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Notation1: The n� n identity matrix, when n is obvious1k: the k � k identity matrix, when k should be spei�edA: q � n oeÆient matrix of the linear system Ax = bAI: the left Moore-Penrose generalized inverse (LMPGI) of the full-rank q � nmatrix A, with q > n: AI � (ATA)�1AT (1)b: q-dimensional vetor of the linear system Ax = bC: p � n, with p < n, oeÆient matrix of the underdetermined linear systemCx = dCy: the right Moore-Penrose generalized inverse (RMPGI) of the full-rank p � nmatrix C, with p < n: Cy � CT (CCT )�1 (2)d: p-dimensional vetor of the linear system Cx = df : salar objetive funtion f(x) to be minimizedg(x): p-dimensional nonlinear vetor funtion of the set of inequalities g(x) � 0G: p� n Jaobian matrix of vetor funtion g(x) w.r.t. xH: the n� n Hessian matrix of the objetive funtion f(x)Hi: ith Householder reetion used to render a retangular matrix into upper-triangular form; a square matrixh(x): l-dimensional nonlinear vetor funtion of x, ourring in the equality on-straints h(x) = 0 7



J(x): l � n gradient of h w.r.t. xL: lower-triangular matrix of the LU-deomposition of a square matrix A. Alsoused to denote the orthogonal omplement of C or G; onfusion is avoidedbeause of the two di�erent ontexts in whih these matries ourl: number of equality onstraints hi(x) = 0, for i = 1; : : : ; l, expressed in vetorform as h(x) = 0m: number of equations �i(x) = 0, for i = 1; : : : ; m, expressed in vetor form as�(x) = 0n: number of design variables xi, for i = 1; : : : ; n, expressed in vetor form as xOmn: the m� n zero matrixp: number of onstraint equations gi(x) = 0, for i = 1; : : : ; p, expressed in vetorform as g(x) = 0 or Cx = dq: number of equations in Ax = bU: (square) upper-triangular matrixV: m�m lower-triangular matrix, a fator of W, i.e., W = VTVW: m�m symmetri and positive-semide�nite weighting matrixx: n-dimensional vetor of design variablesx0: minimum-norm solution of an underdetermined linear systemxL: least-square solution of an overdetermined linear systemxi: the ith omponent of vetor xxk: the kth entry of a sequene x0;x1; : : :r: the gradient operator, pronouned \nabla"; when its operand is a salar, ityields a vetor; when a vetor, it yields a matrixrr: the Hessian operator; its operand being a salar, it produes a square, sym-metri matrixk � k: a norm of either vetor or matrix ( � )8



Chapter 1Preliminaries
1.1 The Role of Optimization Within the DesignProessThe English word design derives from the Latin word designare, whih means \tomark out"|as found, for example, in the Random College Ditionary. The wordthus implies a goal, an objetive. As suh, the meaning of the word is extremelybroad, enompassing the general ativity of produing onepts aimed at a givengoal, be this pure intelletual pleasure, in the realm of art, or pragmati, in therealm of engineering.The produt of the design ativity is a good, whether tangible, e.g., a fountainpen in the realm of industrial design, or intangible, e.g., a business plan, in therealm of management. We fous here on engineering design, but this does not meanthat we exlude intangible goods. An important branh of engineering is produtionsystems, whereby the design good is many a time intangible, suh as the organizationof a healthare system.Design is an extremely omplex proess. Various models have been proposedin the literature, e.g., the one by Frenh (1992), whih divides the proess into twoparts, (i) stages/desriptions and (ii) ativities. The proess is represented as a owdiagram, in whih stages or desriptions are inluded in irles, while ativities inretangles. In this model, the proess starts with a need and ends with \workingdrawings." In-between, we have a sequene, starting by the analysis of the problem,an ativity, followed by the statement of the problem, a stage. One the problem hasbeen formulated, in design engineering terms, we suppose, as opposed to \lient-9



needs" terms, the ativity leading to the oneptual design follows, out of whihomes (ome) the "seleted sheme(s)," apparently a desription. Then omes the\embodiment of sheme(s)," i.e., of the sheme(s) seleted in the previous part.The embodiment is then followed by the \detailing" of the designed objet, also anativity.However, the design proess is reognized as being anything but a one-way street.Two feedbak loops are thus inluded in Frenh's model: One at the oneptualdesign level, in whih a revision may indiate that the problem needs further analysis,and hene, the designer or the design team must return to the �rst ativity. A seondloop arises at the embodiment level, at whih the designer may realize that either arevision of the oneptual design is needed, or even a revision of the problem analysisis warranted.The foregoing model ontemplates the design proess as a onsultant's ativity,in whih a onsultant|an individual or a ompany|partiipates in a projet withinan organization, to either develop a new produt or improve an existing one. Themodel does not ontemplate the prototyping aspets|usually outside of the sopeof the onsultant's ativities|that lead to the realization of the design motivatedby the lient's need. Prototyping is needed when either an innovative produt isunder design or when an improvement on an existing design is planned that willa�et thousands or millions of produed objets. Prototype tests may bring aboutvarious feedbak loops in turn. We propose in Fig. 1.1 an alternative model thatshould help better understand the role of optimization within the design proessand its plae therein.In the model of Fig. 1.1, the design proess is initiated by a lient's need. Thedesigner then translates the need into a form that allows the designer to analyzethe lient's needs within a design ontext, whih is the blok indiated as \ProblemDe�nition." One the problem is well-de�ned, free of the fuzziness of the lient'sdesription, a searh for alternative solutions begins, leading to a design andidate.These ativities take plae within the \Preliminary Design" box in the proposedmodel. One a design andidate has been seleted, a detailed design follows, asinluded in the dashed box of the same model. In this phase, the input is a prelim-inary design solution, devoid of details. That is, the preliminary design is nothingbut a rough layout needing an embodiment, i.e., a detailed de�nition in terms ofmaterials, dimensions, and so on. The �rst step in this stage is the synthesis of theembodiment, i.e., a topologial layout of the design|number of moving parts; typesof moving parts; individual funtions of the parts; et.|involving only a qualitative10



desription of the design struture. One a topologial layout has been produed, itsdesign features are identi�ed and labelled, probably using mathematial symbols,suh as ` for length; m for mass; R for resistor; P for ompressive load; T for tensileload; et.A key step in the dashed box onsists in assigning numerial values to the fore-going features, whih is a task alling for disipline-spei� knowledge|uid me-hanis; strutural engineering; mahine design; multibody dynamis; et.|eithertheoretial or empirial. Out of this knowledge omes a mathematial model re-lating all the foregoing features. Numerial values an now be assigned to thesefeatures using most often good engineering judgment, whih omes only from expe-riene. As a means of verifying deisions on dimensioning, the designer an resort towell-developed design methods leading systematially to the best possible values ofthose features, while satisfying the lient's needs and budgetary onstraints. Under\budgetary" we understand not only �nanial resoures, but also time, for deadlinesmust be respeted. How to assign values systematially to the foregoing features isthe role of optimization.Optimization is thus a proess by whih the deision-maker, in our ase thedesigner, arrives at optimum values of the features de�ning the design solution pro-posed. A set of optimum values has been ahieved when a ost has been minimizedor a pro�t has been maximized, while respeting the mathematial model, i.e., thefuntional relations among all quantities at stake and the budgetary onstraintsexpressed in the form of equality or inequality relations. One all design featureshave been determined, and validated by means of simulation using disipline-spei�tools|omputational uid dynamis ode; �nite element ode; eletromagneti de-sign ode; ode implementing Monte Carlo methods; et.|an embodiment of thedesign solution an be produed, probably as a virtual prototype. Suh embodimentis the output of the dashed box.The embodiment is then further developed to the last detail, in order to allowfor third parties, e.g., a mahine-tool shop, to produe all the parts leading to thephysial prototype upon assembly. Finally, the physial prototype is subjeted tovalidation tests before it is erti�ed and ready to go either into mass produtionor to the lient as an end user, thereby ompleting the design proess. Currenttrends ditate that the design ontemplate not only delivery to the end user, butalso disposability of the designed objet upon ompletion of its life yle.Engineering design problems have inreasingly beome model-based, in that theiromplexity alls for mathematial models involving many quantities, some of whih11



Figure 1.1: The role of optimization within the design proessare to be deided on by the designer with the purpose of meeting performanespei�ations|e.g., the thrust that an airraft engine must deliver at a given rpm|under given environment onditions|engine must operate at a spei�ed ambienttemperature and at a given ambient pressure. We thus lassify the various quantitiesourring in the model into:� Design Variables (DV): Those quantities that the designer has to �nd so asto produe the spei�ed performane under the given onditions;� Design-Environment Parameters (DEP): Those quantities over whih the de-signer has no ontrol, and that de�ne the onditions under whih the designedobjet must operate; and 12



Figure 1.2: A oni luth� Performane Funtions (PF): Relations representing the performane of thedesign in terms of design variables and design-environment parameters.Heneforth we shall denote by x the n-dimensional vetor of design variables;we shall refer to x, onsequently, as the design-variable vetor. Likewise, we shalldenote by p the �-dimensional vetor of design-environment parameters, while the� performane funtions, fi = fi(x; p), for i = 1; 2; : : : ; � are grouped in the design-performane vetor f. We thus havex � 26664 x1x2...xn
37775 ; p � 26664 p1p2...p�

37775 ; f � 26664 f1f2...f�
37775 ; f = f(x; p)� < n (1.1)Needless to say, the DV and the DEP vetors being independent from eahother, their dimensions are also independent, and hene, n 6= �, in general. By thesame token, the number � of performane funtions is independent from n and �.Moreover, DV, DEP and PF will all be termed design quantities.1.1.1 Example 1: The Design of a Coni CluthLet us onsider the design of the oni luth shown in Fig. 1.2. The equationinvolving the design quantities of a luth is known to be (Shigley and Mishke,1989) 13



sin� = �8 �PdT (D2 � d2) (1.2)where � is the one angle, � is the frition oeÆient, P is the fore applied bythe user by means of a pedal, D and d are the outer and inner diameters of theone, orrespondingly, and T is the torque applied on the luth. Apparently, thedesigner is responsible for the values of d, D and, to some extent, of �. However, �is highly dependent on wear, over whih the designer has no ontrol, and hene, itis preferably to onsider � as a DEP; obviously, neither has the designer ontrol onthe engine-supplied torque T and the pressure P provided by means external to theluth itself.We have thus desribed a design problem with DV vetor x and design PF fgiven by x � " dD #T ; f � sin� = �8 �PdT (D2 � d2) (1.3)In this example, then, the DEP are the frition oeÆient �, the applied foreP and the applied torque T . Hene, the DEP vetor is p = [ � P T ℄T , andn = 2; � = 3; � = 1.Di�erent values of parameters �, p and T lead to di�erent values of �.1.1.2 Example 2: The Design of a Low-Pass FilterWe onsider now the design of the RL iruit shown in Fig. 1.3, �rst used by Taguhi(1988) to illustrate the onept of robust design, and then by Wilde (1992) to ounterTaguhi's approah. The design variables are the resistane R and the indutane L,to be determined by the designer. Moreover, the exitation voltage v(t) is given byv(t) = Vo os!t. The voltage amplitude Vo and its frequeny ! undergo variationsbeyond the ontrol of the designer.
PSfrag replaements v(t) R Li(t)

Figure 1.3: A low-pass �lter14



For this �lter, the steady-state urrent i(t) is harmoni: i(t) = Io os(!t + �),where Io and � are the magnitude and the phase of i(t). These are given byIo = VopR2 + !2L2 ; � = tan�1�!LR �Furthermore, V0 is 110 volt, while ! is 60 Hz, as provided by a power utility, the �lterbeing designed for an amplitude I0 of the urrent of 10 ampere. While it is up tothe designer to deide whih values to hoose for R and L, the voltage amplitude V0and frequeny ! are subjet to variations that lie beyond the ontrol of the designer.By the same token, the �lter performane is ompletely desribed by the urrentamplitude I0 and phase �. The vetors of DV, DEP and PF are, thus,x = " RL # ; p = " Vo! # ; f = " Io� #Apparently, then, in this design problem we have n = 2, � = 2 and � = 2.1.2 The Struture of Optimum Design ProblemsIn optimum design problems, the DEP are given by the lient either expliitly orimpliitly. The designer then assumes that these bear ideal values that are represen-tative of the operation onditions, and do not hange. The fat of the matter is thatthe DEP entail values that are random and hene, are known, if at all, only throughtheir statistis, suh as mean values and standard deviations; when the parametersobey a Gaussian distribution, mean value and standard deviation are suÆient todesribe the variation of the DEP. In this ase, then, the designer uses the meanvalues of the DEP as the nominal values of these parameters, on whih the designis based.The foregoing approah is lassial, and will be followed here. An alternativeapproah, due to Taguhi (1988), onsists in admitting that the DEP are not �xed,but varying in a random manner, beyond the ontrol of the designer, the purpose ofthe design task then being to selet the design variables in suh a way that, underarbitrary variations of the DEP within a ertain range, the PF exhibit \small"variations. This approah is known as robust design. For an introdutory ourse,we will not dwell on this approah. SuÆe it to say that the methods disussedin this ourse are equally appliable to robust design, if with a suitable alternativeformulation. 15



In an optimum design problem the designer hooses either one or several PFand formulates an objetive funtion to be either minimized, when this funtionrepresents a ost, or maximized, when the same represents a pro�t. As a matter offat, pro�t-maximization an be readily turned into ost-minimization if the pro�tis rede�ned as a ost by, for example, reversing its sign or taking its reiproal.Moreover, a large lass of optimum design problems lends itself to a least-squareformulation, whih inherently aims at minimizing a sum of squares. For these rea-sons, and unless otherwise stated, we will aim in this ourse at the minimization ofan objetive funtion f(x). De�ning the objetive funtion is thus a simple matterwhen only one of the PF is of interest. In de�ning objetive funtions, however, asin many design tasks, it will prove onvenient to use dimensionless quantities.1.2.1 Example 3: The Optimum Design of an IC EngineValve-Driving Mehanism

Figure 1.4: Cam mehanismIn this problem we want to determine how \sti�" the valve-opening mehanismof an IC engine, shown in Fig. 1.4, should be designed so as to satisfy the operationonditions desribed below. In order to simplify the ensuing mathematial model,we neglet frition fores; then, we �nd the minimum natural frequeny !n =pk=mof the mehanism, that will prevent separation between am and follower, for a givenam-speed _ = !0 = onst. 16



Figure 1.5: Cam pro�leWe shall refer to the am geometry of Fig. 1.5, where b is the radius of thebase irle and h is the rise. The am pro�le has been found so as to produe thevariable part �( ) of the follower-displaement program of Fig. 1.6. Aording tothis program, the follower rises from  = 70Æ = 7�=18 to  = 5�=6; then, dwellstill  = 7�=6, to return to its lower dwell at  = 29�=18, whih ends after theam has undergone a rotation of  = 70Æ = 7�=18. Moreover, both rise and returnphases are spei�ed as idential here, while following a yloidal motion (Angelesand L�opez-Caj�un, 1991).

Figure 1.6: The follower-displaement program17



For starters, we need a mathematial model, that an be readily derived froma free-body diagram (FBD), as skethed in Fig. 1.7. In this �gure, F (t), or F ( )for that matter, is the ontat fore between am and follower and k(� + l0) is thefore exerted by the spring on the follower, of mass m, under the assumption thatthe spring is ompressed by an amount l0 when the follower is at the lower dwell.Moreover, we assume that kl0 = mg, with g denoting the gravity aeleration. Fromthe FBD, we have

Figure 1.7: Free-body diagram of a am mehanismm�s = �F (t) + k(� + l0)�mg; s(t) = L� [�(t) + l0℄where L is the length of the undeformed spring. Realling our assumptions, theforegoing model redues to F (t) = k� +m��Sine the am turns at a onstant speed !0, appliation of the \hain rule" leads to_� = �0( ) _ = �!0�0( )and hene, �� = �!20�00( )After simple alulations, F ( ) = m[!2n�( ) + !20�00( )℄Sine !0 is a known onstant, F ( ) an be made positive for any value of  by hoosing !n \large enough." Given that !2n = k=m, !n an be rendered high18



by hoosing a \large" value of k and a \small" value of m. However, hoosing ktoo large will require an extremely large volume to aommodate the mehanism.By the same token, a too-small value of m will lead quikly to wear and inreaseunneessarily the maintenane osts of the engine. Hene, !n should be made \largeenough," but not \too large." Just how large is large-enough is the subjet of thedisussion below.In order to have F ( ) � 0, we must have !2n�( ) + !20�00( ) � 0, i.e.,!2n!20 � ��00( )�( )Apparently, the minimum value of !n guaranteeing that no separation will ouris that whih makes the above relation an equality for the maximum value of theright-hand side, i.e., !2n!20 = max ���00( )�( ) �the problem now reduing to �nding the maximum of the ratio ��00( )=�( ). Itis apparent that this ratio takes its maximum in the region where �00( ) � 0, andhene, the searh for the maximum an be onstrained to the return stage, i.e., tothe interval [7�=6; 29�=18℄. Hene, we an state our optimum-design problem inthe form max ���00( )�( ) �subjet to 7�=6 �  � 29�=18Alternatively, the foregoing problem an be stated asf( ) � ��00( )�( ) ! max subjet to 7�=6 �  � 8�=6We will not dwell on the methods of solution of the foregoing problem here. Theintention is just to highlight a few features of the example at hand:1. A design problem has led to the maximization of a real funtion f of one singlevariable,  ;2. The maximization is onstrained to a �nite interval on the real axis;19



3. The real funtion f( ) to be maximized is not analyti over the whole realaxis, whih means that f( ) does not admit a series expansion everywhere onthe real axis, and hene, it does not have ontinuous derivatives everywhere,of an arbitrary order1.The above features are ommon of optimization problems, although,1. An optimization problem usually involves the minimization or maximization ofa real funtion of many variables, whih is alled a multivariable-optimizationproblem; and2. sometimes the funtion to minimize or to maximize is analyti everywhere;even if not analyti everywhere, it is analyti within a subinterval in whihthe minimum or, orrespondingly, the maximum, �nds itself. In our ase, f( )is analyti in ℄7�=6; 8�=6[, whih exludes the extremes of the subinterval.

1As a matter of fat, f( ) itself is ontinuous and admits ontinuous �rst- and seond-orderderivatives everywhere, but its third- and higher-order derivatives are disontinuous at the blendingpoints of the dwells with the rise and the return stages.20



Chapter 2Single-Variable Optimization
2.1 Methods of Single-Variable OptimizationWhile real-life design problems involve multiple variables, some tehniques developedto �nd the optimum of these problems rely on a searh along eah of the variables at atime. Moreover, the designer in many instanes is interested in the role played by onesingle variable, in whih ase the searh for the optimum value an be onduted withtehniques spei� to this ase. For this reason, it is onvenient to study tehniquesappliable to the solution of single-variable optimization problems, whih is thesubjet of this hapter. We start by introduing a de�nition:A funtion f(x) is unimodal in the interval [ 0; 1 ℄ if it attains one singleextremum|a minimum or a maximum|within this interval.Remarks:� We will deal only with funtion minimization in explaining the methods ofinterest|funtion maximization an be handled by paraphrasing the orre-sponding method aordingly.� A unimodal funtion need neither be ontinuous nor smooth.� De�ning the interval of interest as [ 0; 1 ℄ is not restritive. If this interval is[ a; b ℄, where a and b are any real numbers, then a simple linear transformationof the variable in question an lead to the above interval.We introdue, moreover, the basi assumption: Funtion f(x), to be mini-mized, is unimodal in the interval [ 0; 1 ℄, whih means that f(x) attains exatly oneminimum (or one maximum) in the given interval.21



As a onsequene of the above de�nition, we haveLemma 2.1.1 Let f(x) be unimodal in [ 0; 1 ℄ and attain a minimum within thisinterval. Then, its maximum lies neessarily at the extremes of the interval, i.e.,either at x = 0 or at x = 1.The proof of this lemma is left to the reader as an exerise. Moreover, note that:� The objetive funtion an be evaluated only at a disrete, �nite set of sam-ple values of its argument x, f xi gn1 . Eah funtion evaluation, f(xi) � fi,is termed an experiment. The name is quite appropriate beause in some in-stanes it may happen that the evaluation of funtion f(x) an be done onlyby physial experiments, e.g., when this funtion is the steady-state tempera-ture of an engine, that is known to hange as the proportion of a mixture offuel and air varies;� We assume that the interval in whih the minimum lies is known, and termedthe interval of unertainty (i.o.u) of the problem at hand. Upon a suitabletransformation of the design variable, this interval is mapped into the normalinterval [ 0; 1 ℄, whih is of unit length. The length of the interval of uner-tainty when the series of experiments is initiated is thus 1, the purpose of theminimization exerise being to bring down the interval of unertainty to anaeptable low, whih is ditated mostly by the ost of eah experiment;� If the ost of eah experiment is not an issue, then the funtion an be evaluatedin a rih sample of argument values within the interval [ 0; 1 ℄ and plot theorresponding values; the optimum an then be loated by inspetion, possiblyat the lik of a mouse. This is termed an exhaustive searh;� If the foregoing ost is high, then proeed iteratively: At eah iteration, theinterval of unertainty is ut by a ertain fator using a suitable strategy, i.e.,a searh method;� Any strategy exploits the unimodality assumption. We an ite four strategiesthat are the most ommonly employed:- Dihotomous searh- Interval-halving- Fibonai numbers- Golden searh. 22



2.2 Dihotomous Searh

Figure 2.1: Dihotomous searh

The quali�er \dihotomous" derives fromGreek, meaning to ut into two parts. Thestrategy to follow thus onsists in splitting theinterval into two subintervals, not neessar-ily of the same length, with one not ontain-ing the minimum, and is hene, rejeted; theother subinterval then is bound to ontain theminimum sought.The searh strategy of this method is de-sribed below:� Assume that, at iteration i, the urrentsearh interval is Ii = [ l; r ℄, of length Li = r � l < 1 (Fig.2.1);� loate two points of absissae x1 and x2 around the entre of the interval: Fora \small" Æ > 0, presribed by the user,x1 � r + l � Æ2 ; x2 � r + l + Æ2 ; fi � f(xi); f1 6= f2Note: If f1 = f2, then we have two ases: (i) f(x) is symmetri about x =(r + l)=2, in whih ase the minimum lies at x = 1=2, and we are done; and(ii) f(x) is not symmetri about x = 1=2, in whih ase we just hange Æ.� if f2 > f1, then eliminate the interval segment to the right of x2, the newsearh interval being [ l; x2 ℄. If, on the ontrary, f1 > f2, then eliminate theinterval segment to the left of x1, the new searh interval being [ x1; r ℄.Notie that the new searh interval Ii+1 is of length Li+1 = (Li + Æ)=2, i.e., slightlyover one half the length of the previous one.Now we determine the length L2k of interval I2k after 2k experiments|thisnumber is always even! To this end, we notie how the length of the i.o.u. evolvesas the searh progresses: L2 = 12 + Æ2L4 = L22 + Æ2 = 14 + Æ4 + Æ2= 14 + 3Æ4 23



L6 = L42 + Æ2 = 18 + 3Æ8 + Æ2= 18 + 7Æ8...The length of the interval after 2k experiments is thusL2k = 12k + �1� 12k� Æ (2.1)Usually, L2k is presribed, but k is not. Computing k from L2k is, nevertheless,straightforward, as desribed below: Solving eq.(2.1) for 2k yields2k = 1� ÆL2k � Æ (2.2)and hene, k = � ln[(1� Æ)=(L2k � Æ)℄ln(2) � (2.3)where d( � )e is the eiling funtion, de�ned as the smallest integer that is greaterthan the real argument ( � ). Note: 1 > Æ; 2k > 0 ) L2k > Æ.2.2.1 Example 4: Finding the Maximum Dexterity Postureof a Two-Phalanx Roboti FingerWe study here the optimum dimensioning of the two-phalanx roboti �nger, asdepited in Fig. 2.2. The geometry of the �nger is thus ompletely spei�ed by theangles that the phalanx axes make with given lines. In the �gure, only the angle �made by the distal phalanx with the �rst one is indiated beause only this angle isrelevant to the problem under study.
Figure 2.2: Two-phalanx roboti �nger

In optimizing the performane ofroboti hands, one is interested in maxi-mizing their dexterity, a performane indexthat omes into play as explained below.In robot ontrol, a veloity v of the op-eration point of the end link is to be pro-dued by a suitable set of joint rates, grouped in vetor _q, the relation between thetwo vetors being linear: J _q = v. Hene, the Jaobian matrix J(q) must be invertedin order to ompute the joint-rate vetor, for a given posture of the manipulator, as24



spei�ed by vetor q, and a given desired veloity v. Dexterity measures, essentially,how invertible the Jaobian matrix is. If we assume that a1 = l and a2 = lp2=2,whih bear the optimum proportion found by Salisbury and Craig (1982), then dex-terity an be quanti�ed by means of the produt JTJ = `2K, where K is givenby K � � 3 + 2p2 os � 1 +p2 os �1 +p2 os � 1 �It should be apparent that, when � = 0 or �, matrix K, that we shall term herethe dexterity matrix, is singular, and hene, not invertible, as is J. Between thesetwo values, 0 and �, there is one spei� value �o optimum, at whih the dexteritymatrix is maximally invertible. To �nd �o, we start by de�ning the dexterity as theratio of the smallest (�m) to the largest (�M) eigenvalues of K. In this regard, notethat K is symmetri, and hene, its eigenvalues are real. Moreover, one an readilyverify that K is positive-de�nite, and beomes singular only for the two values of �given above. We thus have the dexterity funtion D(�) de�ned below:D(�) = �m�M � 0; 0 � D(�) � 1Now, maximizing D(�) is equivalent to minimizing f(�) � 1�D(�), whih willbe de�ned as the loss of dexterity, and beomes, then, the objetive funtion of theproblem at hand. Given the form of the objetive funtion, then, eah experimentinvolves four steps:1. For a given value of �, ompute the two eigenvalues of K, a task that an bereadily implemented using an eigenvalue routine, a quadrati-equation solver,or even the Mohr irle (Norton, 2000).2. Order the two eigenvalues in asending order: �m, �M .3. Compute D(�) as D(�) = �m�M � 04. Compute f(�) as f(�) = 1�D(�) 0 � f(�) � 1An interpretation of f(�) an be obtained if we rede�ne the loss of dexterityL(�) in the formL(�) � f(�)� 100 (%) = [1�D(�)℄� 100 (%); 0 � L(�) < 100%25



and hene, when D(�) attains its maximum value of unity, L(�) attains itsminimum of 0. At the other end of the spetrum, when the �nger is posturedat a singularity, L(�) attains its maximum of 100%, indiating that the �ngerhas lost all its dexterity.An expert robotiist laims that the dexterity is maximum|the �nger is at thepeak of its positioning auray|when � lies \somewhere between 90Æ and 150Æ."Find an estimate of �opt within an interval of unertainty of 5% of the given intervallength of 60Æ.Solution: We implemented the dihotomous searh in the Maple worksheet desribedbelow, whih is posted in the ourse Web page.> restart: with(linalg):We start by produing a proedure K that will allow us to evaluate matrix K for agiven value �:> K:=pro(theta)matrix([[3+2*sqrt(2)*os(th),1+sqrt(2)*os(th)℄,[1+sqrt(2)*os(th), 1℄℄)end;K := pro(�)matrix([[3 + 2 � sqrt(2) � os(th); 1 + sqrt(2) � os(th)℄; [1 + sqrt(2) � os(th); 1℄℄)end pro> argu:= 3*Pi/4; K(argu);# Testing proedure, whih should yield the 2 by 2 identity matrix forthis value of argument theta:argu := 34 �" 1 00 1 #Apparently, proedure is OK.We introdue now a transformation that maps �, given in degrees, into the normalinterval [ 0; 1 ℄. Let the assoiated \normal" variable be x, to be produed by aseond proedure x. By the same token, we need a third proedure � to return theangle in radians, for a given value of x. Thus,26



