
0 
1 � � � 
��1 ℄26664 1r1=2i...r(��1)=2i
37775 ; i = 1; 2; : : : ; � (7.33)In the next step, we regroup all � ve
tor equations above to produ
e a matrixequation. To this end, we de�ne the matri
esR � 26664 1 1 � � � 1r1=21 r1=22 � � � r1=2�... ... . . . ...r(��1)=21 r(��1)=22 � � � r(��1)=2�

37775 (7.34a)Xo � [xo(r1) xo(r2) xo(r�) ℄ (7.34b)C � [ 
0 
1 � � � 
��1 ℄ (7.34
)183



It is noteworthy that square matri
es with the gestalt of R of eq.(7.34a) o

ur quitefrequently in system theory, where they are termed Vandermonde matri
es. Forthis reason, s
ienti�
 
ode in
ludes 
ommands that ease the 
onstru
tion of su
hmatri
es. For example, Maple in
ludes the 
ommandVandermondeMatrix(r; output)in whi
h r is the array [r1; r2; : : : ; r�℄T , and output is the name assigned to thematrix thus 
onstru
ted. The 
ommand in
ludes various options.Thus, the � ve
tor equations (7.32) be
ome, in matrix form,CR = Xo (7.35a)when
e, C = XoR�1 (7.35b)or, if eq.(7.35a) is written in the usual form, with the unknown matrix C to the leftof its matrix 
oeÆ
ient, the foregoing equation should �rst be transposed, the resultthen being CT = R�TXTo (7.35
)with exponent �T indi
ating the inverse of the transpose or, equivalently, the trans-pose of the inverse. On
e the � ve
tor 
oeÆ
ients sought are available, the optimumof the inequality-
onstrained problem, xopt, is 
al
ulated asxopt = limr!0x(r)i.e., xopt = 
0 (7.36)In 
omputing the above value, note that 
0 is the �rst 
olumn of the unknownmatrix C or, equivalently, the �rst row of its transpose. In either 
ase, it is notpossible to obtain 
0 as the solution of one single ve
tor equation. A matrix equationmust be solved in order to obtain 
0. Su
h an equation is to be solved as a sequen
eof linear systems using LU-de
omposition, one 
olumn of the matrix at a time.Example 7.5.2 (A Two-dimensional Optimization Problem Subje
t to In-equality Constraints)Consider an optimization problem with an obje
tive fun
tion de�ned asf = x2 + 2y2 ! minx;y (7.37)184



subje
t to the inequality 
onstraintsg1 � �x � 0 (7.38a)g2 � �y � 0 (7.38b)g3 � 1� x� y � 0 (7.38
)

Figure 7.7: Iso
ontours of the penalty fun
tion with r1 = 0:1

Figure 7.8: Iso
ontours of the penalty fun
tion with r2 = 0:01From a sket
h of the 
onstraints and the 
ontours of the obje
tive fun
tion in thex-y plane, it should be apparent that the minimum of f is attained at a point wherethe gradient rf is parallel to the normal to the line g3(x; y) = 0. The optimumvalues of x and y are, then xopt = 23 ; yopt = 13185



Figure 7.9: Iso
ontours of the penalty fun
tion with r3 = 0:001We demonstrate below the appli
ation of penalty fun
tions to obtain the foregoingoptimum. We have�k � x2 + 2y2 � rk ��1x � 1y � 1x + y � 1� ; k = 1; : : : ; 3 ! minx; ysubje
t to no 
onstraints, forr1 = 0:1; r2 = 0:01; r3 = 0:001The penalty-fun
tion iso
ontours for di�erent rk values are shown in Figs. 7.7{7.9. In those �gures, the iso
ontour of the obje
tive fun
tion f that in
ludes the
onstrained minimum is indi
ated with a dashed 
urve.The optima xo(rk) � [ xo(rk); yo(rk) ℄T for the three given values of rk were foundby the ODA, using subroutine ARBITRARY, asxo(r1) = � 0:79410:4704� ; xo(r2) = � 0:71400:3703 � ; xo(r3) = � 0:68360:3434 � (7.39)We now �t the values of fxo(rk)g31 to the fun
tionxo(r) = 
0 + 
1r1=2 + 
2rWe thus haveR = 24 1 1 10:3163 0:1000 0:031630:1000 0:0100 0:0010035 ; Xo = � 0:7941 0:7140 0:68360:4704 0:3703 0:3434� (7.40)The 
oeÆ
ient matrix C is thus found to beC = XoR�1 = � 0:6687 0:4790 �0:26050:3317 0:3612 0:2443 � (7.41)186