> x:=pro(th)(th-Pi/2)/(5*Pi/6-Pi/2)end; x := pro(th) 3 � (th� 1=2 � �)=� end pro> thet:=pro(x)(Pi/3)*x+Pi/2end; thet := pro(x) 1=3 � � � x + 1=2 � � end proNow we determine the number 2k of experiments needed to attain the presribedlength of the i.o.u. We reall that the length L2k of this interval is given byL2k = 12k + Æ�1� 12k� (2.4)> L[2*k℄:=(1/2^k)+delta*(1-(1/2^k));L2 k := 12k + Æ (1� 12k )Let 2k = N . Then,> N:=solve(L_N= (1/N) + delta*(1 - 1/N), N);N := �1 + Æ�L N + ÆWe want the length of the �nal i.o.u. to be 5% of original length, for a value ofÆ of 0.01:> delta:=0.01; L_N:= 0.05; Æ := 0:01L N := 0:05> N:=subs((delta=0.01, L_N=0.05), N);N := 24:75000000Hene,> k:=eil(solve(2^k=N,k)); k := 5where the Maple eil(�) ommand has been used.27



We thus need 2k = 10 experiments. Hene, the two points x 1 and x 2 within I0 arede�ned as> x[1℄:= (1-delta)/2; x[2℄:=(1+delta)/2;x1 := :4950000000x2 := :5050000000> theta[1℄:=evalf(thet(x[1℄));theta[2℄:=evalf(thet(x[2℄));K1:=evalf(K(theta[1℄));K2:=evalf(K(theta[2℄)); �1 := 2:089159115�2 := 2:099631090K1 := " 1:598631263 :2993156313:2993156313 1: #
K2 := " 1:572980385 :2864901922:2864901922 1: #> lambda:=eigenvals(K1); mu:=eigenvals(K2);� := :8760194061; 1:722611857� := :8813318770; 1:691648508> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:966408330f2 := 1:919422810f1 > f2 ) delete subinterval [0, x1℄. Let l and r denote, respetively, the absissaeof the left and right ends of the new subinterval:> l:=x[1℄; r:=1; L:=r-l;l := :4950000000r := 1L := :5050000000L is length of i.o.u. at the end of the �rst two experiments. Carry on:> x[1℄:=(l+r-delta)/2; x[2℄:=(l+r+delta)/2;x1 := 0:7425000000x2 := 0:752500000028



> theta[1℄:=evalf(thet(x1));theta[2℄:=evalf(thet(x2));K1:=evalf(K(theta[1℄)); K2:=evalf(K(theta[2℄));�1 := 2:348340509�2 := 2:358812484K1 := " 1:015769486 :0078847430:0078847430 1: #
K2 := " :994770873 �:002614564�:002614564 1: #> lambda:=eigenvals(K1); mu:=eigenvals(K2);� := :9967340325; 1:019035453� := :9936878850; 1:001082988> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:022374495f2 := 1:007442078f1 > f2 ) delete subinterval [l, x 1℄. Rede�ne l and r :> l:=x[1℄; L:=r-l; #r remains unhangedl := :7425000000L := :2575000000L is length of i.o.u. at the end of 3rd & 4th experiments. Carry on:> x[1℄:=(l+r-delta)/2; x[2℄:=(l+r+delta)/2;x1 := :8662500000x2 := :8762500000> theta[1℄:=evalf(thet(x[1℄));theta[2℄:=evalf(thet(x[2℄));K1:=evalf(K(theta[1℄)); K2:=evalf(K(theta[2℄));�1 := 2:477931206�2 := 2:488403181K1 := " :771929030 �:114035485�:114035485 1: #29



K2 := " :753805937 �:123097032�:123097032 1: #> lambda:=eigenvals(K1); mu:=eigenvals(K2);� := :7246939855; 1:047235044� := :7028174767; 1:050988460> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:445072079f2 := 1:495393178The ensuing omputations follow the same pattern. In the interest of brevity, wereord here only the last two experiments:At the end of 7th and 8th experiments, we haver := :8143750000L := :0718750000> x[1℄:=(l+r-delta)/2; x[2℄:=(l+r+delta)/2;x1 := 0:7734375000x2 := 0:7834375000> theta[1℄:=evalf(thet(x[1℄));theta[2℄:=evalf(thet(x[2℄));K1:=evalf(K(theta[1℄)); K2:=evalf(K(theta[2℄));�1 := 2:380738183�2 := 2:391210159K1 := " :951519906 �:024240047�:024240047 1: #
K2 := " :931208945 �:034395528�:034395528 1: #> lambda:=eigenvals(K1); mu:=eigenvals(K2);� := :9414793498; 1:010040556� := :9169618507; 1:014247094> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:072822847f2 := 1:106095192f2 > f1 ) delete subinterval [ x2,r ℄. Rede�ne l and r :30



> r:=x[2℄; L:=r-l; #l remains unhangedr := :7834375000L := :0409375000L is length of i.o.u. at the end of 9th & 10th experiments. Sine L is smaller than0.05, we're done. The best estimate of �opt is obviously the mid point of urrenti.o.u., i.e.,> x[opt℄:=(l+r)/2; theta:=evalf(thet(x[opt℄));xopt := :7629687500� := 2:369775334> K[opt℄:=evalf(K(theta));Kopt := " :973023585 �:013488208�:013488208 1: #> lambda:=eigenvals(K[opt℄);� := :9674365862; 1:005586999> f[o℄:=lambda[2℄/lambda[1℄;fo := 1:039434536> theta[opt℄:=evalf(th*180/Pi);�opt := 135:7781250Note that optimum value of theta is 135Æ, i.e., 3�=4 rad, whih yields a value off=1.0.
2.3 Interval-HalvingTo be inluded.2.4 Fibonai NumbersFibonai numbers are named after the Italian mathematiian Leonardo Pisano(1175), son of Guglielmo Bonaio, and hene, referred to as Filius Bonai in Latin,31



or Fibonai for brevity (Livio, 2002). These numbers form a sequene, de�nedreursively as F0 = F1 = 1 (2.5a)Fk = Fk�2 + Fk�1 (2.5b)Remark: The sequene is monotonially inreasing, for all numbers are positiveintegers and the urrent one equals the sum of the two previous ones. From eq.(2.5b),Fk � Fk�1 = Fk�2 (2.6)Moreover, by virtue of the above remark,Fk�1 > Fk�2 (2.7)Upon addition of eq. (2.6) to inequality (2.7) sidewise, we obtainFk � Fk�1 + Fk�1 > 2Fk�2i.e., Fk�2Fk < 12 (2.8)Furthermore, from eq.(2.5b), Fk�1Fk = 1� Fk�2Fk (2.9)Now we outline the strategy to follow in this method:� Let I0 � [ 0; 1 ℄ be the initial interval of unertainty, of length 1, where theminimum is known to lie.� Presribe the number n of experiments to be onduted� De�ne a length L�2 as1L�2 � Fn�2Fn L0 � Fn�2Fn �< 12� (2.10)where L0 is the length of the original interval, whih has been de�ned as unity.1Length L�1 is skipped beause we want to make the subsript of L� math that of the orre-sponding Fibonai number; sine F1 = F0, the �rst two Fibonai numbers are undistinguishable,and we an arbitrary set L�1 = L�2 = 1. L1 = L0 as well.32



Figure 2.3: Shrinking of the i.o.u. when: (a) right subinterval is eliminated; (b) leftsubinterval is eliminated

Figure 2.4: Subdivision of the new interval into three subintervals when: (a) rightsubinterval is eliminated; (b) left subinterval is eliminated� Let P1(x1) and P2(x2) be two points equidistant from the left and the rightends of I0, respetively, by a distane L�2, i.e., with absissaex1 = 0 + L�2 = Fn�2Fn < 12 (2.11a)x2 = 1� L�2 = 1� Fn�2Fn > 12 > x1 (2.11b)Note that x2 = 1� Fn�2Fn = Fn � Fn�2Fn = Fn�1Fn (2.11)Use the unimodality assumption to eliminate the subinterval, left or right, wherethe minimum annot lie. Whether the subinterval eliminated is the right or theleft, the length L2 of the new, shorter interval I2|again, suh as we do not de�ne33



L�1, we neither de�ne I1|is given byL2 = 1� L�2 = 1� Fn�2Fn = Fn � Fn�2Fn = Fn�1Fn < 1 (2.12)as depited in Fig.2.3.One the �rst iteration is ompleted, and as illustrated in Fig.2.3,� Let l and r > l denote, respetively, the absissae of the left and the right endsof the urrent, smaller interval of unertainty I2. The absissa of one of theends of I2, left or right, is either x1 or x2;� if x1 is the absissa of one of the ends of I2, ase of Fig. 2.3(b), then x2 2 I2;else, as in Fig. 2.3(a), x1 2 I2. Let xI be the absissa of point PI , the interiorpoint of I2, either P1 or P2;� note that PI lies a distane L�3 from one of the ends of I2. Now, de�ne x3 2 I2,so that its assoiated point P3 also lies a distane L�3 from the other end, asdepited in Fig. 2.4;� the proess is ontinued until the interval In, of length Ln, is obtained. Ln isthe length of the �nal interval of unertainty.The absissa xj omputed at the jth experiment is determined by length L�j , sothat its assoiated point Pj, as well as the interior point PI of interval Ij�1 are adistane L�j from the ends of Ij, with L�j given by2L�j = Fn�jFn�(j�2)Lj�1 (2.13a)while the length Lj of the jth interval of unertainty is3Lj = Fn�(j�1)Fn (2.13b)Hene, for j = n, Ln = F1Fn (2.14)whih allows us to �nd n for a presribed length Ln. Notie that, by virtue ofrelations (2.8) and (2.10), For n � 2; L�n < 12 (2.15)2see eq.(2.10), whih is valid for j = 2; see also footnote 1.3see eq.(2.12), whih is valid for j = 2 34



The Loation of the Final ExperimentLet In�1 = [ l; r ℄, of length Ln�1, be the one-before-the-last interval of unertainty.Aording with eqs.(2.11a & b), the absissae of the last two experiments, xn�1 andxn, are given as xn�1 = l + L�n (2.16a)xn = r � L�n = l + Ln�1 � L�n (2.16b)where L�n is given by eq.(2.13a), with j = n:L�n = F0F2Ln�1 � 12Ln�1 (2.17)Upon substitution of L�n, as given by eq.(2.17), into eq.(2.16b), it is apparent thatxn = l + 12Ln�1 = xn�1xn�1 and xn thus oiniding, and hene, the last experiment fails to produe twodistint points in In�1. To ope with this outome, we have to de�ne points P1 andP2, of absissae x1 and x2, in an alternative manner. For example, we an de�nethem as in the strategy employed by the dihotomous searh, with a Æ small enoughwith respet to L�n.Fibonai numbers are tabulated in many manuals, with short tables available intextbooks (Rao, 1996). Also note that sienti� software is provided with Fibonainumbers. For example, Maple inludes the ommandwith(ombinat, Fibonai):that allows the user to invoke the Fibonai number F(i) by typingfibonai(i)However, note that not all Fibonai sequenes are idential. For example,the �rst two Fibonai numbers in Maple are de�ned asf(0) = 0 and f(1) = 12.4.1 Example 5: Finding the Maximum Dexterity Postureof a Two-Phalanx Roboti FingerWe implement the Fibonai searh in a Maple worksheet:35



> restart:> with(linalg): with(ombinat, fibonai):We retake the example problem onsisting in the �nding of the most dexterousposture of a two-phalanx roboti �nger, using exatly 10 experiments. However,beause of the way Maple de�nes the Fibonai sequene, we must use F (n + 1)when we would normally use F (n). Moreover, we shall also use K, � and x exatlyas desribed in Subsetion 2.2.1.We want to have L�2 = F10�2F10 ; (2.18)but must shift the subsript by 1:> Lstar[2℄:=evalf(fibonai(9)/fibonai(11));Lstar2 := :3820224719> l:=0; r:=1; L[0℄:=r - l;> # Absissae of extremes of left- & right-hand> sides of the initial (normal) interval, and length of this intervall := 0r := 1L0 := 1> x[1℄:= l + L^star[2℄; x[2℄:= r - Lstar[2℄;x1 := :3820224719x2 := :6179775281> theta[1℄:=evalf(thet(x1));> theta[2℄:=evalf(thet(x2));> K1:=K(theta[1℄); K2:=K(theta[2℄);�1 := 1:970849324�2 := 2:217940881K1 := " 3� :7789343108p2 1� :3894671554p21� :3894671554p2 1 #
K2 := " 3� 1:205821535p2 1� :6029107675p21� :6029107675p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>; 36



� := " :81393101512:084489519 #� := " :93896338831:355747444 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 2:561014976f2 := 1:443876791f1 > f2 ) drop left end:> l:=x[1℄; L[2℄:=L[0℄ - Lstar[2℄;> Lstar[3℄:=(fibonai(8)/fibonai(10))*L[2℄;l := :3820224719L2 := :6179775281Lstar 3 := :2359550562> x[1℄:= l + Lstar[3℄; x[2℄:= r - Lstar[3℄;x1 := :6179775281x2 := :7640449438> theta[1℄:=evalf(thet(x[1℄));> K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x[2℄)); K2:=K(theta[2℄);�1 := 2:217940881K1 := " 3� 1:205821535p2 1� :6029107675p21� :6029107675p2 1 #�2 := 2:370902321K2 := " 3� 1:434859867p2 1� :7174299337p21� :7174299337p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :93896338831:355747444 #� := " :96475455421:006047163 #37



> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 1:443876791f2 := 1:042801155f1 > f2 ) drop left end:> l:= x[1℄; L[3℄:= L[2℄ - Lstar[3℄;> Lstar[4℄:= (fibonai(7)/fibonai(9))*L[3℄;l := :6179775281L3 := :3820224719Lstar 4 := :1460674157> x[1℄:= l + Lstar[4℄; x[2℄:= r - Lstar[4℄;x1 := :7640449438x2 := :8539325843> theta[1℄:=evalf(thet(x[1℄)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x[2℄)); K2:=K(theta[2℄);�[1 ℄ := 2:370902321K1 := " 3� 1:434859867p2 1� :7174299337p21� :7174299337p2 1 #�2 := 2:465032438K2 := " 3� 1:559462054p2 1� :7797310268p21� :7797310268p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :96475455421:006047163 #� := " :75204531591:042542298 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 1:042801155f2 := 1:38627590138



In the interest of brevity, we skip the intermediate results, and display only the lasttwo experiments:> x[1℄:= l + Lstar[8℄; x[2℄:= r - Lstar[8℄;x1 := :7303370787x2 := :7415730337> theta[1℄:=evalf(thet(x1)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x2)); K2:=K(theta[2℄);�1 := 2:335603527K1 := " 3� 1:384795807p2 1� :6923979033p21� :6923979033p2 1 #�2 := 2:347369792K2 := " 3� 1:401678651p2 1� :7008393253p21� :7008393253p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :99138373861:050219250 #� := " :99632860911:021398433 #> f[1℄:=lambda[2℄/lambda[1℄; f[2℄:=mu[2℄/mu[1℄;f1 := 1:059346859f2 := 1:025162204> l:= x[1℄; L[8℄:= L[7℄ - Lstar[8℄;> Lstar[9℄:= (fibonai(2)/fibonai(4))*L[8℄;l := :7303370787L8 := :03370786516Lstar 9 := :01123595505Note that the length of the i.o.u. at the end of the 8th experiment is 3.4% of originallength, i.e., smaller than at the end of 10 experiments with the dihotomous searh!> x[1℄:= l + Lstar[9℄; x[2℄:= r - Lstar[9℄;x1 := :7415730338x2 := :752808988839



> theta[1℄:=evalf(thet(x[1℄)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x[2℄));> K2:=K(theta[2℄); �1 := 2:347369792K1 := " 3� 1:401678651p2 1� :7008393253p21� :7008393253p2 1 #�2 := 2:359136057K2 := " 3� 1:418367442p2 1� :7091837208p21� :7091837208p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :99632860911:021398433 #� := " :99290888501:001216643 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 1:025162204f2 := 1:008367090f1 > f2 ) drop left end:> l:= x[1℄; L[9℄:= L[8℄ - Lstar[9℄;> Lstar[10℄:= (fibonai(1)/fibonai(3))*L[9℄;l := :7415730338L9 := :02247191011Lstar 10 := :01123595506> x[1℄:= l + Lstar[10℄; x[2℄:= r - Lstar[10℄;x1 := :7528089889x2 := :7528089887As expeted, x1 = x2. Let us estimate the optimum by dihotomous searh over thelast i.o.u.: Let Æ = Lstar10=10> delta:= Lstar[10℄/10; 40



Æ := :001123595506> x[1℄:= (l + r - delta)/2;> x[2℄:= (l + r + delta)/2;x1 := :7522471910x2 := :7533707866> theta[1℄:=evalf(thet(x[1℄)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x[2℄)); K2:=K(theta[2℄);�1 := 2:358547744K1 := " 3� 1:417537647p2 1� :7087688235p21� :7087688235p2 1 #�2 := 2:359724370K2 := " 3� 1:419196745p2 1� :7095983727p21� :7095983727p2 1 #> lambda:=<eigenvals(K1)>;> mu:=<eigenvals(K2)>;� := " :99432543291:000973602 #� := " :99149317571:001459540 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 1:006686110f2 := 1:010051874f2 > f1 ) delete [ x2; r ℄ and take as most likely estimate of the optimum themidpoint of remaining interval [ l; x1 ℄:> x[o℄:=(l+x[1℄)/2; th_opt:=evalf(th(x[o℄));> K_opt:= K(th_opt); xo := :7469101124�opt := 2:352958768 �! 134:8146ÆKopt := " 3� 1:409630165p2 1� :7048150824p21� :7048150824p2 1 #41



> lambda:=<eigenvals(Kopt)>;� := " :99865755371:007824349 #> f[opt℄:=lambda[2℄/lambda[1℄;fopt := 1:009179118
2.5 Golden-Setion SearhThis method is similar to the method based on Fibonai numbers, but its imple-mentation is muh simpler. The outome is that its onvergene is a bit slower thanthat of the former. A major di�erene with the Fibonai searh is that the numberof elimination stages is not presribed.The basis of the golden-searh method is the Fibonai sequene. Indeed, thegolden-searh strategy is derived from the Fibonai searh under the assumptionthat n in the Fibonai searh is \large"; we denote a large n appropriately by N .The length of the interval of unertainty is shrunken at every iteration by the sameproportion, as opposed to the Fibonai searh.In order to �nd the length Lk of the interval Ik at the kth iteration of thegolden searh, we ompute the orresponding lengths of the Fibonai searh forn = N !1, namely,L2 = limN!1 FN�1FN (2.19a)L3 = limN!1 FN�2FN = limN!1 FN�2FN�1 FN�1FN = limN!1�FN�1FN �2 (2.19b)In general, Lk = limN!1�FN�1FN �k�1 (2.19)Hene, all we need to implement this method is the above limit, whih is omputedbelow:Reall eq.(2.5b), for k = N : FN = FN�1 + FN�2 (2.20a)Therefore, FNFN�1 = 1 + FN�2FN�1 (2.20b)42



Now we de�ne the golden setion or golden ratio � as� � limN!1 FNFN�1 (2.20)Upon taking limits, eq.(2.20b) an be rewritten as� = 1 + 1�or �2 � �� 1 = 0; � > 0 (2.20d)whene, with three deimals,� = 1:618 or � = �0:618 (2.20e)Obviously, we need only the positive root, and hene, Lk beomesLk = � 1��k�1 = (0:618)k�1 (2.21)Greeks in the lassial period, around the �fth entury B.C.E., oined the ex-pression golden setion to refer to a retangle of divine proportions, whose base band height h observe the relation b + hb = bh (2.22)
Figure 2.5: A retangle withsides obeying the divine pro-portion

The foregoing equation readily leads to one onthe ratio b=h idential to eq.(2.20d), namely,� bh�2 � bh � 1 = 0thereby showing that the positive solution toeq.(2.22) is, indeed, �, the golden setion.This relation is laimed to appear in the faadeof the Parthenon, although Livio (2002) disputedbrilliantly this laim and others along the samelines. Nevertheless, the golden setion is irrefutablypresent in nature and in many artifats4. Shown in Fig. 2.5 is a retangle with sidesobeying the divine proportion.To implement the searh, we need the quantity L�2, whih is de�ned below:L�2 = FN�2FN = FN�2FN�1 FN�1FN = 1�2 = 0:382 (2.23)4For example, Mirosoft Word uses the golden-setion ratio to proportion its margins.43



2.5.1 Example 6: Finding the Maximum Dexterity Postureof a Two-Phalanx Roboti FingerWe implement below the golden-setion searh strategy by means of a Maple work-sheet. We shall resort to the K, � and x proedures introdued earlier.Let us alulate �:> eq:=(x^2 - x - 1); eq := x2 � x� 1> r:=<solve(eq, x)>; r := 2664 12 + 12 p512 � 12 p5 3775> phi:=evalf(r[1℄); � := 1:618033989> ihp :=1.0/phi; #we'll also need the reiproal of phiihp := :6180339887> Lstar[2℄:=ihp ^2; Lstar 2 := :3819660112Now let us �nd n from the problem spei�ation: Ln = 0:05, whih leads to1�n�1 = 0:05 (2.24)> eq:= (n-1)*ln(ihp ) - ln(0.05)=0;eq := �:4812118251n+ 3:476944099 = 0> n:=eil(solve(eq, n)); n := 8> l:=0; r:=1; #extremes of initial normal> interval l := 0r := 1> L[0℄:= r - l; #length of initial intervalL0 := 1> x[1℄:=l+Lstar[2℄; x[2℄:=r-Lstar[2℄;44



x1 := :3819660112x2 := :6180339888> theta[1℄:=evalf(thet(x[1℄)); K1:=K(theta[1℄);> theta[2℄:=evalf(thet(x2)); K2:=K(theta[2℄);> lambda:=<eigenvals(K1)>; mu:=<eigenvals(K2)>;�1 := 1:970790199K1 := " 3� :7788253964p2 1� :3894126982p21� :3894126982p2 1 #�2 := 2:218000007K2 := " 3� 1:205915875p2 1� :6029579377p21� :6029579377p2 1 #
� := " :81389911482:084675447 #� := " :93899102001:355586395 #> f[1℄:=lambda[2℄/lambda[1℄;> f[2℄:=mu[2℄/mu[1℄; f1 := 2:561343794f2 := 1:443662789f1 > f2 ) drop the left end:> L[2℄:=L[0℄ - Lstar[2℄; Lstar[3℄:= x[2℄ - x[1℄;> # You should be able to prove that ihp ^3 = x_2 - x_1L2 := :6180339888Lstar 3 := :2360679776> x3:= r - Lstar[3℄;> # x[2℄ is now a distane Lstar_3 from new left end, x[1℄,> to the left of x[3℄ x3 := :7639320224> theta[3℄:=evalf(th(x[3℄)); K3:=K(theta[3℄);> lambda:=<eigenvals(K3)>;�3 := 2:370784070K3 := " 3� 1:434695103p2 1� :7173475515p21� :7173475515p2 1 #45



� := " :96503582371:005998904 #> f[3℄:=lambda[2℄/lambda[1℄;f[2℄;> #evaluate f[3℄ & reall f[2℄f3 := 1:042447212f2 := 1:443662789f2 > f3 ) drop left end:> L[3℄:=L[2℄ - Lstar[3℄;> Lstar[4℄:= x3 - x2; L3 := :3819660112Lstar 4 := :1458980336> x[4℄:= r - Lstar[4℄; x4 := :8541019664> theta[4℄:=evalf(thet(x[4℄)); K4:=K(th4);> lambda:=<eigenvals(K4)>;�4 := 2:465209815K4 := " 3� 1:559684146p2 1� :7798420728p21� :7798420728p2 1 #
� := " :75166618061:042607347 #> f[4℄:=lambda[2℄/lambda[1℄;f[3℄;> #evaluate f[4℄ & reall f[3℄f4 := 1:387061669f3 := 1:042447212Again, for brevity we introdue only the last two experiments. We have the interval[ x5; x6 ℄ and hene,> L[6℄:=L[5℄ - Lstar[6℄; Lstar[7℄:= x6 - x3;L6 := :0901699440Lstar 7 := :0344418544> x[7℄:= x[5℄ + Lstar[7℄;x7 := :742645787246