Therefore, xopt = 
0 = � 0:66870:3317� (7.42)whi
h yields the optimum with two signi�
ant digits of a

ura
y.7.6 Dire
t MethodsOf the various dire
t methods for the solution of inequality-
onstrained problems,we shall dis
uss here three:(i) The method of the feasible dire
tions;(ii) the generalized redu
ed-gradient method; and(iii) the 
omplex method.7.6.1 The Method of the Feasible Dire
tionsThe method is due to Zoutendijk (1960). An outline of the method will be given ina future edition.7.6.2 The Generalized Redu
ed-Gradient MethodThis method, abbreviated as the GRG method, is an evolution of the gradient-proje
tion method proposed by Rosen (1960). Further developments led to theredu
ed-gradient method, as appli
able to arbitrary obje
tive fun
tions with linearequality 
onstraints and inequalities of the form x � 0. The generalization of theredu
ed-gradient method lies in its appli
ability to nonlinear equality and inequality
onstraints.The method is best des
ribed if the problem at hand is formulated in a slightlydi�erent format than the one we have used so far: Given the obje
tive fun
tion f(x)and the C1-
ontinuous fun
tions hj(x), for j = 1; : : : ; l + p,f(x) ! minx (7.43a)subje
t to hj(x) � 0; j = 1; : : : ; p (7.43b)hp+j(x) = 0; j = 1; : : : ; l (7.43
)li � xi � ui; i = 1; : : : ; n (7.43d)187



The problem is �rst reformulated upon elimination of the �rst p inequalities bymeans of nonnegative sla
k variables xn+1; : : : ; xn+p. The 
onstraints be
ome now:hj(x) + xn+j = 0; j = 1; : : : ; p (7.44a)hp+j(x) = 0; j = 1; : : : ; l (7.44b)li � xi � ui; i = 1; : : : ; n (7.44
)xn+j � 0; j = 1; : : : ; p (7.44d)Noti
e that the sla
k variables introdu
ed in eq.(7.44a) are non-negative, while thoseof Subse
tion 7.5.1 are quadrati
. The reason for the di�eren
e is that the latterwere introdi
ed in the framework of least squares; the former have a histori
 origin,greatly in
uen
ed by the simplex method of linear programming, whereby all de
ision,or design, variables are regarded as non-negative.We thus end up with a new problem:f(x) ! minx (7.45a)subje
t to hj(x) = 0; j = 1; : : : ; l + p (7.45b)li � xi � ui; i = 1; : : : ; p + n (7.45
)Inequalities (7.45
) will be termed bilateral.Remark: In light of eqs.(7.43
), the problem at hand has n0 � (n � l) degreesof freedom, and hen
e, (n � l) design variables|or a 
ombination thereof|
an befreely pres
ribed.Strategy: Partition the set of design variables into two sets: (n � l) independentdesign variables and (l+p) dependent design variables, a.k.a. state variables. Relabelthe design variables, if ne
essary.De�nitions:x � �yz � ; y � 26664 x1x2...xn�l
37775 ; z � 26664 xn�l+1xn�l+2...xp+n

37775 ; h � 26664 h1(x)h2(x)...hl+p
37775 (7.46)� y: (n� l)-dimensional ve
tor of independent variables� z: (l + p)-dimensional ve
tor of dependent variables or state variables188



� The partial derivatives �f=�y, �f=�z, �h=�y, and �h=�z denote derivativesthat do not take into a

ount the dependen
e of z from y� df=dy denotes the total derivative of f with respe
t to y, whi
h takes intoa

ount the dependent variables, and is, hen
e, a (n� l)-dimensional ve
tor� dh=dy denotes the total derivative of h with respe
t to y, whi
h takes intoa

ount the dependent variables, and is, hen
e, a (l + p)� (n� l) matrixThat is, dfdy � 26664 df=dx1df=dx2...df=dxn�l
37775 ; dhdy � � dhdx1 dhdx2 : : : dhdxn�l� (7.47)Remark: Be
ause of the 
onstraints (7.45b), the partial derivatives with respe
t toz are dependent upon those with respe
t to y. Indeed, sin
e the equalities (7.45b)must hold, we must have h(y; z(y)) = 0 (7.48a)whi
h means that the total derivative of h with respe
t to y must vanish. From the
hain rule, dhdy � �h�y + �h�z �z�y = 0 (7.48b)Let C � �h�y = 26664 �h1=�x1 �h1=�x2 � � � �h1=�xn�l�h2=�x1 �h2=�x2 � � � �h2=�xn�l... ... . . . ...�hl+p=�x1 �hl+p=�x2 � � � �hl+p=�xn�l

37775 (7.48
)
D � �h�z = 26664 �h1=�z1 �h1=�z2 � � � �h1=�zl+p�h2=�z1 �h2=�z2 � � � �h2=�zl+p... ... . . . ...�hl+p=�z1 �hl+p=�z2 � � � �hl+p=�zl+p

37775 (7.48d)when
e C is a (l + p) � (n � l) matrix, while D is a (l + p) � (l + p) matrix. Wethus have ) C+D�z�y = 0Solving for �z=�y from the above equation yields�z�y = �D�1C (7.49)189



Also noti
e that �f�x � � �f=�y�f=�z � (7.50)By appli
ation of the 
hain rule, the total derivative of f with respe
t to y is givenby dfdy = �f�y + � �z�y�T �f�zSubstitution of eq.(7.49) into the above equation leads todfdy = �f�y � (D�1C)T �f�z= [ 1n�l �(D�1C)T ℄ � �f=�y�f=�z � �M�f�x (7.51)where� 1n�l: (n� l)� (n� l) identity matrix� M: a (n� l)� (p+ n) matrix, namely,M � [ 1n�l �(D�1C)T ℄ (7.52)De�nition: The redu
ed gradient of f is de�ned as the (n� l)-dimensional ve
tordf=dyRemarks:� The redu
ed gradient of f is a linear transformation of the gradient of f withrespe
t to x, the transformation being given by matrix M� In the absen
e of inequalities (7.45
), the normality 
ondition of Problem(7.45a & b) are dfdy �M�f�x = 0 (7.53)i.e., at a stationary point of Problem (7.45a & b), the gradient of f withrespe
t to x need not vanish; only its proje
tion onto matrix M must vanish.Apart from inequalities (7.45
), whi
h are relatively simple to handle, the prob-lem 
an be treated as an un
onstrained one.It is noteworthy that MT plays the role of the isotropi
 orthogonal 
omplementL of J � �h=�x. Indeed, from eq.(7.49),�z = �z�y�y = �D�1C�y190



or D�1C�y +�z = 0l+pwhi
h 
an be 
ast in the form[D�1C 1l0 ℄ ��y�z � = 0l+pwhere l0 � l + p. Further, re
alling the 
onstraints h(x) = 0, we have�h�x�x � J�x = 0when
e, J = [D�1C 1l0 ℄Now, JMT = [D�1C 1l0 ℄ � 1n�l�D�1C � = D�1C�D�1C = Ol0�n0with n0 � n�l. Therefore,MT is an orthogonal 
omplement of J. However, 
ontraryto L, MT , or M for that matter, is not isotropi
.We need two sear
h dire
tions at the ith iteration: one for y and one for z. To�nd these dire
tions, we start by re
alling eq.(7.48a), when
e�h = �h�y|{z}�C �y + �h�z|{z}�D �z = 0l+p (7.54)Let, at the ith iteration, �y = �si; �z = �ti; � > 0 (7.55)Substitution of eq.(7.55) into eq.(7.54) leads to�Csi + �Dti = 0Sin
e � > 0, the above equation leads, in turn, toCsi +Dti = 0when
e, ti = �D�1Csi (7.56)191