> theta[7℄:=evalf(thet(x[7℄));> K7:=K(theta[7℄);lambda:=<eigenvals(K7)>;�7 := 2:348493177K7 := " 3� 1:403280430p2 1� :7016402150p21� :7016402150p2 1 #
� := " :99679775961:018664025 #> f[7℄:=lambda[2℄/lambda[1℄;f[3℄;> #evaluate f[7℄ & reall f[3℄:f7 := 1:021936511f3 := 1:042447212f7 < f3 ) drop right end and perform last experiment:> L[7℄:=L[6℄ - Lstar[7℄; Lstar[8℄:=x3-x7;L7 := :0557280896Lstar 8 := :0212862352> x[8℄:= x[5℄ + Lstar[8℄;x8 := :7294901680> theta[8℄:=evalf(thet(x8)); K8:=K(theta[8℄);> lambda:=<eigenvals(K8)>;�8 := 2:334716645K8 := " 3� 1:383515463p2 1� :6917577317p21� :6917577317p2 1 #
� := " :99100873501:052404934 #> f[8℄:=lambda[2℄/lambda[1℄;f[7℄;> #evaluate f[8℄ & reall f[7℄:f8 := 1:061953237f7 := 1:021936511f8 > f7 ) delete left end and aept midpoint, of absissa xo, as best estimate ofoptimum:> x[o℄:= (x[8℄ + x[3℄)/2; 47



xo := :7467110952Evaluate fo = f(xo):> theta[o℄:=evalf(thet(x[o℄));> Ko:=K(th[o℄); lambda:=<eigenvals(Ko)>;�o := 2:352750357Ko := " 3� 1:409334444p2 1� :7046672222p21� :7046672222p2 1 #
� := " :99857093941:008329177 #> L[8℄:= x[3℄ - x[8℄;> #Length of final i.o.u.L8 := :0344418544Notie that length of �nal i.o.u. is 3.4% the length of original i.o.u.> f[opt℄:=lambda[2℄/lambda[1℄;fopt := 1:009772203> theta[opt℄:= evalf(thet[o℄*180/Pi);> # theta_optimum in degrees�opt := 134:8026657
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Chapter 3Numerial Equation Solving
3.1 IntrodutionMultivariable optimization frequently alls for the solution of systems of equationsthat an be linear, nonlinear, or a ombination thereof. If linear, then a solutionan be found numerially by means of a diret method1, as opposed to iterativemethods. This is a major di�erene, beause diret methods involve a �xed numberof operations; on the ontrary, iterative methods involve a �xed number of operationsper iteration, but the number of iterations the method will take until onvergeneis reahed annot be predited. Furthermore, if the nonlinear equations of a systemare algebrai, i.e., multivariate polynomials, then the system an be redued, at leastin priniple, to a single univariate polynomial, if of a degree higher than that of anyof the individual equations.When the objetive funtion and the onstraints are multivariate polynomialsin the design variables, the optimization problem leads to a system of multivariatepolynomials, if with extra variables, namely, the Lagrange multipliers, to be intro-dued in Ch. 5. Under these onditions, it is possible to use elimination methods,as implemented in omputer-algebra ode, to eliminate all but one of the designvariables, thereby ending up with a single univariate polynomial. Having reduedthe optimization problem to polynomial-root �nding is advantageous, beause theroots of the polynomial provide all stationary points|as de�ned in Ch. 2 and Ch. 4,these are points where the objetive funtion eases to hange loally|and, hene,1Some linear systems of a large number of unknowns and weakly oupled equations, frequentlyarising in some ontexts, like strutural mehanis, an be solved to a great advantage using aniterative method like Gauss-Seidel's. 49



all loal minima. The global minimum an then be found by inspetion.As an alternative to univariate-polynomial redution, the optimization problemat hand an be redued to two (or more) bivariate equations, polynomial or trigono-metri, whose plots appear as ontours in the plane of those two variables. Allsolutions an then be obtained visually, by ontour-intersetion.Prior to the disussion of equation-solving, we revisit the fundamental oneptsof linear algebra that will be needed in the sequel. Then, we reall the basi problemof solving a system of n linear equations in n unknowns, what is alled a determinedsystem. The issue of roundo�-error ampli�ation is given due attention, whih takesus to the onept of ondition number.As a natural extension of the above problem, we undertake the problem of linearleast squares. That is, we now study the solution of a system of q linear equations in nunknowns, when q > n, what is alled an overdetermined system of linear equations.In this ase, in general, it is not possible to �nd a single vetor x that veri�es theredundant and, most likely inonsistent, set of equations. Hene, we aim at �ndingthe best �t in the least-square sense, i.e., the vetor x that approximates the wholeset of q equations with the minimum Eulidean norm. We derive a losed-formexpression, i.e., a formula, for the best �t x diretly from the normality onditions(NC) of the problem at hand. This derivation readily leads to the left Moore-Penrosegeneralized inverse (LMPGI) of the oeÆient matrix, whih is retangular, and forwhih an inverse proper annot be de�ned. It is shown that omputing the best �tdiretly from the NC is prone to ill-onditioning, a phenomenon haraterized by a\large" roundo�-error ampli�ation. Hene, the reader is strongly advised againstomputing the best �t with the said formula. Instead, orthogonalization algorithmsare to be used. The di�erene between a formula, like that giving the best �t interms of the LMPGI, and an algorithm is stressed here: The LMPGI is seldomneeded as suh, in the same way that the inverse of a nonsingular (square) matrixis seldom needed. Therefore, the omputation of suh a generalized inverse is to beavoided.3.2 Bakground Fats and De�nitionsWe begin by realling the onept of vetor and matrix norms:A norm is to an array of numbers, be it a olumn vetor, a row vetor, or a matrix,what the absolute value is to real numbers and the module is to omplex numbers.50



Vetor norms an be de�ned in various ways:The Eulidean norm: The best known. For a n-dimensional vetor a withomponents ai, for i = 1; : : : ; n:kakE �qa21 + � � �+ a2n (3.1)Computing this norm thus requires n multipliations, n additions, and onesquare root. Not very \heap" to ompute!The Chebyshev norm, a.k.a. the maximum norm, or the in�nity norm:kak1 � maxi fjaijgn1 (3.2)Notie that this norm requires no oating-point operations (ops): quite eo-nomial.The p-norm: kakp �  nXj=1 jaijp!1=p (3.3)This is the most general ase. For p = 2, the p-norm beomes the Eulideannorm; for p!1, the p-norm beomes the Chebyshev norm.Likewise, matrix norms an be de�ned in various ways:� The Eulidean norm, a.k.a. the 2-norm: the square root of the largest (non-negative) eigenvalue of the positive-semide�nite produt of the matrix by itstranspose, regardless of the ordering of the fators. For example, for the n�nmatrix A, kAkE � maxi fp�ig (3.4)where f�i gn1 is the set of non-negative eigenvalues ofAAT , or ofATA for thatmatter. This norm is also alled the spetral norm. Notie that �i is identialto the square of the module of the ith eigenvalue of A itself.� The Frobenius norm: the square root of the sum of the squares of the entriesof the matrix. For the same matrix A,kAkF �vuut nXj=1 nXi=1 a2ij �ptr(AAT ) (3.5)51



� The Chebyshev norm or in�nity norm: the maximum absolute value of theentries of the matrix. For the above matrix A,kAk1 � maxi;j fjaijjg (3.6)� The p-norm: kAkp �  nXj=1 nXi=1 jaijjp!1=p (3.7)For p = 2, the p-norm beomes the Frobenius norm; for p ! 1, the p-normbeomes, suh as in the vetor ase, the Chebyshev norm.Remarks:� The trae of A, tr(A), is de�ned as the sum of its diagonal entries:tr(A) �Pni=1 aii.� The ounterpart of the vetor Eulidean norm is not the Eulidean matrixnorm, but rather the Frobenius norm.� The ounterpart of the vetor Chebyshev norm is the matrix Chebyshev norm.Furthermore,De�nition 3.2.1 A n�n matrixA is symmetri if it equals its transpose: A = ATDe�nition 3.2.2 A n � n matrix A is skew-symmetri if it equals the negative ofits transpose: A = �ATFat 3.2.1 (The Matrix Cartesian Deomposition) Every n�nmatrixA anbe deomposed into the sum of a symmetri and a skew-symmetri omponents:A = As +Ass (3.8a)As = 12(A+AT ) (3.8b)Ass = 12(A�AT ) (3.8)Equation (3.8a) is termed the Cartesian deomposition of A, beause of its resem-blane with the Cartesian representation of a omplex number Z as x + jy, withx; y 2 IRand j = p�1. Notie that the eigenvalues of the symmetri omponentAs are all real, but those of Ass are imaginary. Also notie that the Cartesiandeomposition is unique. 52



De�nition 3.2.3 A quadrati form q of a n-dimensional vetor x is assoiated witha n� n matrix A: q � xTAx (3.9)Fat 3.2.2 The quadrati form assoiated with a skew-symmetri matrix vanishesidentially. That is, if A = �AT , then, for any n-dimensional vetor x,xTAx = 0 (3.10)Proof: Note that, sine q � xTAx is a salar, q = qT , and hene,(xTAx)T = xTAxExpanding the left-hand side, xTATx = xTAxHowever, by assumption, AT = �A, and hene,�xTAx = xTAxwhene the proof follows immediately.De�nition 3.2.4 A n � n matrix A is positive-de�nite (positive-semide�nite) if itis symmetri and, for every n-dimensional vetor x, the quadrati form xTAx isgreater than (or equal to) zero.Charaterization of positive-de�niteness (semide�niteness): A n� n (sym-metri) matrix A is positive-de�nite (positive-semide�nite) if and only if its eigen-values are all positive (nonnegative).Remarks:� Negative-de�niteness and negative-semide�niteness are de�ned and harater-ized likewise;� If a matrix is neither positive- nor negative-de�nite, or semide�nite, then it issaid to be sign-inde�nite. 53



3.3 Bakground on Linear TransformationsThe general form of a linear transformation mapping a vetor spae U of dimensionn into a m-dimensional vetor spae V isv = Lu (3.11)where u and v are n- and m-dimensional vetors, respetively, with u 2 U andv 2 V. Apparently, L is a m� n matrix.We distinguish two vetor subspaes assoiated with L, namely,The range of L, denoted by R(L): the set of vetors v that are images ofu under transformation (3.11). Notie that, if the n olumns of L are notlinearly independent, then R(L) is not all of V, but only a proper subspae ofit, of dimension m0 < n, i.e., R(L) � V. The dimension of R(L), known asthe rank of L, is denoted by �(L).The nullspae or kernel of L, denoted by N (L): the set of all vetors u of Uthat are mapped by L into 0m, the zero of V. The dimension of N is termedthe nullity of L, and is denoted by �(L). Obviously, � < n, with � = nourring only when L = Omn, Omn denoting the m� n zero matrix.A fundamental result of linear algebra follows:�(L) + �(L) = n (3.12)The most frequent linear transformations used in optimum design are studied inthe balane of this setion. They all pertain to square matries.3.3.1 RotationsA rotationQ is an orthogonal transformation of U into itself, with a onstraint on itsdeterminant, as we shall outline presently. Orthogonality requires that the inverseof Q be its transpose, i.e., QQT = QTQ = 1 (3.13)where 1 denotes the n� n identity matrix. Hene, taking the determinant of bothsides of the above equation,det(QQT ) = det(QTQ) = det(Q)Tdet(Q) = [det(Q)℄2 = 154



whene det(Q) = �1A proper orthogonal matrix Q is one whose determinant is positive, and hene,det(Q) = +1 (3.14)Proper orthogonal transformations of U into itself represent rotations about theorigin of U .The best-known rotations are those in two and three dimensions. Thus, for twodimensions, the 2 � 2 matrix Q rotating vetors through an angle � w takes theform Q = � os� � sin�sin� os � � (3.15a)whih an be expressed alternatively asQ = (os�)12 + (sin�)E2 (3.15b)with 12 de�ned as the 2 � 2 identity matrix and E2 as a skew-symmetri matrix,namely, E2 � � 0 �11 0 � (3.15)In three dimensions, the rotation matrix takes the formQ = eeT + os�(13 � eeT ) + sin�E3 (3.16a)where e is the unit vetor indiating the diretion of the axis about whih therotation takes plae, 13 is the 3 � 3 identity matrix, and E3 is the ross-produtmatrix (CPM) of vetor e, expressed asE3 � CPM(e) (3.16b)The Cross-Produt MatrixWe will start by de�ning the partial derivative of a vetor with respet to anothervetor. This is a matrix, as desribed below: In general, let u and v be vetors ofspaes U and V, of dimensions m and n, respetively. Furthermore, let t be a realvariable and f be real-valued funtion of t, u = u(t) and v = v(u(t)) being m- andn-dimensional vetor funtions of t as well, with f = f(u;v). The derivative of uwith respet to t, denoted by _u(t), is an m-dimensional vetor whose ith omponent55



is the derivative of the ith omponent of u in a given basis, ui, with respet to t.A similar de�nition follows for _v(t). The partial derivative of f with respet tou is an m-dimensional vetor whose ith omponent is the partial derivative of fwith respet to ui, with a orresponding de�nition for the partial derivative of fwith respet to v. The foregoing derivatives, as all other vetors, will be assumed,heneforth, to be olumn arrays. Thus,�f�u � 26664 �f=�u1�f=�u2...�f=�um
37775 ; �f�v � 26664 �f=�v1�f=�v2...�f=�vn

37775 (3.17)Furthermore, the partial derivative of v with respet to u is an n � m arraywhose (i; j) entry is de�ned as �vi=�uj, i.e.,�v�u � 26664 �v1=�u1 �v1=�u2 � � � �v1=�um�v2=�u1 �v2=�u2 � � � �v2=�um... ... . . . ...�vn=�u1 �vn=�u2 � � � �vn=�um
37775 (3.18)Hene, the total derivative of f with respet to u an be written asdfdu = �f�u + ��v�u�T �f�v (3.19)If, moreover, f is an expliit funtion of t, i.e., if f = f(u; v; t) and v = v(u; t),then, one an write the total derivative of f with respet to t asdfdt = �f�t + ��f�u�T dudt + ��f�v�T �v�t + ��f�v�T �v�u dudt (3.20)The total derivative of v with respet to t an be written, likewise, asdvdt = �v�t + �v�u dudt (3.21)Example 3.3.1 Let the omponents of v and x in a ertain referene frame F begiven as [v ℄F = 24 v1v2v3 35 ; [x ℄F = 24 x1x2x3 35 (3.22a)Then [v � x ℄F = 24 v2x3 � v3x2v3x1 � v1x3v1x2 � v2x1 35 (3.22b)56



Hene, � �(v � x)�x �F = 24 0 �v3 v2v3 0 �v1�v2 v1 0 35 (3.22)Heneforth, the partial derivative of the ross produt of any 3-dimensional ve-tors v and x will be denoted by the 3�3 matrixV. For obvious reasons, V is termedthe ross-produt matrix of vetor v. Thus, the foregoing ross produt admits thealternative representations v� x = Vx (3.23)Note that given any 3-dimensional vetor a, its ross-produt matrix A is uniquelyde�ned. Moreover, this matrix is skew-symmetri. The onverse also holds, i.e.,given any 3� 3 skew-symmetri matrix A, its assoiated vetor is uniquely de�nedas well. This result is made apparent from Example 3.3.1.The ross-produt matrix is de�ned only for three-dimensional vetors. Let aand v be two arbitrary three-dimensional vetors. We de�neCPM(a) � �(a � v)�v � A 8v (3.24)Beause of the relation a� v = �v � a, the CPM is skew-symmetri.Rotations in higher dimensions an be de�ned as well, but then, the axis andthe angle of rotation are not unique.3.3.2 ReetionsReetions are improper orthogonal matries, preserving the distane between anytwo points of the n-dimensional spae. For any n� n reetion R, we havedet(R) = �1 (3.25)In two dimensions, a reetion R about a line passing through the origin normalto the unit vetor e maps a vetor p into p0 in the formp0 = p� 2(pTe)e = (1� 2eeT )p � Rpand hene, the reetion R sought is given byR = 1� 2eeT (3.26)57



In three dimensions, the reetion about a plane passing through the origin,of unit normal e, takes exatly the same form as R in the two-dimensional ase,eq.(3.26). However, in this ase, e is three-dimensional, while R is of 3 � 3, and 1is the 3� 3 identity matrix.In all foregoing instanes, the reetions are represented by symmetri matries,and are hene termed pure reetions. However, this need not always be the ase,for reetions an ombine with rotations, thereby yielding a new reetion|notiethat the produt of a rotation by a pure reetion is a reetion!|but this time,the matrix representing the reetion is no longer symmetri. A rotation an bedistinguished from a reetion by the sign of its determinant.3.3.3 ProjetionsHeneforth, a projetion P means an orthogonal projetion onto a plane in n di-mensions, whih we all the projetion plane. When n = 2, the \projetion plane"beomes a line in the plane.Let us onsider a plane � in a n-dimensional spae, of unit normal n. Any pointP in this spae is given by its n-dimensional position vetor p. Let the projetionof P onto � be P 0, whih is given by its position vetor p0, namely,p0 = p� (nTp)n = (1� nnT )p � Pp (3.27)where P is obviously de�ned as P � 1� nnT (3.28)Matrix P is also alled a projetor. A projetor P is represented by a symmetri,singular, idempotent matrix. Symmetry is obvious; singularity is less so, but ratherstraightforward. To prove that P is singular, all we have to do is prove that itsnullspae is non-empty. However, this is so beause all vetors r of the form �n, fora salar � 6= 0, are mapped by P onto the zero vetor. Indeed,Pr = �Pn = �(1� nnT )n = �(n� n) = 0A matrix is idempotent of degree k when it equals its kth power, but is di�erentfrom any lower power. When k = 2, the degree is self-understood and need not bespelled out. To prove idempoteny, let us alulateP2 = (1� nnT )(1� nnT ) = 1� 2nnT + nnTn|{z}=1 nT = 1� nnT � P58



thereby ompleting the proof.The foregoing projetion has a nullity of 1, its nullspae being spanned by vetorn. In three-dimensional spae, we an have projetions onto a subspae of dimension1, namely, a line L passing through the origin and parallel to the unit vetor e. Inthis ase, the projetion P 0 of P onto L is given byp0 = (pTe)e � e(eTp) = (eeT )pwhene the projetion P sought takes the form:P = eeT (3.29)Notie that this projetion is symmetri, singular and idempotent as well, its nullspaebeing of dimension two. Indeed, we an �nd two mutually-orthogonal unit vetorsf and g, lying in a plane normal to e, whih are mapped by P onto the zero vetor.These two linearly-independent vetors lie in the nullspae of P. For n dimensions,the projetion \plane" an in fat be a subspae of dimension � � n� 1.Also notie that the projetion of eq.(3.27) maps vetors in three-dimensionalspae onto the nullspae of the rank-one matrix nnT , while that of eq.(3.29) doesso onto the range of the rank-one matrix eeT . Now, the range of this matrix is thenullspae of a matrix A de�ned as A � � fTgT � (3.30)where f and g are mutually orthogonal unit vetors normal to e. Then, we ande�ne a projetor P in the formP = 1�ATA = 1� (�T + ggT ) (3.31)This projetor maps three-dimensional vetors onto the nullspae of A, whih isvetor e, as the reader an readily verify.In general, if we have a full-rank m�n matrix A, with m < n, then, rank(A) =minfm; n g = m. This means that the m n-dimensional rows of A are linearlyindependent. By virtue of the basi relation (3.12), then, � = n �m. A projetorthat maps n-dimensional vetors onto the nullspae of A is de�ned below:P = 1�AT (AAT )�1A (3.32)Note that, by virtue of the de�nition of f and g, matrix A of eq.(3.30) produesAAT = 12, the 2� 2 identity matrix. 59



Exerise 3.3.1 Prove that P, as given by eq.(3.32), is a projetor; then prove thatits projetion maps n-dimensional vetors onto the nullspae of A.Example 3.3.2 Let A = � 1 0 10 1 �1 � � �aT1aT2 �The nullspae of A is spanned by a unit vetor u that an be found asu � bkbk ; b � a1 � a2The projetor P mapping vetors in three-dimensional spae onto the nullspae ofA, spanned by u, is given byP = 1�AT (AAT )�1A = 13 24 1 �1 �1�1 1 1�1 1 1 35In this ase, b = 24�111 35 ; u = p33 24�111 35Notie that the image of any vetor p = [ x; y; z ℄T under P an be expressed as theprodut of a salar times u:Pp = 13 24 x� y � z�x + y + z�x + y + z 35 = 13(�x + y + z)24�111 35 = p33 (�x + y + z)u3.4 The Numerial Solution of Determined Lin-ear Systems of EquationsWe onsider the system Ax = b (3.33)whereA: n� n matrix of known oeÆients,b: n-dimensional right-hand side known vetor,x: n-dimensional vetor of unknowns.60



De�nition 3.4.1 If det(A) = 0 (3.34)then A is said to be singular. Otherwise, A is nonsingular.Fat 3.4.1 If A is nonsingular, then eq.(3.33) has a unique solution, whih is givenby x = A�1b (3.35)Caveat: Never ompute A�1 expliitly ... , unless instruted to do so. The inverseis seldom needed as suh, and inurs a waste of preious CPU time! Instead, �nda good numerial approximation to the solution, while taking into aount that Aand b are usually known only up to a random roundo� error.Avoid roundo�-error ampli�ation!3.4.1 Roundo� Error of the Solution and Condition Num-bersRegarding the roundo�-error ampli�ation when solving the system (3.33), let ÆAbe the matrix roundo� error in A, Æb be the vetor roundo�-error in b, and Æx bethe vetor roundo�-error inurred when solving eq.(3.33), by virtue of ÆA and Æb.The relative roundo� errors in the data, �A and �b, and in the omputed solution,�x, are de�ned as �A � kÆAkkAk ; �b � kÆbkkbk ; �x � kÆxkkxk (3.36)where k � k denotes any vetor or matrix norm.The relative roundo� error in the omputed solution is known to be related tothe relative roundo� error in the data via the relation (Golub and Van Loan, 1983)�x � �(A)(�A + �b) (3.37)with �(A) de�ned as the ondition number of matrix A, whih is de�ned, for non-singular square matries, as �(A) � kAkkA�1k (3.38)where kAk is a norm of a matrix A. 61



Now, if the Eulidean norm is adopted for the ondition number, then we have� � �E =r�l�s �r�l�s (3.39)in whih �s is the smallest and �l is the largest eigenvalue of AAT . It is nowapparent that �E is bounded from below but unbounded from above:�E � 1 (3.40)In fat, the above result holds for � de�ned based on any norm. Moreover, if �(A)is based on the Frobenius norm kAkF , then� = �F (A) =r 1ntr(AAT )r 1ntr(A�1A�T )= 1nptr(AAT )tr[(AAT )�1℄ � 1nptr(ATA)tr[(ATA)�1℄ (3.41)Remarks:� The ondition number of a singular matrix is unbounded (tends to 1)� If a matrixAAT has all its eigenvalues idential, then A is said to be isotropi.Isotropi matries have a � = 1 for � de�ned in any matrix norm. Isotropimatries are optimally onditioned.3.4.2 Gaussian EliminationVarious methods for omputing a good approximation to the solution (3.35):Iteratively : Various types of methods, by the names Gauss-Jordan, Gauss-Seidel, suessive-overrelaxation (SOR), et. Used mainly for \large" systems(thousands of unknowns) that are weakly oupled; we will not handle suhsystems.Symbolially : Only possible for ertain lasses of A matries, like tridiagonal,and for arbitrary matries of modest size (n is below 5 or so.)Gaussian elimination, a.k.a. LU-deomposition: This is based on the observa-tion that a triangular system is readily solved by either bakward or forwardsubstitution. A is deomposed into a lower-triangular and an upper-triangularfator, L and U, respetively. 62



If A is nonsingular, but otherwise arbitrary, of n� n, then, using Gaussian elim-ination we deompose A into A = LU (3.42)where L is lower-triangular and U is upper-triangular, namely,L = 26664 1 0 � � � 0l21 1 � � � 0... ... . . . ...ln1 ln2 � � � 1
37775 (3.43)

U = 26664 u11 u12 � � � u1n0 u22 � � � u2n... ... . . . ...0 0 � � � unn
37775 (3.44)Now, eq.(3.33) is rewritten asLUx = b ) ( Ly = bUx = y (3.45)and hene, x is omputed in two stages: First y is omputed from a lower-triangularsystem; then, x is omputed from an upper-triangular system. The lower-triangularsystem is solved for y by forward substitution; the upper-triangular system is solvedfor x by bakward substitution. Note thatdet(A) = det(L)det(U) (3.46a)But, apparently,det(L) = 1; det(U) = nY1 uii ) det(A) = det(U) = nY1 uii (3.46b)Hene, A is singular i� any of the diagonal entries of U vanishes.3.4.3 Cholesky DeompositionIf A is symmetri and positive-de�nite, then it admits the Cholesky deomposi-tion: A = LTL (3.47)L = 26664 l11 0 � � � 0l21 l22 � � � 0... ... . . . ...ln1 ln2 � � � lnn
37775 (3.48)63



where L is a real, lower-triangular matrix.The solution of system (3.33) proeeds as in the general ase, in two steps:LTy = b (3.49)Lx = y (3.50)3.5 The Least-Square Solution of OverdeterminedLinear SystemsWe start withDe�nition 3.5.1 A system of linear equations of the formAx = b (3.51)is overdetermined if A is retangular, of q � n, with q > n.This means that the system has more equations than unknowns. In general, no xthat veri�es all the equations is available.De�nition 3.5.2 A is of full rank if its n (< q) q-dimensional olumns are linearlyindependent.Remark: If A is of full rank, i.e., if rank (A) = n, then� The produt ATA is nonsingular, and hene, positive-de�nite; moreover,� as a onsequene, det(ATA) > 0 (3.52)For an arbitrary x, there will be an error e:e � b�Ax (3.53)3.5.1 The Normal EquationsProblem: Find a partiular x, xL, that minimizes the Eulidean norm of the error,or its square, for that matter: kek2 = eTe.Solution: De�ne the objetive funtion f to be minimized asf � 12kek2 ! minx (3.54)64



The normality onditions (NC) of Problem (3.54) are obtained upon zeroing thegradient of f with respet to x: rf � �f�x = 0 (3.55)Moreover, rf is obtained from the \hain rule":�f�xi = �ej�xi �f�ej ; i = 1; : : : ; nwhere the repeated index j indiates summation, for j = 1; : : : ; q. The foregoingrelation an be written in ompat form asrf � ��e�x�T �f�e (3.56)Apparently, from the de�nitions of f and e,�e�x = �A; �f�e = e � b�Ax (3.57)Upon plugging expressions (3.57) into eq.(3.55),ATAx = ATb (3.58)whih is a system of n linear equations in n unknowns. This set of equations yieldsthe NC of the problem at hand; the set is known as the normal equations of thegiven problem.IfA is of full-rank, then eq.(3.58) admits one unique solution|determined ase|whih is the least-square solution of the given system:xL = AIb (3.59a)with AI de�ned as AI � (ATA)�1AT (3.59b)Here, AI is termed the left Moore-Penrose generalized inverse (LMPGI) of the ret-angular matrix A.Remarks:� The ondition number �E of the retangular matrix A of q � n, with q > n,based on the Eulidean norm, is de�ned in a similar way to that of a squarematrix, with the di�erene that, in the ase at hand, this is done in terms ofthe eigenvalues of ATA; 65



� The ondition number �E of ATA is the square root of the ratio of the largestto the smallest eigenvalues of (ATA)(ATA)T = (ATA)2;� Hene, �E is given by the ratio of the largest to the smallest eigenvalues of(ATA), i.e., �E(ATA) = �2E(A) (3.60)� Thus, the roundo�-error ampli�ation fator inurred in solving the normalequations (3.58) is the square of that inurred when \solving" eq.(3.33) in thedetermined ase.� Not only this. Formula (3.59a) is omputationally expensive, for it involves:{ the multipliation of A by its transpose from the left, whih onsumes n2salar produts of two q-dimensional vetors. Hene, ATA requires n2qproduts and n2(q � 1) additions;{ the omputation of the right-hand side of eq.(3.58), whih entails, in turn,n salar produts of two q-dimensional vetors, i.e., q� n multipliationsand (q � 1)n additions.� In onsequene,solving numerially normal equations should be avoided!� In some ases, the normal equations allow for handling them with omputeralgebra, in whih ase roundo�-error ampli�ation is not an issue. In theseases it is safe to work with these equations.3.5.2 Householder ReetionsThe good news is that there are alternatives to numerial normal-equation solving.One of these relies on Householder reetions, to be desribed presently.Premultiply both sides of eq. (3.51) by n Householder reetions|q�q improperorthogonal matries| Hi, for i = 1; : : : ; n, i.e.,HAx = Hb (3.61)where H = HnHn�1 : : :H166