All we need now is si. Sin
e we want to minimize f(x; y), a plausible 
hoi
e issi = � dfdy ����(yi;zi) (7.57)Further, substitution of eq.(7.57) into eq.(7.56) leads to the desired expression forti, namely, ti = D�1Cdfdy ����(yi;zi) (7.58)thereby obtaining the two desired sear
h dire
tions.We thus have an update of x:xi+1 � �yi + �sizi + �ti � (7.59)The optimum value �� of � is found upon solving an un
onstrained problem ofone-dimensional minimization:f(yi + �si; zi + �ti) ! min� (7.60)Remark: The foregoing optimization is implemented without 
onsideration of in-equalities (7.45
). Hen
e, a test must be 
ondu
ted to verify whether those 
on-straints are obeyed.Adjustment: Let �i, for i = 1; : : : ; p + n, be the positive value of � that rendersone of the two inequalities of ea
h of relations (7.45
) a
tive. Then, let �opt be theadjusted value of � that does not violate the above inequalities, i.e.,�opt = minf��; f�i gp+n1 g (7.61)Hen
e, xi+1 � �yi + �optsizi + �optti � (7.62)Remark: After the foregoing adjustment has taken pla
e, nothing guarantees thatthe 
onstraints (7.45b) are veri�ed. Hen
e, one further adjustment is needed:Complying with the equality 
onstraints: With y �xed to its 
urrent value,y
urr, we 
orre
t the 
urrent value z
urr of z by means of the Newton-Raphson algo-rithm, i.e.,1. h
urr ! h(z
urr;y
urr) 192



2. h(z
urr +�z;y
urr) � h
urr + �h�z ����y=y
urr; z=z
urr �z ! 03. �z = �" �h�z ����y=y
urr; z=z
urr#�1 h
urr � �D�1h
urr4. z
urr ! z
urr +�z; h
urr ! h(z
urr;y
urr)5. If kh
urrk � � stop; else, go to 1where � is a pres
ribed toleran
e. On
e the Newton-Raphson adjustment is 
om-pleted, the optimization algorithm pro
eeds to the next iteration. The overall iter-ative pro
edure is �nished when a 
onvergen
e 
riterion has been met.Drawba
ks of the GRG method:� Su

ess is heavily dependent upon the user's 
hoi
e of independent and depen-dent variables: Its rate of 
onvergen
e d
ereases as �(D) grows (Luenberger,1984)� The speed of 
onvergen
e is slowed down by the Newton-Raphson iterations:we have an iteration loop within an exterior iteration loop!In spite of the foregoing drawba
ks, however, the GRG method is rather popular,for it is even available in Ex
el, an oÆ
e-automation software pa
kage that has beenused in the tea
hing of optimum design (Tai, 1998).Example 7.6.1 The equilibrium 
on�guration of a N-link 
hain (Luen-berger, 1984)We revisit here the problem of Example 6.4.2, for a N -link 
hain, as shown inFig. 6.5, whi
h we reprodu
e in Fig. 7.10 for qui
k referen
e.We re
all that the 
hain attains its equilibrium 
on�guration when its potentialenergy attains its minimum value. As in the above-mentioned example, we use the
on�guration of Fig. 7.10b as initial guess and �nd the equilibrium 
on�guration forthe values N = 4, d = 1:5 m, and ` = 0:5 mSolution: In following Luenberger's formulation, we let the ith link span an x dis-tan
e xi and a y distan
e yi. If V � �f(x1; y1; x2; y2 : : : ; xN ; yN) denotes the193



Figure 7.10: A N -link 
hain at: (a) its unknown equilibrium 
on�guration; and (b)a known 
on�guration to be used as an initial guesspotential energy of the 
hain, and � is the mass density of the links per unit length,then minimizing V is equivalent to minimizing f , whi
h is given byf(x1; y1; x2; y2 : : : ; xN ; yN) = 12y1 + (y1 + 12y2) + : : :+(y1 + y2 + : : :+ yN�1 + 12yN�1)= 12 NXi=1 [2(N � i) + 1℄ ! minf xi;yi gN1subje
t to NXi=1 yi = 0x2i + y2i � 0:52 = 0�0:5 � xi; yi � +0:5; i = 1; : : : ; NFor N = 4, we havef(x1; y1; x2; y2 x3; y3; ; x4; y4) = 12(7y1 + 5y2 + 3y3 + y4) ! minfxi;yig41subje
t to h1 � x1 + x2 + x3 + x4 � 1:5 = 0h2 � y1 + y2 + y3 + y4 = 0h3 � x21 + y21 � 0:52 = 0h4 � x22 + y22 � 0:52 = 0h5 � x23 + y23 � 0:52 = 0h6 � x24 + y24 � 0:52 = 0�0:5 � xi; yi � +0:5; i = 1; : : : ; 4194