The set fHi gn1 is hosen so thatHA = �UO � ; Hb = �bUbL � (3.62)in whih� U: a n� n upper-triangular matrix� O: the (q � n)� n zero matrix� bU : a n-dimensional vetor ontaining the upper n omponents of Hb� bL: a (q�n)-dimensional vetor ontaining the lower q�n omponents of HbThus, eq.(3.61) leads to two subsystems of equations:Ux = bU (3.63a)Ox = bL 6= 0 (3.63b)The least-square solution an be readily alulated by bakward substitutionfrom eq.(3.63a), and symbolially expressed asxL = U�1bU : (3.64)Remark: Equation (3.63b) expresses a ontradition: The left-hand side is theprodut of the (q � n) � n zero matrix times the unknown vetor; the right-handside is not neessarily zero. Thus, eq.(3.63b) yields the least-square error assoiatedwith the solution xL: kbLk. Now we have an important result:Theorem 3.5.1 (The Projetion Theorem) Let e0 denote the error vetor ofminimum Eulidean norm, i.e., e0 � b�AxL (3.65)Then, e0 is orthogonal to the image of xL under A.Proof: We have eT0AxL = (b�AxL)TAxLUpon expansion, eT0AxL = bTAxL � xTLATAxL67



Plugging expressions (3.59a & b) into the above equation,eT0AxL = bTA(ATA)�1ATb� bTA(ATA)�1ATA(ATA)�1ATb= bTA(ATA)�1ATb� bTA(ATA)�1ATb = 0 (3.66)thereby ompleting the proof. The Projetion Theorem is illustrated in Fig. 3.1.Remark: A n� n improper orthogonal matrix represents a reetion, i.e., a linear

Figure 3.1: The Projetion Theoremtransformation of a n-dimensional vetor spae that preserves both the magnitudeof vetors|their Eulidean norm|and the inner produt of any two vetors.Problem: Find a linear transformation of the olumns of the q � n matrix Athat will render this matrix in upper-triangular form without hanging the geometrirelations among the olumns, i.e., while preserving the inner produts of any two ofthese olumns, inluding the produt of a olumn by itself.Solution: Assume that we have applied reetions H1, H2, : : :, Hi�1, in this order,to A that have rendered its �rst i� 1 olumns in upper-triangular form, i.e.2,Ai�1 � Hi�1 : : :H2H1A2The entries of Ai�1 are supersripted with an asterisk to distinguish them from the entries ofthe original A. 68



=
266666666666664
a�11 a�12 � � � a�1;i�1 a�1i � � � a�1n0 a�22 � � � a�2;i�1 a�2i � � � a�2n0 0 � � � a�3;i�1 a�3i � � � a�3n... ... . . . ... ... . . . ...0 0 � � � a�i�1;i�1 a�i�1;i � � � a�i�1;n0 0 � � � 0 a�i;i � � � a�i;n... ... . . . ... ... . . . ...0 0 � � � 0 a�q;i � � � a�qn

377777777777775 (3.67)
The next Householder reetion, Hi, is determined so as to render the last q� iomponents of the ith olumn of HiAi�1 equal to zero, while leaving its �rst i � 1olumns unhanged. We do this by setting�i = sgn(a�ii)q(a�ii)2 + (a�i+1;i)2 + � � �+ (a�qi)2 (3.68)ui = [ 0 0 � � � 0 a�ii + �i a�i+1;i � � � a�qi ℄T (3.69)Hi = 1� 2 uiuTikuik2 (3.70)where the signum of x, sgn(x), is de�ned as +1 if x > 0, as �1 if x < 0, and is leftunde�ned when x = 0.Notie that 12kuik2 = �i(ui)i = �i(a�ii + �i) � �iand hene, the denominator appearing in the expression for Hi is alulated withone single addition and one single multipliation.Exerise: Show that HiHTi = HTi Hi = 1 and det(Hi) = �1.Remark: Hi reets vetors in q-dimensional spae onto a hyperplane of unit nor-mal n � ui=kuik, as depited in Fig. 3.2. It is noteworthy that(a) �i is de�ned with the sign of a�ii beause �i is a multiple of the ith omponentof ui, whih is, in turn, the sum of a�ii and �i, thereby guaranteeing that theabsolute value of this sum will always be greater than the absolute value ofeah of its terms. If this provision were not made, then the resulting sumould be of a negligibly small absolute value, whih would thus render �i avery small positive number, thereby introduing unneessarily an inadmissiblylarge roundo�-error ampli�ation upon dividing the produt uiuTi by �i;69



Figure 3.2: The geometri interpretation of the ith Householder reetion(b) an arbitrary q-dimensional vetor v is transformed by Hi with unusually fewops, namely, Hiv = v � 1�i (vTui)uiUpon appliation of the n Householder reetions thus de�ned, the system at handbeomes HAx = Hb (3.71)with H de�ned as H � Hn : : :H2H1 (3.72)Notie that HA is in upper-triangular form. That is,HA = � UOq0n � ; Hb = �bUbL � (3.73)where: q0 � q�n; Oq0n is the (q�n)�n zero matrix; bU is a n-dimensional vetor;and bL is a (q � n)-dimensional vetor, normally di�erent from zero.The unknown x an thus be alulated from eq.(3.71) by bak-substitution.Remarks:� The last m0 omponents of the left-hand side of eq.(3.71) are zero.� However, the orresponding omponents of the right-hand side of the sameequation are not neessarily zero. What went wrong?� Nothing! Reall that the overdetermined system (3.51) in general has nosolution. The lower part of b, bL, is then nothing but a q0-dimensional array70



ontaining the nonzero omponents of the approximation error in the newoordinates. That is, the least-square error e0 in these oordinates, takes theform e0 = � 0nbL � (3.74a)Therefore, ke0k = kbLk (3.74b)3.6 Nonlinear-Equation Solving: The DeterminedCaseDe�nition 3.6.1 A system of algebrai equations ontaining some that are notlinear is termed nonlinear. If the number of equations is idential to the number ofunknowns, the system is determined.Example: Find the intersetion of the irle and the hyperbola depited in Fig. 3.3.Solution: The equations of the irle and the hyperbola are

Figure 3.3: Intersetion of a irle and a hyperbola�1(x; y) � x2 + y2 � 4 = 0�2(x; y) � x2 � y2 � 1 = 0The solution to a nonlinear system of equations, when one exists at all, is usuallymultiple: The irle and the hyperbola of Fig. 3.3 interset at four points fPig41,71



Pi xi yi1 p5=2 p3=22 p5=2 �p3=23 �p5=2 p3=24 �p5=2 �p3=2Table 3.1: The four intersetion points of the irle and the hyperbola of Fig. 3.3of oordinates (xi; yi), as displayed in Table 3.1. The problem may have no realsolution, e.g., the irle and the hyperbola of Fig. 3.4 do not interset. The systemof equations from whih the oordinates of the intersetion points are to be omputedis given below: �1(x; y) � x2 + y2 � 1 = 0�2(x; y) � x2 � y2 � 16 = 0This system of equations admits no real solution!

Figure 3.4: A irle and a hyperbola that do not intersetIn general, a determined nonlinear system of equations takes the form�(x) = 0 (3.75)72



where x and � are both n-dimensional vetors:x � 26664 x1x2...xn
37775 ; � � 26664 �1(x1; x2; : : : ; xn)�2(x1; x2; : : : ; xn)...�n(x1; x2; : : : ; xn)

37775 (3.76)
3.6.1 The Newton-Raphson MethodWe outline below the method of solution of determined nonlinear systems usingthe Newton-Raphson method. This is an iterative method, whereby a sequene ofapproximations is obtained that, if onverging, it approahes the solution in a �nitenumber of iterations within a presribed tolerane.A value x0 of x is given as an initial guess:x0 � [ p1 p2 : : : pn ℄Tand � is evaluated at x0: �0 � �(x0)If the value x0 was hosen randomly, most likely it will not verify the given systemof equations, i.e., �0 6= 0Next, we look for a \small" inrement �x of x (the inrement is small if its norm|any norm|is small): �x � [�x1 �x2 : : : �xn ℄TNow, �(x0 + �x) is evaluated up to its linear approximation (all quadrati andhigher-order terms are dropped from its series expansion):�(x0 +�x) � �(x0) + ���x ���x=x0�x (3.77)The Jaobian matrix of � with respet to x is de�ned as the matrix of partialderivatives of the omponents of � with respet to all the omponents of x:� � ���x = 26664 ��1=�x1 ��1=�x2 � � � ��1=�xn��2=�x1 ��2=�x2 � � � ��2=�xn... ... . . . ...��n=�x1 ��n=�x2 � � � ��n=�xn
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In the next step, we �nd �x that renders zero the linear approximation of�(x0 +�x): �0 +�(x0)�x = 0or �(x0)�x = ��0 (3.79)whene �x an be found using, for example, Gaussian elimination:�x = ���10 �0; �0 � �(x0) (3.80)Next, x is updated: x  x0 +�x (3.81)the proedure stopping when k�xk � �x (3.82)for a presribed tolerane �x.Remarks:� Use the maximum norm to test onvergene in eq.(3.82), for it osts virtuallynothing;� no guarantee that the Newton-Raphson method will onverge at all;� whether the Newton-Raphson method onverges is dependent upon the initialguess, x0;� the boundary between regions of onvergene and divergene is a fratal (Man-delbrot, 1983; Gleik, 1988);� when the Newton-Raphson method onverges, it does so quadratially : Atevery iteration, two deimal plaes of auray are gained (Dahlquist andBj�ork, 1974).3.7 Overdetermined Nonlinear Systems of Equa-tionsA system of nonlinear equations of the form�(x) = 0 (3.83)74



where x is a n-dimensional vetor and � is a q-dimensional vetor, is overdeterminedif q > n. Just as in the linear ase, in general, no vetor x an be found that veri�esall the q salar equations of the system. However, approximations an be found thatminimize the least-square error of the approximation, as desribed in the balane ofthis Setion. The method of solution adopted here is the overdetermined ounterpartof the Newton-Raphson method.3.7.1 The Newton-Gauss MethodProblem: Find an approximate solution to system (3.83) that veri�es those equa-tions with the least-square error :f(x) = 12�TW� ! minx (3.84)where W is a q � q positive-de�nite weighting matrix.Solution: We follow a proedure similar to Newton-Raphson's, whih is known asthe Newton-Gauss method, as desribed below:First, an initial guess x0 of x is given; then, we produe the sequenex1; x2; : : : ; (3.85)suh that xk+1 = xk +�xk (3.86)Calulation of �xk:� Fator W into its two Cholesky fators:W = VTV (3.87)whih is possible beause W is assumed positive-de�nite.� Compute �xk as the least-square solution of the unonstrained overdeterminedlinear system V�(xk)�xk = �V�(�xk) (3.88)with �(x) de�ned as the q � n Jaobian matrix of the vetor funtion �(x),i.e., �(x) = ��(x)�x (3.89)Drop supersripts for the sake of notation-simpliity and reall eqs.(3.59a &b): �x = �(�TW�)�1�TW� (3.90)This proedure is iterative, stopping when a onvergene riterion is met.75



The Damping FatorWhen implementing the Newton-Gauss method, the objetive funtion f may in-rease upon orreting xk aording to eq.(3.86), i.e.f(xk+1) > f(xk) (3.91)This inrease gives rise to osillations and sometimes even leads to divergene. Oneway to ope with this situation is by introduing damping. Instead of using thewhole inrement �xk, we use a fration of it, i.e.xk+1 = xk + ��xk; 0 < � < 1 (3.92)where � is known as the damping fator.3.7.2 Convergene CriterionCalulate �rst rf(x): rf(x) � �f�x = ����x�T �f�� (3.93)���x � �; �f�� =W� (3.94)Hene, the ondition for a stationary point is�TW� = 0 (3.95)whih is the normality ondition of eq.(3.84).It is thus apparent that, at a stationary point of f , �(x) need not vanish, asis the ase of unonstrained optimization, to be disussed in Chapter 4;however,�(x) must lie in the nullspae of �TW. Moreover, from eqs.(3.90) and (3.95)follows that, at a stationary point, �x vanishes. Hene, the onvergene riterion isk�xk < � (3.96)where � is a presribed tolerane.Remarks:� The normality ondition (3.95) alone does not guarantee a minimum, but onlya stationary point. 76



� However, as it turns out, if the proedure onverges, then it does so, to aseond-order approximation, to a minimum, and neither to a maximum nor ato saddle point, as we prove below.The sequene f(x0), f(x1), . . . , f(xk), f(xk+1), . . . , obtained from the sequene ofx values, evolves, to a �rst order, as �f(x), given by�f = ��f�x�T �x (3.97)i.e., �f = �TW��x (3.98)Upon plugging expression (3.90) of �x into eq. (3.98), we obtain�f = ��T W�(�TW�)�1�TW| {z }M � = ��TM� (3.99)where, apparently, M is a q � q positive-de�nite matrix. As a onsequene, �TM�beomes a positive-de�nite quadrati expression of �; hene, �f is negative de�nite.Thus, the seond-order approximation of f(x) is negative-de�nite, and hene, thesequene of f values dereases monotonially. That is, in the neighbourhood of astationary point the �rst-order approximation of �(x) is good enough, and hene,if the proedure onverges, it does so to a minimum.The reader may wonder whether the Newton-Raphson method an be used tosolve nonlinear least-square problems. Although the answer is yes, the Newton-Raphson method is not advisible in this ase, as made apparent below.Reall rf from eqs.(3.84) and (3.85):rf(x) = �f�x = �T (x)| {z }n�q W|{z}q�q �(x)| {z }q�dimrf(x) = 0 ) �T (x)W�(x)| {z }� (x)2IRn = 0 (NC)thereby obtaining a determined system of n equations in n unknowns. This systeman be solved using Newton-Raphson method whih requires r (x):r (x = � �x = ��x [ �T (x)| {z }(��=�x)T W�(x)℄77



That is, r (x) involves seond-order derivatives of  with respet to x:�2�i�xj�xi ; i = 1; : : : ; nIn summary, the Newton-Raphson method is too umbersome and prone to ill-onditioning, for it is based on the normality onditions of the problem at hand.3.8 Computer Implementation Using ODA|C-Library of Routines for Optimum DesignODA is a C library of subroutines for optimization problems. The soure �le ofthis pakage, implemented in C, onsists of a number of subroutines designed andlassi�ed based on their appliation. At the beginning of eah subroutine a detaileddesription of the purpose and usage of the subroutine is inluded. Moreover, datavalidation has been onsidered in the software. In order to solve a problem, the usersimply alls one orresponding C subroutine.Sine the solutions for linear problems are diret|as opposed to iterative|theuse of ODA to solve linear problems requires only information on the problem pa-rameters, suh as matries A, C, and W, as well as vetors b and d, as appliable.For nonlinear problems, the solution is iterative, and hene, the user is required toprovide funtions desribing �(x); h(x); �(x); J(x); as needed. These funtionsare provided via subroutines in forms that an be alled by the pakage. In additionto this information, the user is also required to provide an initial guess x0 of x, sothat the iterative proedure an be started.1. Unonstrained linear problems: Subroutine MNSLS is used to �nd theminimum-norm solution of an underdetermined linear system, while subrou-tine LSSLS is used to �nd the least-square approximation of an overdeterminedlinear system. LSSLS an also handle determined systems, i.e., systems of asmany equations as unknowns.2. Unonstrained nonlinear problems: Subroutine LSSNLS is used to solvethis type of problems. Sine the nonlinear funtions and their assoiated gra-dient matries are problem-dependent, the user is required to provide twosubroutines that are used to evaluate the foregoing items, namely,� FUNPHI: This subroutine is used to evaluate the q-dimensional vetorfuntion �(x) in terms of the given n-dimensional vetor x.78



� DPHIDX: This subroutine is used to evaluate the q � n gradient matrix �of the vetor-funtion �(x) with respet to x, at the urrent value of x.Moreover, an initial guess of x is required when alling this subroutine.3. Constrained linear problems: Subroutine LSSCLS is used to solve this typeof problems.4. Constrained nonlinear problems: Subroutine LSSCNL is used for solvingthis type of problems. Before alling LSSCNL, the user is required to providefour problem-dependent subroutines: Two of these are FUNPHI and DPHIDX,already dersribed in item 2 above. The other two are used to evaluate theleft-hand sides of the onstraint equations and their gradient matrix, as listedbelow:� FUNH: This subroutine is used to evaluate the l-dimensional onstraintfuntion h in terms of the given n-dimensional vetor x.� DHDX: This subroutine is used to evaluate the l � n gradient matrix J ofthe vetor-funtion h(x) in terms of the given n-dimensional vetor x.Moreover, an initial guess of x is required when alling LSSCNL.5. Constrained problems with arbitrary objetive funtion: SubroutineARBITRARY is used for solving this type of problems. Before alling ARBITRARY,the user is required to provide four problem-dependent subroutines: Two ofthese are FUNPHI and DPHIDX, as desribed in item 2 above. The other twosubroutines are used to evaluate the left-hand sides of the onstraint equationsand their gradient matrix, as listed below:� phi: Subroutine used to evaluate the objetive funtion �(x) in termsof the given n-dimensional vetor x.� h: Subroutine used to evaluate the l-dimensional onstraint funtion hin terms of the given n-dimensional vetor x.� J: Subroutine used to evaluate the l�n gradient matrix J of the vetor-funtion h(x) at the urrent value of x.� gradient: Subroutine used to evaluate the n-dimensional gradient rfof the objetive funtion f(x) at the urrent value of vetor x.79



� Hessian: Subroutine used to evaluate the n�n Hessian matrix rrf ofthe objetive funtion f(x) at the urrent value of vetor x. Moreover,an initial guess of x is required when alling ARBITRARY.
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Chapter 4Unonstrained Optimization
4.1 IntrodutionWe start by studying the simplest problem in multivariable optimization, namely,the unonstrained minimization of a smooth salar objetive funtion f(x) of the n-dimensional design-variable vetor, or design vetor (DV) for brevity, that we denoteby x. The main result here is the normality onditions (NC) of the problem at hand.We derive the �rst-order (FONC), whih are neessary for a stationary point (SP);then, we derive the seond-order (SONC), whih are suÆient for a minimum, amaximum or a saddle point. These three kinds of SP are duly haraterized.4.2 The Normality ConditionsUnder the smoothness assumption, the objetive funtion is ontinuous and hasontinuous �rst- and seond-order derivatives. The problem at hand is, moreover,f(x) ! minx (4.1)Sine the problem under study is unonstrained, the searh of the minimum isonduted over the whole design spae Rn , whih eases the searh tremendously.Notie that every point of the design spae is haraterized by a position vetorx, whih de�nes a design, and hene, every suh point represents one design. Foroniseness, we will refer to a point and the design that the point represents by itsposition vetor.Now, for f(x) to attain a minimum at a ertain point xo of the design spae, thepoint must be, �rst and foremost, stationary, i.e., the gradient rf of the objetive81



funtion with respet to the design vetor must vanish:rf � �f�x ����xo = 0 (4.2a)whih is known as the �rst-order normality ondition. As a matter of fat, the aboverelation is short-hand for n normality onditions, one for eah omponent of the rfvetor, namely, rf � �f�x = 26664 �f=�x1�f=�x2...�f=�xn
37775 (4.2b)However, a stationary point an be a minimum, a maximum or a saddle point, to aseond-order approximation. To haraterize eah ase, we expand, to this order ofapproximation, f(x) around x = xo:f(x) = f(xo) +rf jxo (x� xo) + 12(x� xo)Trrf jxo(x� xo) + HOT (4.3a)where HOT stands for \higher-order-terms", while rrf , the Hessian of f withrespet to x, is a matrix of seond derivatives, namely,rrf � �2f�x2 = 26664 �2f=�x21 �2f=�x1�x2 � � � �2f=�x1�xn�2f=�x2�x1 �2f=�x22 � � � �2f=�x2�xn... ... . . . ...�2f=�xn�x1 �2f=�xn�x2 � � � �2f=�x2n

37775 (4.3b)Notie that, by virtue of the smoothness assumption,�2f�xi�xj = �2f�xj�xi ; for i; j = 1; 2; : : : ; n (4.4)whih follows after Shwartz's Theorem: Given a ontinuous funtion f(x) with �rst-and seond-order ontinuous derivatives, the order of di�erentiation in omputingthe seond derivatives is immaterial.As a onsequene of eq.(4.4), then,� The Hessian of f with respet to x is a symmetri n� n matrix, and� the eigenvalues of the Hessian matrix are all real and its eigenvetors aremutually orthogonal. 82



At a stationary point xo, then, and up to a seond-order approximation, eq.(4.3a)leads to �f � f(x)� f(xo) � 12(x� xo)Trrf jxo(x� xo) (4.5)Now we have that� If, for any �x � x � xo, �f(x) > 0, then the stationary point (SP) xo is aloal minimum of f(x);� if, for any �x � x � xo, �f(x) < 0, then the SP xo is a loal maximum off(x); and� otherwise, the SP xo is a saddle point.It is not pratial to test a stationary point for the sign of �f for every possible�x. However, it is possible to haraterize the nature of the stationary point xoby means of the signs of the eigenvalues of the Hessian matrix. To this end, we re-all the haraterization of positive-de�nite, positive-semide�nite and sign-inde�nitematries given above. In this light, then,� the stationary point xo is a loal minimum if the Hessian evaluated at thispoint is positive-de�nite;� the SP is a loal maximum if the Hessian evaluated at this point is negative-de�nite;� the SP is a saddle point if the Hessian evaluated at this point is sign-inde�nite.4.3 Methods of SolutionThe variety of methods available is immensely rih. In a nutshell, the various meth-ods an be lassi�ed aording to one riterion: the requirement of partial derivativesof the objetive funtion. We thus have:(i) Diret methods: No derivatives are required.(ii) Gradient Methods: Only �rst-order derivatives of the objetive funtionwith respet to all design variables are required.(iii) Newton methods: First- and seond-order derivatives of the objetive fun-tion with respet to all all design variables are required.83



Needless to say, diret methods are the most general|the least demanding|andsimplest to implement, the prie to be paid for the lak of information on deriva-tives being the speed of onvergene. These methods are the slowest to onverge.Gradient methods are faster, with a linear onvergene rate, whih means that theerror between the urrent iterate xk and the losest loal minimum dereases by oneorder of magnitude at eah iteration. The Newton-Raphson method, and variationsthereof, generially termed Newton methods, resort to �rst- and seond-order deriva-tives. Newton methods onverge quadratially, whih means that the aforementionederror dereases by two orders of magnitude per iteration.4.4 Diret MethodsDiret methods are based on funtion evaluations and nothing else. While thesemethods are slow to onverge, they an handle disontinuous funtions. There arevarious of these: random (random jumps, random walks); Hooke and Jeeves; Powell;and the simplex (Nelder-Mead) method. We outline the last three of these methodsbelow.The main onept behind diret methods is the pattern diretions, namely, thediretions of searh, along whih the minimum is approahed. These three methodsdi�er on the way of de�ning the pattern diretions.4.4.1 The Hooke and Jeeves MethodIn this method, the searh diretions are �xed. The method thus starts by de�ninga set of unit vetors fuign1 in the diretions of the n design variables, along whihthe searh is onduted.Hooke & Jeeves Algorithm1. Define starting base point x1 and presribed length �x of searhstep2. fk  f(xk); 1 i; yk;0  xk3. For i = 1 to n dof+  f(yk;i�1 + ui�xi)f�  f(yk;i�1 � ui�xi)if f+ < f(yk;i�1) then yk;i  yk;i�1 + ui�xi84



if f� < f(yk;i�1) then yk;i yk;i�1 � ui�xielse yk;i  yk;i�1enddo4. if yk;n = xk then �x 12�x go to 3else xk+1  yk;n5. s xk+1 � xk % pattern diretionFind � that minimizes f(xk+1 + �s)yk+1;n + �s6. k  k + 1; fk  f(yk;0); 1 irepeat 3if f(yk;n) < f(xk) then xk+1  yk;nelse xk+1  xk; �x 12�x go to 27. if k�xk < � then stopelse go to 24.4.2 The Powell Method (Conjugate Diretions)Let A = AT 2 IRn�n be positive-de�nite. Vetors x; y 2 IRn are said to beA-onjugate if xTAy = yTAx = 0 (4.6)In the area of mehanial systems under linear vibrations, for n degrees of freedom,the ith and jth modal vetors ui and uj are K- and M-onjugate, i.e.,(ui)TKuj = 0; and (ui)TMuj = 0where K and M are the n� n positive-de�nite sti�ness and mass matries, respe-tively.Theorem 4.4.1 (f. Rao's Theorem 6.1)Let x 2 IRn and f(x) = 12xTAx+ bTx+ ; A = AT > O85



Further, let �1 and �2 be two hyperplanes in IRn parallel to eah other. If xi is theminimum of f(x), with xi 2 �i; i = 1; 2, then x2 � x1 is A-onjugate with anyvetor y 2 IRn lying in a hyperplane normal to �1 and �2, i.e.,(x2 � x1)TAy = 0Proof : �1 and �2 are de�ned by�i : Cx = di; i = 1; 2; C 2 IRp�n; p < n (4.7)The algebrai interpretation of y lying in a plane perpendiular to �1 and �2 is thaty 2 R (CT ), i.e., there exists a v 2 IRp suh thaty = CTvand hene, if L is an orthogonal omplement of C, i.e., ifC|{z}p�n L|{z}n�n0 = O|{z}p�n0 ; n0 � n� pthen we an write y = Lu; u 2 IRn�pNow, xi is found as the solution to minx f(x)subjet to eq.(4.7). We solve the foregoing problem as an unonstrained problem bymeans of the Lagrangian1Fi � f(x) + (�i)T (Cx+ di)! minx ; i = 1; 2subjet to no onstraints, and denote the solution xi. The normality onditions ofthe foregoing problem are, for i = 1; 2,rFi = Ax+ b +CT�i = 0n; (4.8a)Cx� di = 0p (4.8b)whih yield a system of p + n equations for the p + n unknowns x and �i. Uponsolving for x = xi from eq.(4.8a), for i = 1; 2, we obtainxi = �AT (CT�i + b) (4.9)1Details on onstrained optimization are given in Chapter 5.86



Substitution of the foregoing expression into eq.(4.7) yields, always for i = 1; 2,�CA�1(CT�i + b) = dior CA�1CT�i = �CA�1b� diHene, �i = �(CA�1CT )�1(CA�1b + di) (4.10)Substitution of eq.(4.10) into eq.(4.9) leads toxi = A�1[CT (CA�1CT )�1(CA�1b+ di) + b℄= A�1[CT (CA�1CT )�1CA�1 + 1℄b +A�1[CT (CA�1CT )�1diTherefore, x2 � x1 = A�1CT (CA�1CT )�1(d2 � d1)Hene,(x2 � x1)TAy � (x2 � x1)TALu = (d2 � d1)T (CA�1CT )�1CA�1A| {z }1 L| {z }CL=Opn0 uThat is, (x2 � x1)TAy = 0thereby ompleting the proof.The Powell AlgorithmData: A set of linearly independent diretions D = f�ign and an initial guess x01. For k = 1 to n dofind minimizer �k of f(xk�1 + �k�k)xk  xk�1 + �k�kenddo2. Find m 2 f1; : : : ; ng suh that f(xm�1)� f(xm) is a maximum; then�  f(xm�1)� f(xm)3. f1  f(x0); f2  f(xn); f3  f(2xn � x0)4. if ( f3 � f1; or(f1 � 2f2 + f3)(f1 � f2)2 � 12(f1 � f3)2�then keep D; else 87



5. �  xn � x0find � that minimizes f(xn + ��)D  f�1; : : : ; �m�1; �m+1; : : : ; �n; �gx0  xn + ��if x0 is a minimum, stop; else, go to 1.Note: As initial D, use the oordinate axes.Theorem 4.4.2 For quadrati objetive funtions, Powell's diretions are (rrf)-onjugate.4.4.3 The Nelder-Mead Simplex MethodWith a few hanges in the notation, this subsetion is taken from (Rao, 1996). Thismethod, �rst proposed by Spendley et al. (1962), and later improved by Nelder andMead (1965), is based on the onept of simplex Sn. A simplex is a (n + 1)-vertexhyperpolyhedron in IRn. The searh for the minimum of the objetive funtion f(x)is onduted by means of funtion evaluations at all n + 1 verties of the simplex.The strategy followed is outlined below.We start by de�ning an initial simplex, whih is done by means of a base pointP0 2 IRn, of position vetor x0. The remaining n verties of Sn are generated so asto yield a regular hyperpolyhedron of unit-length edges. To this end, letp = 1p2n(pn+ 1 + n� 1); q = 1p2n(pn+ 1� 1) (4.11a)Then, if ei denotes the unit vetor in the diretion of the ith oordinate axis, orre-sponding to xi, let xi = x0 + pei + nXj=1;j 6=i qej; i = 1; 2; : : : ; n (4.11b)Shown in Fig. 4.1 are displays of the simplexes in IR2 and IR3, respetively,de�ned as desribed in eqs.(4.11a & 4.11b), with the base point at the origin.The searh strategy is based on three operations: a) reetion; (b) ontration;and () expansion.ReetionLet fi = f(xi), for i = 0; 1; : : : ; n, andfM = maxi f fi gn0 ; fm = mini f fi gn0 (4.12)88



Figure 4.1: The initial simplex in IR2 The initial simplex in IR3the orresponding verties being PM and Pm, of position vetors xM and xm, respe-tively. With the foregoing information, we now seek a new simplex, by replaing theworst vertex PM of the urrent simplex by a new one, Pn+1, of position vetor xn+1.The new vertex is found by means of a reetion of PM about the entroid P , ofposition vetor x, of all the simplex verties, exept for PM , namely,x = 1n nXi=0; i6=M xi (4.13)Let, moreover, � > 0 be the user-presribed reetion oeÆient, whih is used tode�ne the new vertex a distane �kx�xMk from the entroid P , the position vetorxn+1 of the new vertex thus beingxn+1 = x+ �(x� xM) (4.14)The e�et will be that Pn+1 will lie the farthest from the worst vertex PM , andhene, the new vertex is very likely to be the best of all the verties of the new simplex,fPi gn+1i=0; i6=M . An unlikely, although quite possible senario, is that fn+1 = fM , andhene, no gain will be made by de�ning the new simplex. In this ase, we an de�nethe new vertex in one of two possible ways:1. PM is preserved, the rejeted vertex being PM 0, whih is the next worst vertex,i.e., with the subsript M 0 de�ned suh thatfM 0 = maxi f fi gni=0; i6=M (4.15)89



2. Alternatively, rede�ne �|make it either larger or smaller|while rejetingalways the same worst vertex PM .ExpansionIf the outome of the reetion stage yields fn+1 � f(xn+1) < fm, then the diretionde�ned by the vetor di�erene xn+1�x is very likely to point towards the minimum,and hene, it may be advisable to plae a new vertex Pe away from P in the saiddiretion, i.e., by de�ning the position vetor xe of the new vertex Pe in the formxe = x+ (xn+1 � x) (4.16) > 1, for expansion.Now, there are two possible outomes:� If fe � f(xe) < f(xm), then replae PM by Pe and start a new reetion;� if fe > f(xm), then the expansion failed, and the new simplex obtained by thereetion, with PM replaed by Pn+1, is kept, and a new reetion is started.The alternative outome of the reetion is desribed below.ContrationIf fn+1 > fi � f(xi), for i = 0; 1; : : : ;M � 1;M + 1; : : : ; n, and fn+1 < fM , then wereplae PM by Pn+1. In this ase, we de�ne a new vertex P, of position vetor x,a distane �kxM � xk from P , with 0 � � � 1. That is,x = x + �(xM � x) (4.17)whih an be readily proven to yield a P lying between PM and P , for x has beende�ned as a onvex ombination2 of x and x. Now,� If f � f(x) > fM , then no vertex of the simplex is hanged, and we keep thenew vertex with Pn+1, as obtained in the reetion operation;� if f < minffM ; fn+1g, then PM is replaed by P, a new simplex thus beingobtained, and a new reetion operation is started;2See Setion 5.4 for a de�nition of this term.90



� if f > minffM ; fn+1g, then the ontration failed, in whih ase Pi is replaedby P i, of position vetor xi, halfway between Pi and Pm, i.e.,xi = 12(xi + xm) (4.18)thereby de�ning a new simplex, and a new reetion is started.Convergene riterionThe method onverges when the rms value frms of the objetive funtion is smallerthan a presribed tolerane �, i.e., whenvuut 1n+ 1 n+1X1 jfi � f j2 < � (4.19)where (i) a relabelling of the verties has been assumed, with the order f1 � f2 �: : : � fn+1 and (ii) f is the mean value of the objetive funtion evaluated at all theverties of the urrent omplex, i.e.,f � 1n + 1 n+1X1 fi (4.20)4.5 Gradient Methods4.5.1 The Method of Steepest Desent (Cauhy)Algorithm:1. Pik up an initial guess x1 to start the iterations. Set the iterationounter i at i = 12. Define the ith searh diretion si assi = �rf jx=xi (4.21)3. Define the next test point, xi+1, asxi+1 = xi + �si = xi � �rf ��x = xi (4.22)To find �, ondut a one-dimensional searh along the diretion siso that �opt is the value of � that minimizes F (�) = f(xi��rf jx=xi)91



4. If xi+1 satisfies the onvergene riteria adopted at the outset,stop; else, go to step 5.5. Update the iteration ounter: i + 1  i. Go to step 2.Convergene riteria: Use one or more of those appliable, namely,jf(xi+1)� f(xi)j � �1jf(xi)j (4.23a)krf jx=xi k � �2 (4.23b)kxi+1 � xik � �3 (4.23)Remark: In riteria (4.23b & ), any norm an be used ) Use the most eonomione, i.e., the Chebyshev or maximum norm.4.5.2 The Conjugate-Gradient Method (Flether-Reeves)We use here the onept of A-onjugay introdued in Subsetion 4.4.2, for a sym-metri, positive-de�nite A.Preliminary Remarks:� The onjugate-gradient method of Flether-Reeves (FR method) is aimed atminimizing a C2-ontinuous funtion f(x) under no onstraints.� The FR method works on the onept of sequential quadrati programming(SQP).� The FR method is based on the quadrati approximation of f(x): It is assumedthat f(x) = 12xTAx+ bTx + f0 +HOT (4.24)where HOT stands for higher-order terms� It is assumed that A in eq.(4.24) is positive-de�niteAlgorithm Overview: The FR algorithm works on the base of two items:� A searh diretion si at eah iteration, and� a step of optimum length �� in diretion si that minimizes f in that diretion92



Begin with an initial guess x1Next, a searh diretion s1 is de�ned in the diretion of steepest desent of f(x), i.e.,along �rf at x1, namely, s1 � �rf jx=x1 (4.25)Further, a new iterate, x2 is sought along the above diretion, from the urrentiterate x1: x2 � x1 + �s1 (4.26)where � is a real number, as yet to be determined. This is done by imposing thatrf , when evaluated at x = x2, be normal to s1, i.e.,(rf ��x=x2)T s1 = 0 (4.27)Now susbtitute x2 as given by eq.(4.26) and the quadrati approximation of f(x)into eq.(4.27), to obtain, with rf � Ax+ b,[A(x1 + �s1| {z }x2 ) + b℄T s1 = 0 (4.28)whene the optimum value of �, ��, is readily derived:�� = �(Ax1 + b)T s1(s1)TAs1 � �(s1)Trf jx=x1(s1)TAs1 (4.29)where, from the assumed positive-de�niteness of A,(s1)TAs1 > 0and hene, s1 an be expressed, upon realling eq.(4.26), ass1 = 1�� (x2 � x1) (4.30)The new searh diretion, s2, is de�ned as a linear ombination of s1 and �rf jx=x2 ,i.e., s2 � �rf ��x=x2 + �2s1 (4.31)where �2 is hosen so as to make s2 onjugate to s1 with respet to A:(s1)TAs2 = 0 ) (s1)TA(�rf jx=x2 + �2s1) = 0or (�rf jx=x2 + �2s1)TAs1 = 0 (4.32)93



Reall eq.(4.30) and substitute that expression into eq.(4.32), to obtain(�rf jx=x2 + �2s1)TA � 1�� (x2 � x1)� = 0 (4.33)Next, we �nd an expression for the di�erene x2 � x1 in terms of the gradients atx1 and x2. Indeed, realling the quadrati approximation, eq.(4.24),rf jx=x2 �rf jx=x1 � Ax2 � b� (Ax1 � b) = A(x2 � x1) (4.34)Substitute expression (4.34) into eq.(4.33), after learing the denominator:(�rf jx=x2 + �2s1)T (rf jx=x2 �rf jx=x1 ) = 0 (4.35)Upon expansion,�(rf jx=x2 )Trf jx=x2+(rf jx=x1| {z }�s1 )Trf jx=x2| {z }0 +�2 (rf jx=x2 )T s1| {z }0 ��2(rf jx=x1 )T s1 = 0where we have realled eqs.(4.25) and (4.27). Hene, the above equation simpli�esto (rf jx=x2 )Trf jx=x2 + �2(rf jx=x1 )T s1|{z}�rfjx=x2 = 0whene we an solve for �2 as�2 = (rf jx=x2 )Trf jx=x2(rf jx=x1 )T s1 � (rf jx=x2 )Trf jx=x2(rf jx=x1 )Trf jx=x1or �2 = krf jx=x2 k2krf jx=x1 k2 (4.36)A third searh diretion s3 is now de�ned as a linear ombination of s2 and�rf jx=x3 :s3 = �rf jx=x3 + �3s2 (4.37)Now impose the onjugay ondition (4.6):(s2)TAs3 = 0 ) �3 = (rf jx=x3 )Trf jx=x3(rf jx=x2 )trf jx=x2 = krf jx=x3 k2krf jx=x2 k2 (4.38)In general, we havesi = �rf jx=xi + �isi; �i = krf jx=xi k2krf jx=xi�1 k2 ; i = 2; 3; ; : : : (4.39)The proedure stops when krf jx=xi k < �, for a user-presribed tolerane �, whihindiates that the normality ondition (4.2a) has been satis�ed.94



Summary of the Flether-Reeves Algorithm1. Choose an initial guess x12. Let s1 = �rf jx=x13. Let x2 = x1 + ��s1 (4.40)where �� is the value of � that makes (s1)Trf jx=x2 = 04. Let i = 25. Let si = �rf jx=xi + krf jx=xi k2krf jx=xi�1 k2 si�16. Find the value of �, ��, that makes (si)Trf jx=xi+1 = 0. Then,xi+1 = xi + ��si7. If krf jx=xi+1 k < �, stop; else i i + 1 and go to step 54.5.3 Quasi-Newton MethodsAs we will see in Setion 4.6, Newton methods rely on the normality onditions,whih lead to a determined system of n nonlinear equations in n unknowns. Inapplying those methods it is assumed that the Hessian of the objetive funtion,whih is the Jaobian � of the Newton-Raphson method, is available, and hene,the Hessian an be used to update the iterations. Quasi-Newton methods replaethe update �x = ���10 �0 of eq.(3.80) by an expression that a) does not relyon the Hessian, but only on the gradient of the objetive funtion and b) doesnot require any matrix inversion. These features make quasi-Newton methods quiteattrative, and many times, preferable over Newton methods. The two quasi-Newtonmethods outlined below di�er only in the form in whih the update of the solution isomputed. These two methods aim at �nding an approximation to (rrf)�1 usingonly information on rf .Moreover, while the Newton-Raphson method is known to have a quadrati on-vergene rate, quasi-Newton methods show a onvergene rate that lies betweengradient methods and Newton methods. That is, quasi-Newton methods have asuperlinear onvergene rate. 95



The Davidon-Flether-Powell MethodThe method is summarized below:Algorithm1. Give an initial guess: x02. Define an initial searh diretion: s0 = �rf jx=x03. Define an initial Hessian-inverse: B0 = 1, the n�n identity matrix4. Find �i that minimizes3 f(xi+1). Then, letxi+1 = xi � �iBirf jx=xi5. gi = rf jx=xi+1 �rf jx=xi6. Mi = �i si(si)T(si)Tgi ; Ni = �Bigi(Bigi)T(gi)TBigi ; Bi+1 = Bi +Mi +Ni7. si+1 = Bi+1gi8. if onvergene riterion reahed, stop; else, go to 4The Broyden-Flether-Goldfarb-Shanno MethodThis is an improved DFP method, but still with superlinear onvergene. Onlydi�erene with the DFP Algorithm lies in step 6, whih is replaed by:M0i = �i si(si)T(si)Tgi ; �i = 1 + (gi)TBigi(si)TgiN0i = �si(gi)TBi(si)TgiBi+1 = Bi +M0i +N0i + (N0i)T3In this step, any of the methods studied in Chapter 2 an be applied. A thorough disussionof univariable minimization is available in (Brent, 1972).96



4.6 Newton Methods4.6.1 The Newton-Raphson MethodHere, we resort to the normality ondition (4.2a), and let�(x) � rfthe normality ondition thus leading to a system of n nonlinear equations in nunknowns of the form of eq.(3.75), repeated below for quifk referene:�(x) = 0whih an be solved using the Newton-Raphson method beause, by assumption,seond-order derivatives of the objetive funtion are available, and hene, the Ja-obian � of �(x) with respet to x is nothing but the Hessian matrox of f(x),i.e., � = rrfThis method, while o�ering a quadrati onvergene, is not as favoured as methods ofthe gradient type, mostly beause of the ost of solving a system of linear equations,namely, eq.(3.79) at eah iteration.4.6.2 The Levenberg-Marquardt MethodThe Levenberg-Marquardt method aims at enhaning the robustness of the Newton-Raphson method, when the Hessian beomes ill-onditioned, by adding to the Hes-sian, whih is assumed positive-de�nite, a symmetri, isotropi matrix �1, where� > 0 and 1 is the n� n identity matrix:rrf  rrf + �1 (4.41)Notie that the eigenvalues4 of rrf , denoted by f�i gn1 , and those of rrf , denotedby f�i gn1 , are related by �i = �i + �; i = 1; 2; : : : ; nIf we denote by � the 2-norm ondition number of rrf and by � that of rrf , wehave � = �M�m ; � = �M + ��m + � (4.42)4By virtue of the assumed positive-de�niteness of the Hessian, its eigenvalues are idential totheir singular values. 97



the result being that � < �, and hene, the numerial behaviour of the Hessian isstabilized.
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Chapter 5Equality-ConstrainedOptimization:Normality Conditions
5.1 IntrodutionIn this hapter we solve the simplest lass of onstrained-optimization problems,namely, those subjet to equality onstraints. The problem statement at hand isf(x) ! minx (5.1a)subjet to h(x) = 0l (5.1b)where h is a smooth1 l-dimensional vetor funtion of the n-dimensional vetorargument x, 0l denoting the l-dimensional zero vetor. Moreover, l < n, for ann-dimensional design vetor x.The main outome is the derivation of the normality onditions of the problemsat hand. We derive these in two forms: (i) the diret form, in terms of the gradientsof the objetive funtion f(x) to be minimized and of the onstraints (5.1b); and(ii) the dual form, in terms of an orthogonal omplement of the gradient of h withrespet to x.As a speial ase, that lends itself to a losed-form solution, we study minimum-norm problems, whereby a weighted Eulidean norm of the design vetor is to be1Smoothness implies that h(x) is ontinuous and has a ontinuous gradient with respet to x.99



minimized subjet to l linear equality onstraints. In this vein, we introdue theright Moore-Penrose generalized inverse.5.2 The First-Order Normality Conditions5.2.1 The Primal FormWe now derive the normality onditions of problem (5.1a) in primal form. To thisend, we resort to Lagrange multipliers �1; �2, : : :, �l, one for eah salar onstrainthi(x) = 0, and group them in the l-dimensional array �. Upon adjoining the lonstraints to the objetive funtion f(x), we obtain the Lagrangian F (x;�) thatwe aim at minimizing under no onstraints, while hoosing � in suh a way that thel equality onstraints are satis�ed. That is,F (x;�) � f(x) + �Th ! minx; � (5.2)subjet to no onstraints. We thus have transformed the equality-onstrained min-imization problem into an unonstrained one. We derive now the normality on-ditions of the problem at hand by realling those of Chapter 2, requiring that a)the gradient of the objetive funtion with respet to the design variables vanishand b) the Hessian of the objetive funtion with respet to the same variables bepositive-de�nite. However, note that we now have l additional variables besides theoriginal n design variables. We thus have to augment the design-variable vetororrespondingly, whih we do by de�ning an augmented (n+ l)-dimensional designvetor y: y � � x� � (5.3)Therefore, the unonstrained minimization problem (5.2) an be formulated ina more ompat form, namely, F (y) ! miny (5.4)subjet to no onstraints. The �rst-order normality onditions of the above problemare, thus, �F�y = � �F=�x�F=�� � = 0n+l (5.5a)100



where 0n+l denotes the (n+ l)-dimensional zero vetor. Upon expansion, the aboveequation yields �F�x = 0n (5.5b)�F�� = 0l (5.5)To gain insight into the geometri signi�ane of the foregoing normality ondi-tions, we expand the left-hand side of eq.(5.5b) omponentwise:�F�x1 � �f�x1 + �1�h1�x1 + �2�h2�x1 + � � �+ �l �hl�x1 = 0�F�x2 � �f�x2 + �1�h1�x2 + �2�h2�x2 + � � �+ �l �hl�x2 = 0...�F�xn � �f�xn|{z}rf +�1 �h1�xn + �2 �h2�xn + � � �+ �l �hl�xn = 0 (5.6)where the the �rst term of the ith equation an be readily identi�ed as the ithomponent of rf = �f=�x. The remaining terms of the same equation an beidenti�ed as the ith omponent of an inner produt pi de�ned aspi � [ �h1=�xi �h2=�xi � � � �hl=�xi ℄26664�1�2...�l
37775Therefore, if we let p = h p1 p2 : : : pn iT , thenp = 26664 �h1=�x1 �h2=�x1 � � � �hl=�x1�h1=�x2 �h2=�x2 � � � �hl=�x2... ... . . . ...�h1=�xn �h2=�xn � � � �hl=�xn

37775| {z }(rh)T : n�l
26664�1�2...�l

37775| {z }� (5.7)
whih an be readily identi�ed, in turn, as the produt (rh)T�. The �rst n nor-mality onditions, displayed in eq.(5.5b), thus amount torf + JT� = 0n (5.8a)101



where J � rh is the gradient of h with respet to x. The remaining l normal-ity onditions, displayed in eq.(5.5), yield nothing but the onstraints themselves,namely h(x) = 0l (5.8b)Equation (5.8a) is the vetor representation of the �rst-order normality onditions(FONC) sought. What eq.(5.8a) represents has a geometri signi�ane that will bemade apparent upon rewriting it in the alternative formJT� = �rf (5.9)The foregoing equation states that, at a stationary point x0, �rf , or rf for thatmatter, lies in the range of the transpose of the gradient of the onstraints. Notiethat the range J 0 of JT is a subspae of the n-dimensional spae of design variables.In fat, dim[R(JT )℄ = l < n, for this subspae is spanned by l linearly independentvetors, the olumns of JT , or the n-dimensional rows of J.Algebraially, what eq.(5.9) represents is an overdetermined system of n linearequations in the l < n unknowns f�i gl1. The normality ondition then states thatthe least-square approximation of this overdetermined system yields a zero error.That is, at a stationary point, the n (> l) equations (5.9) beome all onsistent. Notethat the least-square approximation �0 of the foregoing equations an be expressedin terms of the left Moore-Penrose generalized inverse of JT , namely,�0 = �(JJT )�1Jrf (5.10)The least-square error e0 of this approximation is thuse0 = JT�0 � (�rf) = �JT (JJT )�1Jrf +rf = [1� JT (JJT )�1J℄rf (5.11)with 1 denoting the n� n identity matrix.We an now express the �rst-order normality ondition (5.9) in yet one morealternative form: [1� JT (JJT )�1J℄rf = 0n (5.12)The matrix inside the brakets in the foregoing equation an be readily identi�edas a projetor. This projetor maps vetors in Rn onto the nullspae of J. Inother words, at a stationary point P0 the gradient of the objetive funtion need notvanish; only its projetion onto the nullspae of the gradient of the onstraints mustvanish, whih is an alternative form of stating the �rst-order normality ondition.Sometimes the produt rf , de�ned asrf � [1� JT (JJT )�1J℄rf 2 Rn (5.13)102



is referred to as the onstrained gradient. The FONC (5.12) an then be simplystated as: At a stationary of the equality-onstrained problem (5.1a & b), the on-strained gradient vanishes.Exerise 5.2.1Prove that P � 1� JT (JJT )�1J (5.14)indeed maps vetors in Rn onto the nullspae of J and that P is a projetor.5.2.2 The Dual FormOne more form of the FONC of the problem at hand is now derived in what we anterm dual form. To this end, we realize that the solution sought x0 must lie in asubset of the spae Rn of design variables, of redued dimension n�l, whih ontainsall design vetors x satisfying the onstraints. Now, this set need not be a vetorspae, and in general it is not. Indeed, if the onstraints are nonlinear, then the sumof two distint vetors x1 and x2 will most likely not satisfy the onstraints, evenif these two designs do so independently. Neither need the zero vetor satisfy theonstraints, whih thus disquali�es the set from being a subspae of Rn . What wehave as a feasible subset of the design spae is a manifold F , i.e., a smooth surfaeembedded in Rn . We shall term this subset the feasible manifold.Finding F may be a tremendous task when the onstraints are nonlinear andalgebraially ompliated. The good news is that we do not atually need the feasiblemanifold to obtain a feasible solution. What we really need is a feasible subspaetangent to the said manifold at a feasible point. We disuss below how to obtainthis subspae. Assume that we have a feasible point PF , of position vetor xF , i.e.,h(xF ) = 0l (5.15)An arbitrary \move" �x from xF will most likely take PF away from the onstraintsh(x) = 0l. What we would like to �nd is a feasible move, i.e., a vetor �xF suhthat xF +�xF still veri�es the onstraints, i.e.,h(xF +�xF ) = h(xF ) + J(xF )�xF +HOT = 0l (5.16)Sine we assumed at the outset that xF is feasible, eq.(5.15), we have, from theforegoing equation and to a �rst-order approximation, i.e., negleting HOT,J(xF )�xF = 0l (5.17)103



Moreover, J is of l� n, with l < n, and hene, it is possible to �nd n� l linearlyindependent vetors of Rn lying in N (J(xF )), i.e., in the nullspae of J(xF ). Thesevetors an be produed in many ways. We will not dwell, for the time being, in thepertinent omputing methods, but rather on the onepts behind the produtionof those n � l vetors. Let us thus assume that we have found suh n � l linearlyindependent vetors, arrayed in the n� n0 matrix L, with n0 � n� l, and hene,JL = Oln0 (5.18)matrix L being termed an orthogonal omplement of J and Oln0 denoting the l� n0zero matrix.Now, if we de�ne �xF = L�u (5.19a)for arbitrary �u 2 Rn0 , we will haveJ�xF = JL�u = 0n0 (5.19b)the \move" �xF thus verifying the onstraints to a �rst degree. Now, the �rst-ordernormality ondition of the problem at hand an be ast in the form�f � (rf)T�xF = (rf)TL�u = (LTrf)T�u = 0 8 �uHene, the alternative form of the FONC isLTrf = 0n0 (5.20)That is, at a stationary point, the gradient of f need not vanish; it must lie in thenullspae of LT , i.e., in the range of L. We an thus all LTrf the feasible gradient,and represent it by ruf , i.e., ruf = LTrf (5.21)whih is a (n � l)-dimensional vetor. Notie that, from eq.(5.19a), L has thedi�erential interpretation L = �x�u (5.22)and hene, the FONC (5.20) an be restated as��x�u�T ��f�x� � �f�u = 0n0 or ruf = 0n0 (5.23)104