Use symmetry to simplify the problem:x3 = x2; x4 = x1; y3 = �y2; y4 = �y1) f(x1; y1; x2; y2) � 3y1 + y2 ! minfxi; yig21Remark: Now 
onstraint h2 = 0 is identi
ally veri�ed and hen
e, is deleted. Weare thus left with the 
onstraintsh1 � x1 + x2 � 0:75 = 0h2 � x21 + y21 � 0:52 = 0h3 � x22 + y22 � 0:52 = 0�0:5 � xi; yi � +0:5; i = 1; : : : ; 2Now we have:� Design variables: x1; y1; x2; y2 ) n = 4� Equality 
onstraints: hi = 0, for i = 1; 2; 3 ) l = 3� Degree of freedom: n � l = 1 ) one single independent variable. Choose y1.Hen
e, y � [y1℄; z � 24 x1x2y2 35Preliminary 
al
ulations:�f�y = � �f�y1� = [3℄; �f�z = 24 �f=�x1�f=�x2�f=�y2 35 = 24 00135h � 24 x1 + x2 � 0:75x21 + y21 � 0:25x22 + y22 � 0:2535Hen
e, �h�y � h �h=�y1 �h=�y2 i = 24 02y10 35 � C;�h�z � [ �h=�x1 �h=�x2 �h=�y2 ℄ = 24 1 1 02x1 0 00 2x2 2y2 35 � D195



Feasible initial guess: From Fig. 7.10b, in m,x1 = x2 = 0:37500; y1 = y2 = 12p12 � 0:752 = 0:33072 ) x1 = 26664 0:330720:375000:375000:33072
37775Hen
e, f
urr � f(x1) = 3� 0:33072 + 0:33072 = 1:32288C = 24 00:661440 35 ; D = 24 1 1 00:75000 0 00 0:7500 0:6614435and D�1 = 24 0 1:3333 01 �1:3333 0�1:1339 1:5119 1:511935Further,�z�y = �D�1C (7.63)= �24 0 1:3333 01 �1:3333 0�1:1339 1:5119 1:51193524 00:661440 35 = 24�0:881920:88192�1:0000035 (7.64)) dfdy = �f�y + ��z�y�T �f�z = �f�y � (D�1C)T �f�z= 3 + [�0:88192 0:88192 �1:0000 ℄24 00135 = [3℄� [1℄ = [2℄Sear
h dire
tions: s1 = � dfdy ����x=x1 = �[2℄Hen
e, t1 = �D�1Cs1 = 24�0:881920:88192�1:0000035 [�2℄ = 24 1:7638�1:76382:0000 35) �x = �yz � = ��s1�t1 � = �26664�2:00001:7638�1:76382:0000

37775196



and xnew = x
urr +�x = 26664 0:33072� 2:0000�0:37500 + 1:7638�0:37500� 1:7638�0:33072 + 2:0000�
37775Thus, f(x+�x) = f(�) = 3(y1 +�y1) + (y2 +�y2)= 3(0:33072� 2�) + 0:33072 + 2� = 1:3229� 4�Hen
e, in order to minimize f(�) we must make � (> 0) as large as the 
onstraintsallow us. In the next step we �nd the set f�i g41 allowing us to attain the equalityon one side of the set of inequalities (7.45
):y1 : 0:33072� 2:0000�1 = �0:5 ) �1 = 0:830722:0000 = 0:41536x1 : 0:37500 + 1:7638�2 = 0:5 ) �2 = 0:125001:7638 = 0:070868x2 : 0:37500� 1:7638�2 = �0:5 ) �3 = 0:875001:7638 = 0:49608y2 : 0:33072 + 2:0000�1 = 0:5 ) �4 = 0:169282:0000 = 0:084640when
e, �opt = minf0:41536; 0:070868; 0:49608; 0:084640g = 0:070868Therefore, xnew = 26664 0:33072� 2:0000� 0:0708680:37500 + 1:7638� 0:0708680:37500� 1:7638� 0:0708680:33072 + 2:0000� 0:070868

37775 = 26664 0:188980:50000:25000:47246
37775) fnew = 3� 0:18898 + 0:47246 = 1:0394whi
h means that we brought down the obje
tive fun
tion by 21% of its original valuein one single iteration. However, nothing guarantees that the equality 
onstraintsare satis�ed. Let us verify:hnew = h(xnew) = 24 0:5000 + 0:25000� 0:750000:50002 + 0:188982 � 0:500020:250002 + 0:472462 � 0:50002 35 = 24 0:00000:0357130:03571835 6= 0Hen
e, a 
orre
tion to z, with y kept at its 
urrent value y
urr, is warranted:Dnew�z = �hnew197