That is, the FONC (5.23) states that, at a stationary point of problem (5.1a & b),the gradient of f(x) with respet to the vetor of independent design variables uvanishes.Remark: When omparing the two forms of the FONC, eqs.(5.12) and (5.20),the simpliity of the latter with respet to the former is apparent. This simpli-ity, however, is more than formal, for eq.(5.12) involves n salar equations, whileeq.(5.20) involves only n� l salar equations.5.3 The Seond-Order Normality Conditions5.3.1 The Primal FormThe seond-order normality onditions (SONC) of the problem at hand require thatthe Hessian of the Lagrangian F (x;�) with respet to the (n+ l)-dimensional aug-mented design-variable vetor � � [xT �T ℄T be positive-de�nite. The said Hessiantakes the form �2F��2 � F = �rrf + �(JT�)=�x JTJ Ol � (5.24)where, as usual, rrf represents the Hessian of f(x) with respet to x, and Oldenotes the l � l zero matrix. Notie that omputing the above Hessian requiresthe omputation of rrf and �(JT�)=�x, whih involves the seond derivatives ofh(x) with respet to x. Moreover, in order to verify the seond-order normalityonditions, the n+ l eigenvalues of �2F=��2 must be omputed. We an now statethe SONC in primal form: A stationary point x0(i) is a loal minimum if and only if F(x0) is positive-de�nite;(ii) is a loal maximum if and only if F(x0) is negative-de�nite;(iii) is a saddle point if and only if F(x0) is sign-inde�nite.Thus, the seond-order normality onditions in primal form are extremely ostly toverify.5.3.2 The Dual FormAlternatively, we resort to the form (5.19a) of �xF and assume that we have founda stationary point verifying eq.(5.20). Upon expansion of f(xF + �xF ) to seond105



order, we obtain�f = f(xF +�xF )� f(xF ) � (rf jx=x0)T�xF + 12(�xF )Trrf ����x=x0 �xFwhih must be positive if the urrent value x0 is a minimum. Thus, upon substitutingeq.(5.19a) into the above expression, we obtain�f � (rf jx=x0)TL�u + 12�uTLTrrf ����x=x0 L�u > 0Now, sine we have assumed that the FONC holds at the stationary point x0,eq.(5.20) holds, and hene, (rf jx=x0)TL�u = 0the seond-order normality ondition thus beoming�uTLTrrf ��x=x0 L�u > 0 8 �u (5.25)We term the produt LTrrf ��x=x0 L the feasible Hessian of f . That is, a stationarypoint x0 is a loal minimum if its feasible Hessian is positive-de�nite. As a onse-quene, then, at a minimum, the Hessian itself need not be positive-de�nite, but itsfeasible omponent must be. This onstitutes the dual form of the SONC.We an now represent the (n� l)� (n� l) feasible Hessian asruruf � LTrrfL = ��x�u�T (rrf) �x�u (5.26)the SONC thus lending themselves to a more straightforward interpretation:A stationary point x0 of problem (5.1a & b) is a minimum i� the Hessian off(x) with respet to the independent design-variable vetor u is positive-de�nite.Remark: At a minimum, the Hessian of f with respet to x need not be positive-de�nite. However, if rrf is positive-de�nite, then ruruf is neessarily positive-de�nite as well.Example 5.3.1 (The Design of a Positioning Robot for a Given Reah)In designing the manipulator of Fig. 5.1 (Angeles, 2002), we want to �nd the valueof the length a that will produe the reah of a Puma 560 robot, namely, 0.8772 m.It is apparent that the maximum reah is independent of �1, the angle of rotationof the �rst joint, for motions about the �rst joint do not a�et the reah. So, we lokthe �rst joint and, in the posture of Fig. 5.1, rotate the third joint through one full106



Figure 5.1: Manipulator on�guration for C(0; a; 0).turn, point C thus desribing a irle C of radius a lying in the Y1-Z1 plane, withentre at point O03 of oordinates (0; a; �a). Next, upon performing a full rotationof the seond joint, the irle desribes a toroid of axis Z2, the problem now reduingto one of �nding the point of the surfae of the toroid lying the farthest from the Z1axis. Figure 5.2 inludes side views of irle C.Let the trae of the toroid with the X2-Z2 plane be the ontour T of Fig. 5.3.It is most onvenient to represent this ontour with the aid of the non-dimensionalvariables u and v, whih are de�ned asu � x2a ; v � z2a (5.27)In terms of these new variables, the equation of T beomesT : h(u; v) � (u2 + v2)(u2 + v2 � 4v)� 4(u2 � v2 � 1) = 0 (5.28)The ontour T de�ned by the impliit funtion h(u; v) = 0 is displayed in Fig. 5.3.Now, the maximum distane rM of O1 to T an be found as the solution of the107



Figure 5.2: Side views of irle C: (a) and (b) at the position of Fig. 5.1; and () atan arbitrary position for a given value of �2optimization problem de�ned below:f(u; v) � 12[(u+ 1)2 + v2℄ ! maxu;v (5.29)subjet to eq.(5.28). We thus have an equality-onstrained maximization problem.In order to �nd the normality onditions of this problem, we resort to Lagrangemultipliers, thus de�ning a new, unonstrained, maximization problem:F (u; v; �) � f + �h ! maxu;v;� (5.30)The normality onditions of the foregoing problem are, thus,�F�u � u+ 1 + 4�u(u2 + v2 � 2v � 2) = 0 (5.31a)�F�v � v + 4�(v � 1)(u2 + v2 � 2v) = 0 (5.31b)�F�� � (u2 + v2)((u2 + v2 � 4v)� 4((u2 � v2 � 1) = 0 (5.31)the last equation being just a restatement of the onstraint, eq.(5.28). Now we elim-inate �, the Lagrange multiplier, dialytially (Salmon, 1964) from eqs.(5.31a & b).We do this by rewriting these two equations in linear homogeneous form in the\variables" � and 1, namely,� 4u(u2 + v2 � 2v � 2) u+ 14(v � 1)(u2 + v2 � 2v) v � ��1 � = � 00 � (5.32a)108



Obviously, the foregoing equation requires a nontrivial solution|note that one om-ponent of the vetor of \unknowns" is unity!|whih in turn requires that the oef-�ient matrix be singular, i.e.,det � 4u(u2 + v2 � 2v � 2) u+ 14(v � 1)(u2 + v2 � 2v) v � = 0 (5.32b)Upon expansion,4u(u2 + v2 � 2v � 2)v � 4(v � 1)(u2 + v2 � 2v)(u+ 1) = 0or S : (u2 + v2 � 2v � 2)(u� v + 1)� 2uv = 0 (5.32)

T T

Figure 5.3: Contour of the trae T of the toroid on the u-v planeNow, the maximum reah is found via the solution of the system of polynomialequations (5.28) and (5.32). The former is a quarti equation, the latter being109



ubi. The Bezout number2 of the foregoing system of equations is de�ned as theprodut of the degrees of those equations, i.e., 4 � 3 = 12, whih gives an upperbound of 12 for the number of solutions, both real and imaginary, of the problem athand. One graphial means of obtaining estimates of the real solutions of this systemonsists in plotting the two orresponding ontours in the u-v plane, as shown inFig. 5.4. The maximum reah ours apparently, at point A, of oordinates (2:2; 1:4)estimated by inspetion, whih leads to a visual estimate of rM , namely,rm � 3:5a (5.33)The four intersetions of these two urves orrespond to the four stationary valuesof the distane from a point in the trae T to the point O1 in the u-v plane. Of thesefour intersetions, two are loal maxima and two loal minima. The normality ofrf , whih in this ase is idential to the vetor from O1 to T at the intersetionpoints, is to be highlighted.The foregoing system is solved more preisely using omputer algebra, thus ob-taining the four real solutions given below:(u)A = 2:132242; (v)A = 1:148990(u)B = �1:578095; (v)B = 1:975316(u)C = �1:132242; (v)C = 0:116796(u)D = 1:025308; (v)D = 0:366325whih lead to reah values ofrA = 3:459606a; rB = 2:058171a; rC = 0:176435a; rD = 2:058171afor a global maximum reah of rM = 3:459606aThe value of a that will yield the foregoing maximum reah is thus found as3:460a = 0:8772 ) a = 0:2535 m2To de�ne the Bezout number of a system of p polynomial equations in p variables x1, x2,: : :, xp, we look �rst at the ith equation: A typial term of this equation involves the produtxd1i1 xd2i2 � � �xdpip . The degree di of this equation is the maximum of d1i + d2i + : : : + dpi, fori = 1; : : : ; Ni, where Ni denotes the number of terms of the ith equation. The Bezout number NBof this system is de�ned as NB = d1d2 : : : dp. 110
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Figure 5.4: Plots of the two ontours, S and Tthereby ompleting the solution.The veri�ation of the �rst- and seond-order normality onditions is left as anexerise.Example 5.3.2 (The Equilibrium Con�guration of a Four-Link Chain)We onsider here the problem of determining the equilibrium on�guration of a hainomposed of four idential links of length L eah, suspended at two points loated atthe same level, a distane d apart. This problem was proposed by Luenberger (1984)to illustrate methods of nonlinear programming. Here, we use a simpli�ed versionof this problem with the purpose of obtaining a solution by simple equation-solving.At the outset, we exploit the symmetry of the problem, whih enables us to reduethe number of design variables to only two, namely, the inlination of the two linkson the left half of the hain. Let �i, for i = 1; 2, denote the angle made by the axisof the ith link from the vertial and � denote the mass distribution per unit length,111



while g represents the gravity aeleration. The potential energy V of the whole hainis, thus, for an arbitrary on�guration of the hain,V (�1; �2) = �2�gL�12 os �1 + os �1 + 12 os �2�whih is a minimum at an equilibrium on�guration. However, notie that the twodesign variables are not independent, for their horizontal span must be exatly d=2,i.e., L(sin �1 + sin �2)� d2 = 0The optimum design problem at hand now has the formf(�1; �2) � V�gL = �3 os �1 � os �2 ! min�1;�2subjet to h(�1; �2) = sin �1 + sin �2 � p = 0; p � d2LThe Lagrangian of the problem is to be minimized, i.e.,F (�1; �2) = �3 os �1 � os �2 + �(sin �1 + sin �2 � p) ! min�1;�2;�subjet to no onstraints. The normality onditions of the unonstrained problemare, thus �F��1 = 3 sin �1 + � os �1 = 0�F��2 = sin �2 + � os �2 = 0�F�� = sin �1 + sin �2 � p = 0The problem has thus been redued to solving the foregoing system of three nonlinearequations in three unknowns, �1, �2 and �. While this nonlinear system an besolved using the Newton-Raphson method, the simpliity of the equations lends itselfto a more omprehensive approah. Indeed, the Newton-Raphson method yields onesingle solution at a time, the user never knowing whether any other solutions exist.Moreover, there is no guarantee that the solution found is a minimum and not amaximum or a saddle point.For starters, we an eliminate � from the above equations, for it appears linearlyin the �rst two of those. We thus rewrite those two equations in the formAx = 02112



with 02 denoting the two-dimensional zero vetor, while A and x are de�ned asA � � os �1 3 sin �1os �2 sin �2 � ; x � ��1 � 6= 02Sine the solution sought annot be zero, the above homogeneous system must admita nontrivial solution, whih alls for A to be singular, i.e.,�(�1; �2) � det(A) = 0Upon expansion, �(�1; �2) = os �1 sin �2 � 3 sin �1 os �2 = 0whih we shall all the redued normality ondition. We thus have eliminated �dialytially (Salmon, 1964), the problem thus reduing to a system of two equationsin two unknowns, h(�1; �2) = 0 and �(�1; �2) = 0. We an further redue thesame system to one single equation in one single unknown, whih an be done bydialyti elimination as well. However, notie that dialyti elimination is appliable tosystems of polynomial equations, while the two equations at hand are not polynomial;they are trigonometri. Nevertheless, by appliation of the well-known trigonometri\half-tan" identities:os x � 1� T 21 + T 2 ; sin x � 2T1 + T 2 ; T � tan�x2�the two equations an be transformed into polynomial equations. We will not pursuehere this elimination proedure. Instead, we plot the two foregoing funtions inthe �1-�2 plane, the solutions sought being found visually at the intersetion of theorresponding ontours. In order to plot the ontours, however, we must assign anumerial value to parameter p. By assuming d = 1:25 m and L = 0:5 m, we obtainp = 1:25. These ontours are plotted in Fig. 5.5.The ontours apparently interset at two points, of oordinates estimated visuallyat �1 = 0:45; �2 = 1:00 and �1 = 2:70; �2 = 2:20with all values in radians. These values are quite rough. Better values an be ob-tained by means of Newton-Raphson's method applied to the two nonlinear equations,using the foregoing estimates as initial guesses. Alternatively, the two equations anbe solved dialytially by means of omputer algebra. For example, upon invokingMaple's \solve" proedure, the real roots below were reported:�1 = 0:4449420670; �2 = 0:9607027573 and �1 = 2:696650587; �2 = 2:180889896113
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Figure 5.5: The redued normality ondition and the equality onstraint (dashedontour)Translated into degrees, the foregoing angles read:�1 = 25:49330256Æ; �2 = 55:04421335Æ and �1 = 154:5066974Æ; �2 = 124:9557866ÆThe �rst solution orresponds, apparently, to a minimum, the seond to a maximum.If this is the ase, then the sum of the orresponding roots for the two solutions shouldbe �, whih is the ase. Moreover, upon evaluation of the objetive funtion at thetwo solutions, we obtainf(0:4449420670; 0:9607027573) = �1:640425478f(2:696650587; 2:180889896) = 1:640425479whih learly shows that the �rst solution is a maximum, the seond a minimum.Notie the symmetry of the objetive funtion at the two foregoing extrema.The �rst- and seond-order normality onditions should be veri�ed numerially.The hain at its equilibrium on�guration is displayed in Fig. 5.6.114



Figure 5.6: The equilibrium on�guration of a four-link hain5.4 Linear-Quadrati Problems5.4.1 The Minimum-Norm Solution of Underdetermined Sys-temsWe start by realling a onept of paramount importane in optimization:De�nition 5.4.1 (Convex set) A set of points C is onvex if, given any two dis-tint points P1 and P2 of the set, then any point P of C omprised between P1 andP2 also belongs to the set. Otherwise, the set is nononvex.More formally, if xi denotes the position vetor of Pi, for i = 1; 2, and x that of P ,then, for any salar � omprised in the interval [ 0; 1 ℄, we an express the positionvetor of P as a onvex ombination of those of P1 and P2, namely,x = �x1 + (1� �)x2; 0 � � � 1 (5.34)We an thus rephrase the de�nition of onvex set asDe�nition 5.4.2 (Convex set|An alternative de�nition) A set of points Cis onvex if, given any two distint points of position vetors x1 and x2, then thepoint whose position vetor is a onvex ombination of x1 and x2 also belongs to C.Germane to the onept of onvex set is that de�ned below:De�nition 5.4.3 (onvex funtion) A funtion f(x) is onvex if, for any x1 andx2, and a x de�ned as a onvex ombination of x1 and x2, and given, e.g., as in115



eq.(5.34), f(x) � �f(x1) + (1� �)f(x2) (5.35)Now we study the underdetermined system of linear equationsCx = d (5.36)where C is a p�n matrix with p < n, all equations being assumed linearly indepen-dent. Apparently, the system admits in�nitely-many solutions. Notie that the setof solutions of this equation does not form a vetor spae. Indeed, sine 0 is not asolution, the solution set does not inlude the origin, whih disquali�es the set frombeing a vetor spae. However, the same set has a quite interesting property:Fat 5.4.1 The set of solutions of the system (5.36) is onvex.Proof : Assume that x1 and x2 are two distint solutions of eq.(5.36), i.e.,Cx1 = d (5.37a)Cx2 = d (5.37b)Now, for a real � suh that 0 � � � 1, we haveC(�x1) = �d (5.38a)C[(1� �)x2℄ = (1� �)d (5.38b)Upon adding sidewise eqs.(5.38a & b), we obtainC[�x1 + (1� �)x2℄ = d (5.39)thereby ompleting the proof.Geometrially, eq.(5.36) represents a plane embedded in n-dimensional spae,o�set from the origin. Eah point of the plane thus has a position vetor that is asolution. Out of the in�nity of solutions satisfying the equation, then, there is onethat lies losest to the origin. This is the minimum-norm solution of eq.(5.36). Wederive below this solution upon solving the problem below:f(x) � 12kxk2 ! minx (5.40)116



subjet to eq.(5.36). As before, we transform the above onstrained problem intoan unonstrained one. We do this by means of Lagrange multipliers:F (x) � f(x) + �T (Cx� d) ! minx;� (5.41)subjet to no onstraints. The normality onditions of this problem are, thus,�F�x � rf +CT� = x+CT� = 0n (5.42a)�F�� � Cx� d = 0p (5.42b)the seond set of the above equations thus being just a restatement of the systemof underdetermined equations (5.36). Solving for x from eq.(5.42a) yieldsx = �CT� (5.43a)whih, when substituted into eq.(5.42b), leads to�CCT�� d = 0p (5.43b)Sine we assumed at the outset that the given eqs.(5.36) are linearly-independent,C is of full rank, and hene, the p� p symmetri matrix is nonsingular. As a result,this matrix is, in fat, positive-de�nite, the outome being that eq.(5.43b) an besolved for � by means of the Cholesky deomposition. The result is, symbolially,the minimum-norm solution x0 sought:x0 = Cyd (5.44a)where Cy = CT (CCT )�1 (5.44b)whih is the right Moore-Penrose generalized inverse of the retangular matrix C.One an see that the straightforward evaluation of Cy by its de�nition, eq. (5.44a),involves the inversion of a matrix produt, whih is omputationally ostly andprone to ill onditioning, similar to the ase of the left Moore-Penrose generalizedinverse of eq.(3.59b). Moreover, the solution of eq. (5.44a) does not hold when C isrank-de�ient.An eÆient and robust alternative to omputing expliitly the right Moore-Penrose generalized inverse relies in Householder reetions, as explained below:First, a set of n� n Householder reetions3 H1, H2, . . . , Hp is de�ned, suh that3See Subsetion 3.5.2 117



the produt H = Hp � � �H2H1 transforms CT into upper-triangular form, therebyobtaining HCT = � UOn0p � (5.45)where U is a p � p upper-triangular matrix, whih is nonsingular beause we haveassumed that C is of full rank, while On0p is the n0� p zero matrix, with n0 � n� p.Further, we rewrite eq.(5.36) in the formCHTHx = d (5.46)whih does not alter the original equation (5.36) beause H is orthogonal. Lettingy = Hx, from eqs. (5.45) and (5.46), one an realize that x and y have the sameEulidean norm, and hene, minimizing the norm of y is equivalent to minimizingthat of x. Thus, x will be the minimum-norm solution of the underdeterminedsystem (5.36) if y is, orrespondingly, the minimum-norm solution of the system(HCT )Ty = d (5.47a)Upon substitution of eq.(5.45) into eq.(5.47a), we obtain, with a suitable partitioningof y, [UT OTn0p ℄ �yUyL � = d; y � �yUyL � (5.47b)whih, upon expansion, leads toUTyU +OTn0pyL = d (5.47)whene it is apparent that yL is undetermined, and hene, an be assigned anyvalue, while yU is determined beause we have assumed that C is of full rank, Uthus being nonsingular. If our intention is to minimize kxk or, equivalently, kyk,whose square is given by kyk2 = kyUk2 + kyLk2it is apparent that the optimum hoie of yL is yL = 0n0, with 0n0 denoting the (n�p)-dimensional zero vetor. Therefore, the minimum-norm solution y0 of eq.(5.47a)takes on the form: y0 = �U�Td0n0 � (5.48)i.e., the last (n � p) omponents of y0 are zero. In this way, y0 veri�es eq. (5.46)and has a minimum norm. Then, the minimum-norm solution x0 an be readilyomputed as x0 = HTy0 (5.49)118



The Case of a Rank-De�ient C MatrixIf C is rank-de�ient, with rank(C) = r < p, then we an proeed as desribedabove with only r Householder reetions, namely, H = HrHr�1 : : :H1, suh thatHCT = �UO � ; y � Hx (5.50)where U is a full-rank r� p matrix with zero entries in its lower-left \orner"|thismatrix has an upper-trapezoidal form|andO de�ned as the (n�r)�p zero matrix.Note that, in general, the rank of C is not known in advane. It is �rst learnedwhen the p Householder reetions introdued above are de�ned to bring CT intoupper-triangular form. In the presene of a rank-de�ient matrix C, of rank r < p,The last n � r rows of HCT are all zero, and the last p � r Hi matries are allidential.Upon appliation of the foregoing r Householder reetions, eq. (5.47b) beomes[UT O ℄ �yUyL � = d; y � �yUyL � (5.51)whene, UTyU +OyL = d (5.52)Apparently, kxk = kyk, and hene, upon minimizing one norm, one minimizes theother one as well. Moreover, kyk2 = kyUk2 + kyLk2Therefore, the optimum hoie of y is the one for whih yL = 0n00, with 0n00 denotingthe n00-dimensional zero vetor, and n00 � n� r, eq.(5.52) thus reduing toUTyU = d (5.53)where UT is a p � r matrix with zero entries in its upper orner, i.e., this matrixhas the form UT = � LM � (5.54)in whih L is a nonsingular r � r lower-triangular matrix and M is a (p � r) � rmatrix. Moreover, sine U has been assumed of full rank, UT is also of full rank,its last p� r rows being linearly dependent from its �rst r rows. That is, the p� rrows of M are linearly dependent from the r rows of L. This means that yU is119



determined from the �rst r equations of eq.(5.53). We an thus use only thoseequations, whih are, moreover, in lower-triangular form already, to ompute yU byforward substitution. Symbolially, then, we haveyU = L�1d; x0 = HT �L�1d0n00 � (5.55)Alternatively, and if CPU time is not an issue, we an use all redundant salarequations of that vetor equation. We do this, then, by appliation of another setof r Householder reetions, H1, H2; : : : ;Hr, thereby obtainingHUTyU = Hd; H � H1H2 : : :Hr (5.56)whene the optimum solution is obtained in the way explained for overdeterminedsystems in Setion 3.5. The details are left as an exerise.Example 5.4.1 (The Solution of a� x = b)Let a, b, and x be three 3-dimensional Cartesian vetors. We would like to solvethe equation a� x = bfor x. It is well known, however, that the foregoing equation ontains only twoindependent salar equations, whih prevents us from �nding \the x" that veri�esthat equation. Thus, we an proeed by �nding a spei� x, x0, that veri�es any twoof these three equations and that is of minimum norm. To this end, we expand thatequation into its three omponents:a2x3 � a3x2 = b1a3x1 � a1x3 = b2a1x2 � a2x1 = b3Note that the foregoing equation an be ast in the form of eq.(3.33) if we de�nematrix A as A � 24 0 �a3 a2a3 0 �a1�a2 a1 0 35whih is apparently skew-symmetri, i.e.,AT = �A120



In fat, A is the ross-produt matrix of a. Piking up, for example, the �rst twosalar equations above, we obtain an underdetermined system of the form (5.36),with C � � 0 �a3 a2a3 0 �a1 � ; d = � b1b2 �and hene, the orresponding minimum-norm solution x0 is given by eqs.(5.44a &b), with CCT = � a22 + a23 �a1a2�a1a2 a21 + a23 �Hene, (CCT )�1 = 1� � a21 + a23 a1a2a1a2 a22 + a23 �where � � det(CCT ) = (a22 + a23)(a21 + a23)� a21a22 > 0a relation that the reader an readily prove. Therefore,Cy = 1� 24 a1a2a3 (a22 + a23)a3�(a21 + a23)a3 �a1a2a3a2a23 �a1a23 35and x0 = 1� 24 a1a2a3b1 + (a22 + a23)a3b2�(a21 + a23)a3b1 � a1a2a3b2a2a23b1 � a1a23b2 35Notie that the foregoing solution depends on the ondition a3 6= 0. If a3 = 0, orvery lose to 0, then C beomes either ill-onditioned or rank-de�ient, whih isbad news. Apparently, the foregoing solution has an element of arbitrariness thatmay lead either to ill-onditioning or to rank-de�ieny. There is no guarantee thatthe two equations hosen are the best hoie from the ondition-number viewpoint.Besides, that approah leaves aside useful information, that of the deleted equation.The alternative approah uses all three equations, to whih one fourth equation isadjoined, namely, the minimum-norm ondition, as desribed below.First we observe that, if x has been found that veri�es the given ross-produtequation, then any other vetor x+�a, for � 2 R, veri�es that equation. Apparently,then, the minimum-norm x is that whose omponent along a vanishes, i.e.,aTx = 0121



Upon adjoining the foregoing equation to the original three, we end up with an ap-parently overdetermined system of four equations with three unknowns, of the formMx = nwhere M and n are given by M = � AaT � ; n = �b0 �Hene, M is a 4 � 3 matrix, while n is a 4-dimensional vetor. The least-squareapproximation of the new system is, then, the minimum-norm solution of the originalsystem, provided the latter is veri�ed exatly, whih it is, as will beome apparent.Indeed, the least-square approximation of the new system takes the formxL = (MTM)�1MTn (5.58)While we have strongly advised against the expliit omputation of generalized in-verses, our advie is valid only as pertaining to numerial omputations. In the aseat hand, we will pursue not a numerial, but rather a symboli omputation of thesolution sought.The �rst issue now is whether MTM is invertible, but it is so and, moreover, itsinverse is extremely simple to �nd:MTM = [AT a ℄ � AaT � = ATA+ aaTBut, sine A is skew-symmetri,MTM = �A2 + aaTas the reader an readily verify; moreover,A2 = �kak21+ aaTHene, MTM = kak21whih means that M is isotropi, i.e., optimally-onditioned. Therefore,(MTM)�1 = 1kak21122



That is , xL = 1kak21 [AT a ℄ �b0 � = 1kak2ATbwhih an be further expressed as xL = �a� bkak2 (5.59)thereby obtaining a muh simpler, and robust, expression than that displayed aboveas x0.5.4.2 Least-Square Problems Subjet to Linear ConstraintsGiven the system of linear equations Ax = b (5.60)where A is a full-rank q � n matrix, with q > n, and b is a q-dimensional vetor,�nd an n-dimensional vetor x that veri�es the above system with the least-squareerror, subjet to the linear equality onstraintsCx = d (5.61)with C a full-rank p � n matrix and d a p-dimensional vetor. Moreover, W is aq � q positive-de�nite weighting matrix, with q; p and n subjet toq + p > n and n > p (5.62)The least-square error of eqs.(5.60) is de�ned asf � 12(Ax� b)TW(Ax� b) (5.63)As usual, we solve this problem by introduing Lagrange multipliers:F (x;�) � f(x) + �T (Cx� d) minx;� (5.64)subjet to no onstraints.The �rst-order normality onditions of the foregoing problem are�F�x � ATW(Ax� b) +CT� = 0n (5.65a)�F�� � Cx� d = 0p (5.65b)123



SineA is assumed of full rank andW is positive-de�nite, we an solve eq.(5.65a)for x in terms of �, namely,x = (ATWA)�1(ATWb�CT�) (5.66)Upon substituting the above expression into eq.(5.65b), we obtainC(ATWA)�1CT� = C(ATWA)�1ATWb� dwhene, � = [C(ATWA)�1CT ℄�1[C(ATWA)�1ATWb� d℄ (5.67)Now, the foregoing expression for � is substituted, in turn, into eq.(5.66), therebyobtaining the optimum value of x, x0, namely,x0 = PQb+Rd (5.68a)where P, Q and R are the n� n-, n�m- and n� p matries given below:P = 1n �RC (5.68b)Q = (ATWA)�1ATW (5.68)R = (ATWA)�1CT [C(ATWA)�1CT ℄�1 (5.68d)with 1n standing for the n � n identity matrix. The solution derived above, whilebeing exat, for it is symboli, is unsuitable for numerial implementation. Indeed,this solution ontains inversions of produts of several matries times their trans-poses, whih brings about ill-onditioning. Various approahes to the numerialsolution of this problem will be studied in Ch. 6.5.5 Equality-Constrained Nonlinear Least SquaresWe onsider here the problem of �nding the least-square error f of an overdeterminedsystem of nonlinear equations, namely,�(x) = 0 (5.69a)subjet to the nonlinear onstraints h(x) = 0 (5.69b)124



In general, moreover, the various salar equations of eq.(5.69a) have di�erentrelevane and are, hene, assigned di�erent weights, whih then leads to a problemof weighted least squares, namely,f(x) = 12�TW� ! minx (5.70)subjet to eq.(5.69b).In the foregoing problem, � and x are q- and n-dimensional vetors, respetively,with q > n, and W is a q � q positive-de�nite weighting matrix. Moreover, h is al-dimensional vetor of nonlinear onstraints.The normality onditions of the problem at hand are derived diretly from thoseof the general equality-onstrained problem, namely, eq.(5.12) or its dual ounter-part, eq.(5.20). In our ase, rf = ����x�T �f�� (5.71a)where ���x � �(x); �f�� =W�(x) (5.71b)i.e., �(x) denotes the Jaobian matrix of �(x) with respet to x. Hene,rf = �TW� (5.71)where we have dispensed with the argument x for simpliity.The normality ondition (5.12) thus redues to[1� JT (JJT )�1J℄�TW� = 0n (5.72)What this ondition states is that, at a stationary point, �, or �TW� for thatmatter, need not vanish; only the projetion of the latter onto the nullspae of thegradient of the onstraints must vanish.The dual form of the same normality onditions, in turn, redues toLT�TW� = 0n0 (5.73)with L indiating an n� (n� l) orthogonal omplement of J, as de�ned in eq.(5.18).The seond-order normality onditions are now derived by assuming that wehave found a stationary value of the design-variable vetor, x0. This means thatLT�T (x0)W�(x0) = 0n0 (5.74)125



Next, we impose the ondition that, for any feasible move �x, the orrespondinginrement of f , �f , be positive. A feasible move is obtained by resorting to theorthogonal omplement L, namely, �x = L�u (5.75)On the other hand, upon expansion of �(x0 +�x) to a �rst order,f(x0 +�x) � 12(�+��)TW(�+��)= 12�TW�| {z }f(x0) +12(�TW��+��TW�) + 12��TW��whene,�f � f(x0 +�x)� f(x0) � 12(�TW��+��TW�) + 12��TW�� (5.76a)where �� = ��x = �L�u (5.76b)Therefore, �f = 12[�T (x0)W�(x0)L| {z }=0Tn�l �u+�uT LT�T (x0)W�(x0)| {z }=0n�l ℄+12�uTLT�T (x0)W�L�u= 12�uTLT�T (x0)W�(x0)L�u > 0 (5.76)the terms inside the brakets vanishing by virtue of the �rst-order normality on-ditions. What ondition (5.76) states is that, for the stationary value x0 to be aminimum, the feasible Hessian LT�T (x0)W�(x0)L must be positive-de�nite. How-ever, at the outset we de�ned W as positive-de�nite, while L is of full rank. Hene,the feasible Hessian is neessarily positive-de�nite, exept for points at whih �beomes rank-de�ient, at whih the said Hessian beomes positive-semide�nite. Asa onsequene, then,Fat 5.5.1 To a �rst-order approximation of �(x), a stationary point of the weightedleast-square approximation of the overdetermined nonlinear system �(x) = 0 is aminimum or a saddle point; never a maximum.126



5.6 Linear Least-Square Problems Under QuadratiConstraintsAn important family of design problems lends itself to a formulation whereby theobjetive funtion is quadrati in a linear funtion of the design vetor x, while theonstraints are quadrati in x. Contrary to the ase of linear least-squares subjetto linear onstraints, this family of problems does not allow, in general, for losed-form solutions, the reason being that their normal equations are nonlinear. Let usonsider f(x) � 12(b�Ax)TW(b�Ax) ! minx (5.77a)subjet to h(x) = 0l (5.77b)where A is a q � n full-rank matrix, with q > n, W is a q � q positive-de�niteweighting matrix, while h, x and b are l-, n- and q-dimensional vetors, respetively,with q + l > n; n > l (5.77)Moreover, in this partiular ase, the ith omponent of vetor h is quadrati, namely,hi(x) � 12xTPix + qi + ri (5.77d)in whih Pi is a known n� n symmetri matrix, while qi is a n-dimensional givenvetor and ri is a given salar. Apparently, then, the ith row of J, the Jaobian ofh with respet to x, takes the form�hi�x = Pix+ qi (5.78)whene J is linear in x. The �rst-order normality onditions (5.12) now take theform [1n � JT (JJT )�1J℄ATW(b�Ax) = 0n (5.79)It is thus apparent that, although J is linear in x, the normality onditions arepolynomial, thereby leading to a problem laking a losed-form solution, exept forspeial ases, like the one inluded below.Example 5.6.1 (A Quadrati Objetive Funtion with a Quadrati Cons-traint)Consider an optimization problem with an objetive funtion de�ned asf(x) = 12(9x21 � 8x1x2 + 3x22) ! minx1; x2127



subjet to the quadrati onditionh(x) = x21 + x22 � 1 = 0 (5.80)The objetive funtion f(x) an be fatored asf(x) = 12(b�Ax)TW(b�Ax)with A = 12; b = 02; W = � 9 �4�4 3 � x = �x1x2 � (5.81)Solution: Upon adjoining the onstraint to the objetive funtion, we obtain theLagrangian F (x;�), namely,F (x;�) = 12(9x21 � 8x1x2 + 3x22) + �(x21 + x22 � 1)that we want to minimize subjet to no onstraints. The normality onditions are,thus �F�x1 = 9x1 � 4x2 + 2�x1 = 0�F�x2 = �4x1 + 3x2 + 2�x2 = 0�F�� = x21 + x22 � 1 = 0We an now eliminate � from the �rst and the seond of the above equations. Wedo this dialytially, i.e., we write these two equations in linear homogeneous form in� and 1, i.e., My = 02where M = � 2x1 9x1 � 4x22x2 �4x1 + 3x2 � ; y = ��1 � 6= 02with 02 denoting the 2-dimensional zero vetor. Now, the above linear homogeneousequation in y annot be zero, for y 6= 02, and hene, matrix M must be singular,whih is stated as det(M) = 0Upon expansion, the foregoing equation leads todet(M) = 2x1(�4x1 + 3x2)� 2x2(9x1 � 4x2) = 0128



or, after simpli�ation, x21 + 32x1x2 � x22 = 0thereby reduing the problem to the solution of two quadrati equations in two un-knowns, the above equation and the third normality ondition. Upon eliminating ofx2 from the latter, and substitution of the expression thus resulting into the remain-ing equation, we obtain, after some simpli�ations,x41 � x21 + 425 = 0whih is, in fat, a quadrati equation in x21, its roots being(x21)1;2 = 15 ; 45whene the four roots follow:(x1)1;2 = �p55 ; (x2)3;4 = �2p55whih yields, orrespondingly,(x2)1;2 = �2p55 ; (x2)3;4 = �p55More general problems of this family an be solved using the methods disussedin Ch. 6 for arbitrary objetive funtions subjet to nonlinear equality onstraints.
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Chapter 6Equality-ConstrainedOptimization:The Orthogonal-DeompositionAlgorithm
6.1 IntrodutionThe numerial solution of equality-onstrained problems is the subjet of this hap-ter. In this vein, we fous on methods stemming from nonlinear least-square prob-lems, that lead to what is known as sequential quadrati programming (SQP). SQPappears to be the most ommonly used and reliable method in nonlinear program-ming, for it is well suited for the solution of nonlinear programming problems, asreported by (Murray, 1997) and (Lalee et al., 1998). In SQP, the nonlinear opti-mization problem is approximated by a sequene of quadrati programs (QP), eahbeing a sub-quadrati program (sub-QP).Motivated by nonlinear least-square problems, QP works under the assumptionthat the feasible Hessian is positive-de�nite at eah iteration. If this is not thease at a given iteration, then the Hessian matrix is modi�ed to render it so, aproedure alled Hessian-stabilization. Then, the sub-QP is solved by means of anyalgorithm suitable for QP problems. The proedure is terminated when a riterionis met with a presribed tolerane. The solution proedure of SQP thus involves twophases: the stabilization of the Hessian matrix and the QP solution. The Hessianmatrix an be stabilized by methods suh as that proposed by Broyden (1970),131



Flether (1970), Goldfarb (1970), and Shanno (1970), whih is known as the BFGSmethod. The BFGS method, implemented in the Matlab Optimization Toolbox, isthought to be very e�etive for use in general appliations and thus, appears to bethe most popular. In addition, methods for solving QP problems are for example,the oordinate-asent method (Bertsekas, 1995) and quasi-Newton methods (Rao,1996).The main item introdued in this hapter is the orthogonal-deomposition al-gorithm (ODA), whih is derived �rst in the ontext of equality-onstrained linearleast-square problems; then, it is applied to equality-onstrained nonlinear least-square problems. Several numerial tehniques, suh as Householder reetions,Cholesky deomposition, the Newton-Gauss method, et., are applied in order toobtain numerial solutions by means of proedures that are both eÆient and robust.What we mean by the former is proedures that use as few oating-point operations(ops) as possible; by the latter we mean proedures that keep the roundo� error inthe solution as low as possible with respet to that of the data, an item that falls inthe realm of numerial onditioning.The orthogonal-deomposition algorithm is implemented in a C library of rou-tines, alled ODA, in ombination with Gershgorin stabilization (Teng and Angeles,2001) for arbitrary objetive funtions, in the framework of sequential quadrati pro-gramming (SQP). Gershgorin stabilization is based on the Gershgorin Theorem(Varga, 2000), whih provides a region of the omplex plane in whih the eigenval-ues of an arbitrary n� n matrix are bound to lie. Moreover, the ODA is applied insolving the underlying sub-QP.6.2 Linear Least-Square Problems Subjet toEquality Constraints: The ODAWe reall below the linear least-square problem subjet to linear equality onstraints:Given the overdetermined system of linear equationsAx = b (6.1)�nd a vetor x that veri�es the above system with the least-square error, whih isde�ned as f � 12(Ax� b)TW(Ax� b)! minx (6.2)132



subjet to the linear onstraints Cx = d (6.3)Here, x is the n-dimensional vetor of design variables, while A and C are q � nand p� n matries, while b and d are q- and p-dimensional vetors. Moreover, Wis a q � q positive-de�nite weighting matrix, with q; p and n subjet toq > n and p < n (6.4)Note that the �rst of the foregoing inequalities exludes the possibility of a uniquesolution upon solving for x from eq.(6.1), the seond preventing a unique solutionfrom eq.(6.3).If A and C are full-rank matries, then the forgoing problem was shown tohave a unique solution, given by eqs.(5.68a{d), whih is reprodued below for quikreferene: x = PQb+Rd (6.5a)In the foregoing expression, P, Q and R are the n� n-, n� q- and n� p matriesthat follow: P = 1n �RC (6.5b)Q = (ATWA)�1ATW (6.5)R = (ATWA)�1CT [C(ATWA)�1CT ℄�1 (6.5d)and 1n is the n� n identity matrix.As pointed out in Subsetion 5.4.2, the above expression is unsuitable for nu-merial implementation. A ommon alternative approah to obtain the solutionunder study onsists in partitioning C into a p� p and a p� (n � p) submatries,where are should be taken so as to hoose a well-onditioned p� p matrix, for safeinversion. Correspondingly, vetor x should be partitioned into a master part xM ,of n � p omponents, and a slave part xS of p omponents. Thus, the onstraintequations would be solved for the slave part in terms of the master part and theproblem would redue to an unonstrained least-square problem of dimension n�p.However, an arbitrary partitioning of C may lead to an ill-onditioned p� p blok,even if C itself is well-onditioned. This situation an be prevented if, out of allN possible partitionings of C, the one with the lowest ondition number is hosen.Note that the number of partitionings is given byN = n!p!(n� p)!133



and hene, N an beome quite large, even for modest values of n and p. Sinealulating the ondition number of a matrix is a omputationally ostly proedure,this approah does not seem very attrative.Alternatively, by introdution of the singular values of C (Strang, 1988), a sub-system of p equations in p unknowns, whih are linear ombinations of the ompo-nents of x, an be found that is optimally onditioned. The omputation of singularvalues, however, similar to that of eigenvalues, is a problem even more diÆultto solve than the one at hand, for it is nonlinear and must be solved iteratively.Therefore, it is not advisable to follow the singular-value approah either.One more approah is followed here, whih stems from the geometrial inter-pretation of the solution (6.5a). Indeed, vetor Qb of that solution represents theunonstrained least-square approximation of eq.(6.2). The seond term of the right-hand side of eq.(6.5a) is the minimum-norm solution of the underdetermined system(6.3), based on the norm de�ned askxk2W = xTATWAx (6.6)Thus, P is a projetor1 onto the nullspae of C. Indeed, one an readily prove thatevery n-dimensional vetor x is mapped by P onto the nullspae of C. Moreover, P2an be proven to equal P, thereby making apparent that P is, in fat, a projetor.Furthermore, for any p � n matrix C, the range of C and the nullspae of C areorthogonal subspaes2 of Rn , their diret sum produing all of Rn ; i.e., every n-dimensional vetor x an be uniquely deomposed into a vetor lying in the range ofCT and a seond one lying in the nullspae of C. Now let L be a n� (n� p) matrixspanning the nullspae of C, i.e., CL = Opn0 (6.7)where Opn0 represents the p � (n � p) zero matrix. Matrix L is known as an or-thogonal omplement of matrix C. Thus, the solution to the above problem an bedeomposed into two parts, namely,x = x0 + xU (6.8)1Note that P is apparently not symmetri!2Note that R(C) need not be orthogonal to N (C); in fat, for two subspaes to be orthogonal,they must be embedded in the same spae, but R(C) � Rp and N (C) � Rn , and, in our ase,n 6= p. 134



in whih x0 represents the minimum-norm solution to the onstraint equation (6.3),i.e., x0 lies in the range of CT , while xU lies in the nullspae of C. Vetor x0 is om-puted by means of an orthogonalization method rendering CT in upper-triangularform, as disussed in Subsetion 5.4.1, while vetor xU is omputed by means of alinear least-square problem. We outline below the omputation of xU .Let us de�ne a q � q matrix V as the Cholesky fator of the given weightingmatrix W, i.e., W = VTVMoreover, with x0 known, xU is found as the least-square approximation ofVAxU = V(b�Ax0) (6.9)subjet to the onstraints CxU = 0 (6.10)Further, let us represent xU as the image of a (n � p)-dimensional vetor under atransformation given by a n� (n� p) matrix L, namely,xU = Lu (6.11)with L de�ned, in turn, as introdued in eq.(6.7). Equation (6.9) thus beomesVALu = V(b�Ax0) (6.12)whih is an overdetermined system of n linear equations in n � p unknowns. It isthus apparent that u an be omputed as the unonstrained least-square solution ofeq.(6.12).However, matrix L, an orthogonal omplement of C, is not unique. We have thusreahed a ruial point in the solution of the onstrained linear least-square problemat hand: How to de�ne L. While L an be de�ned in in�nitely many forms|notiethat, one any L has been found, a multiple of it also satis�es eq.(6.7). We de�nehere a distint L suh that HL = �O1 � (6.13)where 1 is the (n�p)� (n�p) identity matrix and O is the p� (n�p) zero matrix,while H is de�ned as the produt of Householder reetions rendering CT in upper-triangular from|see Subsetion 5.4.1. From eq.(6.13), one an obtain matrix Lwithout any additional omputations, forL = HT �O1 � (6.14)135



whene it is apparent that L is isotropi, i.e., its ondition number is equal to unity.This means that the left Moore-Penrose generalized inverse LI of L an be omputedwithout roundo�-error ampli�ation. In fat, this inverse redues to LT , forLI = �[OT 1℄HHT �O1 ���1 [OT 1℄H| {z }LT = LT (6.15)One L is known, equation (6.12) an be solved for u as the least-square approx-imation of that system. Then, xU is alulated from equation (6.11).As the reader an readily prove, the two omponents of x, xU and xL, areorthogonal. For this reason, the foregoing proedure is known as the Orthogonal-Deomposition Algorithm (ODA).6.3 Equality-Constrained Nonlinear Least-SquareProblemsThe solution of nonlinear least-square problems by means of the ODA is now straight-forward: The problem onsists in �nding the least-square error f of an overdeter-mined system of nonlinear equations, �(x) = 0, i.e.,f(x) = 12�TW� ! minx (6.16a)subjet to the nonlinear onstraints h(x) = 0 (6.16b)where � and x are q- and n-dimensional vetors, respetively, with q > n, and Wis a q � q positive-de�nite weighting matrix. Moreover, h is a l-dimensional vetorof nonlinear onstraints.The normality ondition of the foregoing onstrained problem was derived inCh. 3 in its dual form, eq.(5.73), and realled below for quik referene:LT�TW� = 0n0 (6.17)with 0n0 denoting the (n� l)-dimensional zero vetor.The solution of the problem at hand is obtained iteratively: From an initial guessx0, not neessarily feasible, i.e., with h(x0) 6= 0, the sequene x1, x2; : : : ; xk; xk+1is generated as xk+1 = xk +�xk (6.18)136



The inrement �xk is omputed as the solution of an equality-onstrained linearleast-square problem, namely, min�xk 12ekTWek (6.19a)subjet to J(xk)�xk = �h(xk) (6.19b)with ek de�ned as ek � ��(xk)��(xk)�xk (6.19)Now, for ompatness, we introdue a few de�nitions:hk � h(xk); �k � �(xk); �k � �(xk); Jk � J(xk) (6.20)while Lk is de�ned as the isotropi orthogonal omplement of Jk �a la eq.(6.13).Moreover, �k and Jk will be assumed to be of full rank throughout, the solution�xk of problem (6.19a{) thus being expressed as�xk = �vk + Lk�uk (6.21)where �vk and �uk are the minimum-norm and the least-square solutions to anunderdetermined and an overdetermined system, namely,Jk�vk = �hk (6.22a)V�kLk�uk = V(��k ��k�vk) (6.22b)The stopping riteria of the proedure are, then,jj�xkjj � �1 and jjh(xk)jj � �2 (6.23)for presribed toleranes �1 and �2. These riteria are veri�ed when both the nor-mality ondition (6.17) and the onstraint (6.16b) are veri�ed within the given tol-eranes. Moreover, we an rewrite eq.(6.22a) (for simpliity, we drop the subsriptk) as JHTH�v = �hor (HJT )T H�v| {z }w = �h (6.24)Furthermore, note thatHJT = " Up�pO(n�p)�p # ; w = " wUwL #137



where wU and wL are, orrespongingly, p- and n � p-dimensional vetors. Hene,eq.(6.24) an be written in the formh UT OT i " wUwL # = �hor UTwU +OTwL = �hLast eqaution an be solved for wU : wU = �U�Th. Whene, from Hv � w we anobtain v = HTw. Now, from eq.(6.22b) �xk an be expressed as�xk = (M�TW�� 1n)Jyh�M�TW� (6.25)where subsripts and supersripts have been dropped from the right-hand side forompatness, 1n represents the n�n identity matrix, Jy is the right Moore-Penrosegeneralized inverse of J, and M is the n� n matrix de�ned asM = L(LT�TW�L)�1LT (6.26)Upon onvergene, the onstraint equations hold. Therefore, h = 0 and the nor-mality ondition (6.17) holds. Therefore, upon onvergene, �xk ! 0.The sequene f�xkg produes a sequene ffkg, the inrement �f between twoonseutive values of the sequene being given by�f = (rf)T�x (6.27)where rf is the gradient of f , i.e., rf = �TW�, and hene,�f = (�TW�)T�x= ��TW�M�TW�� �TW�(1�M�TW�)Jyh (6.28)From eq.(6.28), if the urrent value of x is feasible, i.e., if h = 0, then �f is negative-de�nite, and the proedure yields an improved value of f . On the other hand, onean readily verify that�(hTh) � hTk+1hk+1 � hTk hk = �2hTh = 0 (6.29)whih is negative de�nite. Therefore, the proedure gives a sequene of x valuesthat approahes the onstraints. 138



Example 6.3.1 (A Quadrati Objetive Funtion with a Quadrati Con-straint)We reall Example 5.6.1, whih is reprodued below for quik referene:f(x) = 12(9x21 � 8x1x2 + 3x22) ! minx1; x2subjet to h(x) = x21 + x22 � 1 = 0While the objetive funtion is quadrati in a linear funtion of the design-variablevetor, the onstraint is nonlinear, whih disquali�es this problem from a diretsolution, as found in Setion 6.2 for linear least-squares subjet to linear onstraints.This problem, due to its simpliity, ould be solved exatly in Chapter 3. Here, wesolve this problem numerially, using the ODA. First, note that the objetive funtionf(x) an be fatored as f(x) = 12�TW�with W = � 9 �4�4 3 � and � = � x1x2 �i.e, f(x) is a speial ase of the f(x) de�ned in eq.(6.2), with A = 1 and b = 0.We inlude below a Maple worksheet desribing the step-by-step implementation ofthe ODA in solving the foregoing problem iteratively.> restart:with(linalg):Warning, the proteted names norm and trae have been redefined andunproteted> with(plots): with(plottools):Warning, the name hangeoords has been redefinedWarning, the name arrow has been redefinedLinear-least square problem subjet to a quadrati onstraintf(x) = (1=2)(9x21 � 8x1x2 + 3x22) ! minx1;x2subjet to h(x1; x2) = x21 + x22 � 1 = 0139



> obj:= pro(x) (1/2)*(9*x[1℄^2 - 8*x[1℄*x[2℄ +> 3*x[2℄^2)> end; #proedure to ompute the objetive funtionobj := pro(x) 9=2 � x12 � 4 � x1 � x2 + 3=2 � x22 end pro> onstr:= pro(x) x[1℄^2+x[2℄^2 - 1 end;> #proedure omputing the onstraintonstr := pro(x) x12 + x22 � 1 end pro> dhdx:= pro(x) matrix([[2*x[1℄, 2*x[2℄℄℄)> end; #proedure omputing the gradient of the onstraintdhdx := pro(x)matrix([[2 � x1; 2 � x2℄℄) end pro> alfa:= pro(J)> evalf(signum(J[1,1℄)*sqrt(J[1,1℄^2 + J[1,2℄^2))> end; #proedure omputing "alpha" of Householder refletions in> least-square solution at eah iterationalfa := pro(J) evalf(signum(J1; 1) � sqrt(J1; 12 + J1; 22)) end pro> W:=matrix([[9, -4℄, [-4, 3℄℄); #weighting matrixW := " 9 �4�4 3 #> V:=transpose(holesky(W)); #Maple returns a> lower-triangular matrix with proedure "holesky"!V := 2664 3 �430 13 p11 3775> V:= map(evalf, V);V := " 3: �1:3333333330: 1:105541597 #> ID:=Matrix(2,2,shape=identity);> E:= matrix([[0℄, [1℄℄);> Phi:= ID;> B:=evalm(V&*Phi); #Defining various auxiliary matriesID := " 1 00 1 #E := " 01 #140



� := " 1 00 1 #B := " 3: �1:3333333330: 1:105541597 #> x:=vetor([2, 2℄); x0:= evalm(x); #initial> guess, x^0, stored as x0 for plottingx := [2; 2℄x0 := [2; 2℄> f:= evalf(obj(x)); #f_0 f := 8:> phi:= evalm(x); #phi^0 � := [2; 2℄> h:= onstr(x); #h^0 h := 7> J:= dhdx(x); #J_0 J := h 4 4 i> alpha:= alfa(J); #loal variable� := 5:656854248> t:=vetor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithm, a loal variablet := [9:656854248; 4℄> normt2:=evalf(dotprod(t,t)/2); #half of> Eulidean norm-squared of t, a loal variablenormt2 := 54:62741700> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder refletionH := " �:707106781 �:7071067812�:7071067812 :7071067811 #> P:=evalm(H&*transpose(H)); #heking whether H> is a refletionP := " :9999999997 0:0: :9999999999 #> detH:=det(H); detH := �:9999999998141



H is indeed a reetion!> HJT:=evalm(H&*transpose(J));HJT := " �5:656854249�:1 10�8 #> HJT[2,1℄:=0; print(HJT); #setting last entry> of HJ^T equal to zero HJT 2; 1 := 0" �5:6568542490 #> w:= vetor([-h/HJT[1,1℄, 0℄); #w = Hvw := [1:237436867; 0℄> v:=evalm(H&*w); #v^0v := [�:8749999997; �:8750000000℄> L:= evalm(H&*E);> BL:=evalm(B&*L); #L_0 & (BL)_0L := " �:7071067812:7071067811 #
BL := " �3:064129385:7817359600 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [1:125000000; 1:125000000℄> r:= evalm(-V&*p);> #RHS of overdetermined system to ompute u in ODAr := [�1:875000000; �1:243734297℄> u:= leastsqrs(BL, r); #u^0u := [:4772970772℄> Deltax:= matadd(v, L&*u); #Deltax^0Deltax := [�1:212500000; �:5375000001℄First iteration is omplete. Update x:> x:= evalm(x + Deltax); x1:= evalm(x); #x^1142



x := [:787500000; 1:462500000℄x1 := [:787500000; 1:462500000℄> f:= evalf(obj(x)); #f_1f := 1:392187500> phi:= evalm(x); #phi^1� := [:787500000; 1:462500000℄> h:= onstr(x); #h^1 h := 1:759062500> J:= dhdx(x); #J_1J := h 1:575000000 2:925000000 i> alpha:= alfa(J); � := 3:322085189> t:=vetor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithmt := [4:897085189; 2:925000000℄> normt2:=evalf(dotprod(t,t)/2);normt2 := 16:26853418> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder refletionH := " �:474099823 �:8804710997�:8804710997 :4740998233 #> HJT:=evalm(H&*transpose(J));HJT := " �3:322085188:1 10�8 #> HJT[2,1℄:=0; print(HJT);HJT 2; 1 := 0" �3:3220851880 #> w:= vetor([-h/HJT[1,1℄, 0℄); #w = Hvw := [:5295055366; 0℄> v:=evalm(H&*w); # v^1v := [�:2510384812; �:4662143221℄> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);> #L_1 & (BL)_1 143



L := " �:8804710997:4740998233 #
BL := " �3:273546397:5241370758 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [:5364615188; :9962856779℄> r:= evalm(-V&*p);> #RHS of overdetermined system to ompute u in ODAr := [�:281003652; �1:101435259℄> u:= leastsqrs(BL, r); #u^1u := [:03116921755℄> Deltax:= matadd(v, L&*u); #delta x^1Deltax := [�:2784820764; �:4514370016℄Seond iteration is omplete. Update x:> x:= matadd(x, Deltax); x2:= evalm(x); #x^2x := [:5090179236; 1:011062998℄x2 := [:5090179236; 1:011062998℄> f:= obj(x); #f_2 f := :640722436> phi:= evalm(x); #phi^2� := [:5090179236; 1:011062998℄> h:= onstr(x); #h^2 h := :281347632> J:= dhdx(x); #J_2J := h 1:018035847 2:022125996 i> alpha:= alfa(J); � := 2:263932537> t:=vetor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithmt := [3:281968384; 2:022125996℄> normt2:=evalf(dotprod(t,t)/2);144



normt2 := 7:430155005> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder> refletion H := " �:449675877 �:8931918088�:8931918088 :4496758759 #> HJT:=evalm(H&*transpose(J));HJT := " �2:263932538�:12 10�8 #> HJT[2,1℄:=0; print(HJT);HJT 2; 1 := 0" �2:2639325380 #> w:= vetor([-h/HJT[1,1℄, 0℄); #w = Hvw := [:1242738586; 0℄> v:=evalm(H&*w); #v^2v := [�:05588295635; �:1110003925℄> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);> #L_2 & (BL)_2 L := " �:8931918088:4496758759 #
BL := " �3:279143260:4971353860 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [:4531349672; :9000626055℄> r:= evalm(-V&*p);> #RHS of overdetermined system to ompute u in ODAr := [�:159321428; �:9950566503℄> u:= leastsqrs(BL, r); #u^2u := [:002523646038℄> Deltax:= matadd(v, L&*u); #Deltax^2Deltax := [�:05813705632; �:1098655698℄Third iteration is omplete. Update x: 145