where Dnew � D(xnew) = 24 1 1 01 0 00 0:5000 0:9449235Hen
e,24 1 1 01 0 00 0:5000 0:944923524�x1�x2�y2 35 = 24 0:00000:0357130:03571835 ) �z = 24�0:0357130:035713�0:05669835Thus, h(znew +�z;ynew) = 24 0:00000:00127860:004486635Hen
e, the norm of h has been brought down by one order of magnitude. Besides,f(znew + �z;ynew) = 0:9827, and hen
e, the obje
tive fun
tion was brought downby an additional 5.5%, thereby 
ompleting one full iteration. Further iterations areleft to the reader as an ex
er
ise.7.6.3 The Complex MethodA 
omplex in IRn is a polyhedron with m > n + 1 verti
es; e.g., in 2D, a 
omplexis a quadrilateron; in 3D a 
ube is an example of a 
omplex. We des
ribe belowa method due to Box (1965). The method is based on a 
omplex C with m = 2nverti
es, for n � 2. Implementations are reported in (Kuester and Mize, 1973) and(Xu et al., 1994).Box's Algorithm1. Given one feasible vertex x1 of the initial 
omplex, generate theremaining 2n�1 verti
es so that 
omplex is feasible: C = fxig2n1 2RF , the feasible region2. Let fi � f(xi) and fM = maxffig2n %xM is the worst vertex3. Let C 0 = fxig2ni=1; i6=M and let x be the position ve
tor of the 
entroidof C 0, i.e., x = 12n� 1  2nXi=1 xi � xM!198



Figure 7.11: Repla
ement of the worst vertex of the 
omplex by a re
e
tion4. Re
over lost vertex of 
omplex by refle
ting xM about x by meansofxnew  xM  x� �(xM � x) � (1 + �)x� �xM ; � > 0 (�Box = 1:3)5. if xnew 2 RF, 
ontinue; else5.1 xnew  12(x+ xnew)5.2 if xnew 2 RF , 
ontinue; else go to 5.1abort if too many iterations6. go to 2; if xnew is not new worst vertex 
ontinue; elsexnew  �(xM � x); 0 < � < 17. stop when 
onvergen
e 
riterion has been met.A possible 
onvergen
e 
riterion is to stop when the di�eren
e between the max-imum value fM of the obje
tive fun
tion and its minimum, fm, is smaller than apres
ribed ratio �1 times the same di�eren
e at the original 
omplex. An alternative
riterion involves the size of the 
urrent 
omplex, given by the rms value of thedistan
es of the verti
es from the 
entroid: whenever this values is smaller thana pres
ribed ratio �2 times the 
orresponding value for the original 
omplex, thepro
edure stops. A 
ombination of the two 
riteria is advisable.199
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More on the Chain ProblemExample 7.6.2 Find f that balan
es the weight of the links, noting that f is hori-zontal, for an arbitrary 
on�guration h �1 �2 iT .

Figure 7.12: ChainSolution: Apply the Prin
iple of Virtual Work: P �i = 0, where �i is power devel-oped by the ith external for
e. A

ording to Fig.7.12, �1 and �2 is power developedby weight of 1st and 2nd link, while �3 is power developed by for
e f . Hen
e, wehave �1 = �`g � _
1; �2 = �`g � _
2; �3 = f � _o2Then, we haveg � _
1 = �g 2̀ _�1 sin �1g � _
2 = g � ( _o1 + _
2=o1) = 2g � _
1 + g � _
2=o1 = �g`( _�1 sin �1 + 12 _�2 sin �2)f � _o2 = f � ( _o1 + 2 _o2=o1) = F`( _�1 
os �1 + _�2 
os �2)201



where F � kfk. Applying the Prin
iple of Virtual Work, we derive��g`22 _�1 sin �1 � �g`2( _�1 sin �1 + 12 _�2 sin �2) + F`( _�1 
os �1 + _�2 
os �2) = 0or [��g`(12 sin �1 + sin �1) + F 
os �1℄ _�1 + [�12�g` sin �2 + F 
os �2℄ _�2 = 0Sin
e _�1 and _�2 are independent, we obtain��g`32 sin �1 + F 
os �1 = 0;��g`12 sin �2 + F 
os �2 = 0;or 3 sin �1 � � 
os �1 = 0; sin �2 � � 
os �2 = 0 (7.65)where we introdu
e the notation � � F�g`=2Equations (7.65) represent �rst-order normality 
onditions sought.
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