> x:= matadd(x, Deltax); x3:=evalm(x); #x^3x := [:4508808673; :9011974282℄x3 := [:4508808673; :9011974282℄> f:= obj(x); #f_3 f := :5077254992> phi:= evalm(x); #phi^3� := [:4508808673; :9011974282℄> h:= onstr(x); #h^3 h := :015450361> J:= dhdx(x); #J_3J := h :9017617346 1:802394856 i> alpha:= alfa(J); � := 2:015391139> t:=vetor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithmt := [2:917152874; 1:802394856℄> normt2:=evalf(dotprod(t,t)/2);normt2 := 5:879204055> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder refletionH := " �:447437580 �:8943151635�:8943151635 :4474375804 #> HJT:=evalm(H&*transpose(J));HJT := " �2:015391138:2 10�9 #> HJT[2,1℄:=0; print(HJT);HJT 2; 1 := 0" �2:0153911380 #> w:= vetor([-h/HJT[1,1℄, 0℄); #w = Hvw := [:007666184846; 0℄> v:=evalm(H&*w); #v^3v := [�:003430139195; �:006855985354℄146



> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);> L_3 & (BL)_3 L := " �:8943151635:4474375804 #
BL := " �3:279528930:4946608572 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [:4474507281; :8943414428℄> r:= evalm(-V&*p);> #RHS of overdetermined system to ompute u in ODAr := [�:149896927; �:9887316669℄> u:= leastsqrs(BL, r); #u^3u := [:0002276777133℄> Deltax:= matadd(v, L&*u); #Deltax^3Deltax := [�:003633754826; �:006754113789℄Fourth iteration is omplete. Update x:> x:= matadd(x, Deltax); x4:=evalm(x); # x^4x := [:4472471125; :8944433144℄x4 := [:4472471125; :8944433144℄> f:= obj(x); #f_4 f := :5000294132> phi:= evalm(x); #phi^4� := [:4472471125; :8944433144℄> h:= onstr(x); #h^4 h := :000058822> J:= dhdx(x); #J_4J := h :8944942250 1:788886629 i> alpha:= alfa(J); � := 2:000058822> t:=vetor([J[1,1℄ + alpha, J[1,2℄℄);> #u in HHR algorithm 147



t := [2:894553047; 1:788886629℄> normt2:=evalf(dotprod(t,t)/2);normt2 := 5:789276355> H:=evalm(ID - t&*transpose(t)/normt2);> #evaluating Householder> refletion H := " �:447233960 �:8944170093�:8944170093 :4472339590 #> HJT:=evalm(H&*transpose(J));HJT := " �2:000058823�:3 10�9 #> HJT[2,1℄:=0; print(HJT);HJT 2; 1 := 0" �2:0000588230 #> w:= vetor([-h/HJT[1,1℄, 0℄); #w = Hvw := [:00002941013500; 0℄> v:=evalm(H&*w); #v^4v := [�:00001315321114; �:00002630492499℄> L:= evalm(H&*E); BL:=evalm(V&*Phi&*L);> #L_4 & (BL)_4 L := " �:8944170093:4472339590 #
BL := " �3:279562973:4944357453 #> p:=matadd(phi, Phi&*v); #auxiliary variablep := [:4472339593; :8944170095℄> r:= evalm(-V&*p);> #RHS of overdetermined system to ompute u in ODAr := [�:149145866; �:9888152091℄> u:= leastsqrs(BL, r); #u^4u := [:00002069770909℄> Deltax:= matadd(v, L&*u); #Deltax^4Deltax := [�:00003166559420; �:00001704820661℄148



Fourth iteration is omplete. Update x:> x:= matadd(x, Deltax); x4:= evalm(x); #x^4x := [:4472154469; :8944262662℄x4 := [:4472154469; :8944262662℄> f:= obj(x); #f_4 f := :5000000006Given the norm of Deltax, we delare onvergene here, and plot the iterationhistory in x [1℄-x [2℄ plane:> o0:= evalm(x0); o1:= evalm(x1);> o2:= evalm(x2); o3:= evalm(x3); o4:= evalm(x4);o0 := [2; 2℄o1 := [:787500000; 1:462500000℄o2 := [:5090179236; 1:011062998℄o3 := [:4508808673; :9011974282℄o4 := [:4472154469; :8944262662℄> p0:=point(onvert(o0,list), symbol=irle,> olor=blue);> p1:=point(onvert(o1,list), symbol=irle, olor=blue);> p2:=point(onvert(o2,list), symbol=irle, olor=blue);> p3:=point(onvert(o3,list), symbol=irle, olor=blue);> p4:=point(onvert(o4,list), symbol=irle, olor=blue);p0 := POINTS([2:; 2:℄; COLOUR(RGB ; 0:; 0:; 1:00000000); SYMBOL(CIRCLE))p1 := POINTS([:787500000; 1:462500000℄; COLOUR(RGB ; 0:; 0:; 1:00000000);SYMBOL(CIRCLE))p2 := POINTS([:5090179236; 1:011062998℄; COLOUR(RGB ; 0:; 0:; 1:00000000);SYMBOL(CIRCLE))p3 := POINTS([:4508808673; :9011974282℄; COLOUR(RGB ; 0:; 0:; 1:00000000);SYMBOL(CIRCLE))p4 := POINTS([:4472154469; :8944262662℄; COLOUR(RGB ; 0:; 0:; 1:00000000);SYMBOL(CIRCLE)) 149



> l1 :=> arrow(onvert(o0,list),onvert(o1,list), 10.0, 0.1, .1, arrow,> olor=red, thikness=2):> l2 := arrow(onvert(o1,list),onvert(o2,list), 6.0, 0.1, .2, arrow,> olor=green, thikness=2):> l3 := arrow(onvert(o2,list),onvert(o3,list), 6.0, 0.1, .7, arrow,> olor=red, thikness=2):> l4 := arrow(onvert(o3,list),onvert(o4,list), 6.0, 0.1, 6.0, arrow,> olor=green, thikness=2):> 1 := ar([0,0℄, 1,-Pi/6..4*Pi/6,olor=blak, thikness=2):> obj_plot:= pro(ax,ay) (1/2)*(9*ax^2 - 8*ax*ay + 3*ay^2)> end:f1:=impliitplot(obj_plot-3,-0.5..2,-0.5..2.5,numpoints=3000,> linestyle=4,olor=blue):> f2:=impliitplot(obj_plot-2,-0.5..2,-0.5..2,> numpoints=3000,linestyle=4,olor=blue):> f3:=impliitplot(obj_plot-1,-0.5..2,-0.5..2,numpoints=6000,> linestyle=4,olor=blue):f4:=impliitplot(obj_plot-0.5,-0.5..2,-0.5..2,> numpoints=6000, linestyle=4,olor=blue):> display(f1,p0,p1, p2, p3, p4, p1, l1, l2,> l3, l4,f1,f2,f3,f4g,> insequene = false, olor=red, saling=onstrained);The plots produed by the plotting ommands in the Maple worksheet are repro-dued in Fig. 6.1. A plot of the ontours of the objetive funtion and the onstraint,showing all four stationary points, is displayed in Fig. 6.2.Example 6.3.2 (Finding the Eigenvalues and Eigenvetors of a Symmet-ri Matrix)The problem of �nding the eigenvalues and orresponding eigenvetors of a n �n symmetri positive-de�nite matrix M is solved as a linear least-square problemsubjet to quadrati onstraints: For i = 1; 2; � � � ; n, and k = 1; 2; � � � ; i, �nd �i andxi suh that �i = minxi 12xTi Mxisubjet to xTk xi = ( 0; if k = 1; 2; � � � ; i� 1;1; if k = i:where �i is the ith eigenvalue of matrix M and xi is the orresponding eigenvetor.150
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Figure 6.1: The four iterations leading to the solution of the linear least-squareproblem subjet to one quadrati onstraintIn order to use the ODA pakage to solve the problem, we de�ne, for i = 1; 2; � � � ; n:q = n and l = i; (6.30)x = xi;�(x) = x;h(x) = [xT1 x � � � xTi�1x xTx� 1 ℄T ;W =Mwhere xk, for k = 1; 2; � � � ; i � 1, are the previously alulated eigenvetors of M,and hene, are known. With the above de�nitions, for i = 1; 2; � � � ; n, subroutineLSSCNL of the ODA pakage is alled n times. After eah all, one eigenvalue andits orresponding eigenvetor are obtained. Notie that, in the last all, the numberof onstraints is equal to the number of variables, namely, l = n. Matrix M is givenas M = 2666664 4 2 1 1 12 4 2 1 11 2 4 2 11 1 2 4 21 1 1 2 4
3777775 :We use the initial guess x0 = [ 0:1 0:1 0:1 0:1 0:1 ℄T :151



Figure 6.2: The ontours of onstant f and the onstraint h = 0The eigenvalues and the eigenvetors omputed with the ODA pakage are listedin Table 6.1. In that table, the number of iterations that the pakage took till on-vergene was reahed with �1 = 0:0001 and �2 = 0:0001, is indiated.6.4 Equality-Constrained Optimization with Ar-bitrary Objetive FuntionThe problem to be solved is de�ned as:f = f(x) ! minx (6.31)152



i 1 2 3 4 5�i 1.27738 3.08749 9.63513 2.0 4.01st omp. of xi 0.26565 �0:51369 0.40689 0.5 0.52nd omp. of xi �0:51853 0.10368 0.46944 �0:5 0.53rd omp. of xi 0.56667 0.67138 0.47764 0.0 0.04th omp. of xi �0:51853 0.10368 0.46944 0.5 �0:55th omp. of xi 0.26565 �0:51369 0.40689 �0:5 �0:5# of iterations 12 11 6 38 54Table 6.1: Eigenvalues and eigenvetors of Msubjet to the nonlinear equality onstraintsh(x) = 0 (6.32)where x is the n-dimensional design-variable vetor, the objetive funtion f(x)being a nonlinear funtion of x, not neessarily quadrati in the sense of Setion 6.3,but with ontinuous derivatives up to the seond order. Moreover, h(x) is a l-dimensional vetor of nonlinear equality onstraints, with a ontinuous gradient.In the problem de�ned in eq.(6.31), if the onstraints in eq.(6.32) are analyti,then there exists a feasible manifold F � Rn , of dimension l, suh that, if u 2 F ,then h(x(u)) = 0 (6.33)In the partiular ase in whih h(x(u)) is linear, then F is a vetor spae, i.e., thefeasible spae of the problem at hand.At x = xk, we assume that, in general, h(xk) = hk 6= 0, i.e., the urrent x is notfeasible, and note that f(xk +�xk) an be expanded, to a seond order, asf(xk +�xk) � f(xk) + (rf)Tk�xk + 12(�xk)T (rrf)k�xk ! min�xk (6.34a)subjet to Jk�xk = �hk (6.34b)We have thus derived a linear least-square problem in �xk subjet to the linearonstraints (6.34b). To �nd the inrement �xk, we resort to the ODA, as introduedin Setion 6.2. To this end, we deompose the foregoing vetor into its two orthogonalomponents: �xk = �xk0 + Lk�uk153



where �xk0 = �JTk (JkJTk )�1hk (6.35)is the minimum-norm solution of eq.(6.34b), and Lk is the isotropi orthogonalomplement of Jk de�ned in eqs.(6.13) and (6.14), while Jk itself is de�ned as thegradient of h with respet to x, evaluated at x = xk. Moreover, Lk and �uk arefound with the proedure desribed in Setion 6.2 for linearly-onstrained linearleast-square problems. Furthermore, with �xk0 given by eq.(6.35), f(xk + �xk)beomes a funtion solely of �uk, i.e.,f(�uk) � ~f(�uk) � f(xk) + (rf)Tk (�xk0 + Lk�uk)+12(�xk0 + Lk�uk)T (rrf)k(�xk0 + Lk�uk)! min�ukwhih an be ast in the form~f(�uk) = 12(�uk)TLTk (rrf)kLk�uk + �LTk (rrf)k�xk0 + LTk (rf)k�T �uk+ 12(�xk0)T (rrf)k�xk0 + (rf)T0�xk0 + f(xk)! min�uk (6.36)subjet to no onstraints, ~f(�uk) being quadrati in �uk. Funtion ~f(�uk) has aminimum if its Hessian with respet to �uk, feasible Hessian Hk = LTk (rrf)kLk,is positive-de�nite. Under the assumption that this is the ase, then, the minimum�uk of ~f(�uk) an be readily omputed upon zeroing its gradient with respet to�uk, whih yields Hk�uk = �LTk (rrf)k�xk0 � LTk (rf)kUnder the assumption that Hk is positive-de�nite, it is invertible, and hene,�uk = �H�1k [LTk (rrf)k�xk0 + LTk (rf)k℄ (6.37)We have thus redued the original problem to a sequene of linear-quadratiprograms. This means that we have solved the problem iteratively. At eah iteration,moreover, we �nd the orretion to the urrent approximation �xk by means ofa ombination of two linear problems, one being a minimum-norm problem, theother involving a determined linear system of equations. For this reason, the aboveproedure is alled sequential quadrati programming.The foregoing proedure relies on the rather daring assumption that the HessianHk is positive-de�nite. Below we study the more realisti ase of a non-positive-de�nite Hessian. 154



6.4.1 Sequential Quadrati Programming with Hessian Sta-bilizationIn the presene of a non-positive-de�nite Hessian Hk, we aim at a perturbation �Hkof the Hessian that will render the perturbed Hessian ~Hk positive-de�nite, thusproduing ~Hk � Hk +�Hk (6.38)How to obtain �Hk that is guaranteed to produe a positive-de�nite-Hessian is thekey issue here. We desribe in the subsetion below a method for the determinationof �Hk. Note that, one the perturbed Hessian, whih is most frequently referredto as the stabilized Hessian, is available, �uk is found from~Hk�uk = �LTk [(rrf)k�xk0 + (rf)k℄ (6.39)The proess of �nding a positive-de�nite ~Hk is termed Hessian stabilization. Therationale behind Hessian stabilization lies in the property that, if the eigenvalues ofa n � n matrix M are f�k gn1 , then the eigenvalues of matrix M + �1, where � isa real number and 1 is the n� n identity matrix, are f�k + � gn1 . Thus, the e�etof adding the isotropi matrix �1 to M is to shift the eigenvalues of the latter tothe right of the omplex plane by an amount � if � > 0; if � < 0, then the sameisotropi matrix shifts the eigenvalues of M to the left of the omplex plane by anamount j�j. If the Hessian of interest is not positive-de�nite, this means that it hassome negative eigenvalues, in whih ase Hessian stabilization onsists in �nding theright value of � in the foregoing sheme, that will shift the Hessian eigenvalues tothe right of the real axis|sine the Hessian is neessarily symmetri, its eigenvaluesare all real|so that none of the shifted eigenvalues will lie on the left half of thereal axis. Notie that, if � > 0 is underestimated, then the assoiated isotropimatrix will fail to shift some of the negative Hessian eigenvalues to the right; ifoverestimated, then all shifted eigenvalues will lie on the right half of the real axis,but the Hessian will be overly perturbed, and the onveregene will slow down.Obviously, if we know the eigenvalues of the Hessian Hk, then we an �nd theright �k that will shift all its eigenvalues to the right. However, omputing eigen-values is an iterative proess, exept for very speial ases of simple matries, andhene, we annot rely on knowledge of those eigenvalues. We disuss below how toestimate the right amount of shift � without having to ompute the Hessian eigen-values. The basis of the proedure is a result on positive-de�nite matries that wereall below. 155



Diagonal-Dominane in Positive-De�nite MatriesThe Gershgorin Theorem (Varga, 2000) establishes a region in the omplex planeontaining all the eigenvalues of a n � n matrix A, de�ned over the omplex �eldC , namely, A = 26664 a11 a12 : : : a1na21 a22 : : : a2n... ... . . . ...an1 an2 : : : ann
37775Aording to the Gershgorin Theorem, all the eigenvalues of A lie within a omplexregion S, de�ned as the union of disks Di entered at aii, with radius ri, in theomplex plane, for i = 1; :::; n, ri being given byri = nXj=1;j 6=i j aij jin whih j � j denotes the module of ( � ). The Gershgorin Theorem is illustrated inFig. 6.3, the region S thus being S = n[i=1DiIf A is symmetri and real, whih is so for Hessian matries, then its eigenvalueslie in the union of the real intervalsIi = [aii � ri; aii + ri℄; i = 1; 2; :::; nA lower bound l of the set f�ign1 of eigenvalues of A is, thus,l � mini faii � rign1 (6.40a)the orresponding upper bound beingu � maxi faii + rign1 (6.40b)If A is positive-de�nite, all eigenvalues of A must be positive, whih means thatthe lower bound l should be positive as well. If, on the other hand, A is eithersign-inde�nite or positive-de�nite, but lose to singular, then l an be negative.Now we have, with the foregoing notation,De�nition 6.4.1 (Diagonal-dominane) A n�nmatrixA is said to be diagonally-dominant if aii > ri156



Figure 6.3: The Gershgorin disks of an arbitrary n� n matrixFurther, we have a result allowing us to haraterize positive-de�nite matries with-out the burden of omputing their eigenvalues.Theorem 6.4.1 If a symmetri matrixA is diagonally-dominant, then it is positive-de�nite.Note, however, that the onverse is not true, i.e., a positive-de�nite matrix need notbe diagonally-dominant.6.4.2 Hessian Stabilization with the Aid of Diagonal-Dom-inaneThe feasible Hessian matrix LTk (rrf)jkLk of the objetive funtion an fail to bepositive-de�nite when the Hessian (rrf)jk fails to be so. However, it may wellhappen that the latter fails to be positive-de�nite and yet the former is positive-de�nite. In this light, it appears that we need not stabilize the Hessian itself, butonly its feasible projetion. In pratie, we have found that stabilizing the Hessian,rather than only its feasible projetion, leads to a more robust proedure. We willthus proeed aordingly.We need �rst a riterion to tell us when (rrf)k is suspeted of being sign-inde�nite. The riterion is simple: 157



If (rrf)k fails to be diagonally-dominant, then sign-inde�niteness islikely to our|but not guaranteed!|and hene, Hessian stabilization iswarranted.The stabilizing proedure is applied by introduing a salar �k > 0, that we willterm the Gershgorin shift, suh that a new diagonally-dominant matrixWk is usedto replae (rrf)k, with Wk de�ned asWk = (rrf)k + �k1 (6.41)Wk thus being guaranteed to be positive-de�nite, based on the diagonal-dominanetheorem above.The stabilized Hessian thus yields the feasible Hessian~Hk = LTkWkLk = LTk (rrf)jkLk + �kLTkLk (6.42)Moreover, sine Lk is isotropi, for it has been hosen as an isotropi orthogonalomplement of Jk, it turns out thatLTkLk = 1n0 (6.43)with 1n0 denoting the (n � l) � (n � l) identity matrix. Therefore, the stabilizedfeasible Hessian ~Hk redues to~Hk = LTkWkLk = LTk (rrf)jkLk + �k1n0 (6.44)whih is now a fortiori positive-de�nite, problem (6.36) thus admitting one minimum�uk, whih is omputed from eq.(6.39).Choie of the Gershgorin ShiftIn this subsetion we stress the importane of the seletion of �k, where subsript kdenotes the iteration number. With a proper seletion, the number of iterations anbe e�etively redued. First, we assume that (rrf)k was found to fail the diagonal-dominane test, and hene, the lower bound lk of its eigenvalues is negative.The seletion of �k is suggested to be slightly greater than the lower bound lk ofthe eigenvalues, as obtained by the diagonal-dominane riterion (or test), i.e.,�k = �(1 + �k)lk (6.45)where �k is a positive number, that is to be hosen as small as possible.158



The value of �k is related to the bandwidth bk of the Hessian eigenvalues, withbk de�ned as bk = uk � lkExample 6.4.1 (Powell's Funtion)A problem proposed by (Powell, 1969) is solved here:f(x) = ex1x2x3x4x5 ! minx ; x � [ x1 x2 x3 x4 x5 ℄Tsubjet to the nonlinear equality onstraintsh1 = x21 + x22 + x23 + x24 + x25 � 10 = 0h2 = x2x3 + x4x5 = 0h3 = x31 + x32 + 1 = 0A word of aution is in order here: while the exponential funtion ex is onvex|its seond derivative with respet to x is positive everywhere|the bivariate exponen-tial funtion ex1x2 is not onvex everywhere, and neither is so the above objetivefuntion. In fat, the Hessian of the bivariate exponential beomes sign-inde�nitein a region of the x1-x2 plane. This statement is illustrated with the plot of thisfuntion displayed in Fig. 6.4. The onlusion of the foregoing disussion is, then,that the multivariable exponential funtion, like Powell's funtion, has a Hessianthat is sign-inde�nite in a region of R5 . Optimum solutions were obtained with twodi�erent algorithms, the orresponding results being listed in Table 6.2. Results wereobtained under the same environment, a Silion Graphis 64-bit Otane SE work-station, with a 250 MHz R10000 proessor, running the IRIX 6.5 operating system.An initial guess is taken asx0 = [�1 2 �0:5 1 2 ℄Twith tolerane of 10�6. The ODA pakage requires only 58 iterations, as omparedwith 186 required by the Matlab Optimization Toolbox. Moreover, the CPU timerequired by the ODA is only 8.9 % of the CPU time onsumed by Matlab.Example 6.4.2 (The Equilibrium Con�guration of a N-link Chain)Shown in Fig. 6.5a is a hain with N links in its equilibrium on�guration, whihspans a distane d, with eah link of length `. Knowing that the hain reahes itsequilibrium on�guration when its potential energy attains a minimum value, �nd159



Figure 6.4: The bivariate exponential ex1x2
Figure 6.5: An N -link hain in: (a) its unknown equilibrium on�guration; and (b)a on�guration to be used as an initial guessthe said equilibrium on�guration. This problem, originally proposed by Luenberger(1984), was solved for the ase of two design variable, exatly, in Example 5.3.2.Angles �i, used to de�ne the on�guration of the hain, are measured from thevertial w, with �i orresponding to the angle that the axis of the ith link makeswith the vertial, as shown in Fig. 6.6.If V � �`f(�1; �2 : : : ; �N ) denotes the potential energy of the hain, and � isthe mass density of the links per unit length, then minimizing V is equivalent tominimizing f , whih is given byf(�1; �2 : : : ; �N) = � � 12 os �1 + (os �1 + 12 os �2) + : : :+(os �1 + : : :+ os �N�1 + 12 os �N�1)� ! minf �i gN1160



Table 6.2: A performane omparison based on Powell's funtionMatlab ODAf 0:05395 0:05395x1 �1:7172 �1:7171x2 1:5957 1:5957x3 1:8272 �1:8272x4 0:7636 �0:7636x5 0:7636 0:7636# of iterations 186 55CPU time (s) 0.2903 0.0259

Figure 6.6: De�nition of �i for the N -link hainor, in ompat form,f(�1; �2 : : : ; �N ) = �12 NXi=1 [2(N � i) + 1℄ os �i ! minf �i gN1subjet to two onstraints: the two ends (1) must lie at the same height, and (2) areseparated by a distane d, as shown in Fig. 6.6. The onstraints areh1 = NXi=1 os �i = 0h2 = NXi=1 sin �i � d̀ = 0Under the assumption that the on�guration is symmetri, and that N is even, thenM = N=2 is an integer. Thus, only one half of the hain need be onsidered. The161



Table 6.3: Luenberger's hain with M = 5Matlab The ODA�1 0.0893 0.0893�2 0.1147 0.1147�3 0.1599 0.1599�4 0.2625 0.2625�5 0.67856 0.6785fmin -12.2650 -12.2650Iterations 16 7CPU time (s) 0.2825 0.003261problem is, thus, simpli�ed asf(�1; �2 : : : ; �M ) = � � 12 os �1 + (os �1 + 12 os �2) + : : : + (os �1 + : : :+ os �M�1+12 os �M)� = �12 MXi=1 [2(M � i) + 1℄ os �i ! minf os �i gM1The two onstraints then redue to only one:h = MXi=1 sin �i � d2` = 0This problem, with M = 5, i.e., with N = 10, is solved now using the on�gura-tion of Fig. 6.5b as an initial guess. The equilibrium on�guration of the hain isgiven in Table 6.3 with a omparison between ODA and Matlab.With the same tolerane set at 0.0001, the ODA takes less than half the numberof iterations than Matlab; additionally, the CPU time onsumed by ODA is about10% of that onsumed by Matlab.It is noteworthy that the onvergene of ODA is dependent on the hoie of �kin eq.(6.41), for a given value of d=(2l).Example 6.4.3 (Minimum value of the Rosenbrok Funtion) We inlude anexample where the ODA pakage is used to �nd the minimum value of the Rosenbrokfuntion (Rosenbrok, 1960), a.k.a. the banana funtion, de�ned asf(x) = 100(x2 � x21)2 + (1� x1)2 (6.46)162



Figure 6.7: The ontours of the Rosenbrok (a.k.a. the banana) funtionThe problem an be treated as �nding an \approximate" solution of a system ofnonlinear equations, namely, � = �x2 � x211� x1 � (6.47)suh that the least-square error f is a minimum, i.e.,f(x) = 12�TW� ! minx1; x2 (6.48)with W = � 200:0 00 2:0 � (6.49)By taking x0 = [0:2 0:2℄T as initial guess, we obtained the sequene of valuesx1;x2; : : : shown in Table 6.4. The optimum was reahed after 3 iterations, andfound to be xopt = [1 1℄T . The ontours of the banana funtion are plotted inFig. 6.7. Now, sine � = 0 at xopt, the normality ondition (3.95) is readily veri�ed.Table 6.4: Interations toward the minimum of the Rosenbrok funtioni 1 2 3xi [1:000000; 0:360000℄T [1:000000; 1:000000℄T [1:000000; 1:000000℄T
163



Example 6.4.4 (The Constrained Minimization of the Rosenbrok Fun-tion) In this example, we �nd its equality-onstrained minimum of the Rosenbrokfuntion using SQP via the ODA. We thus havef(x1; x2) = 100(x2 � x21)2 + (1� x1)2 ! minx1; x2subjet to h((x1; x2) = 0:7525x21 � 1:1202x1 � 0:8574x1x2+0:6168x2 + 0:2575x22 + 0:4053The funtion is notorious for its ill-onditioning, whih is apparent from itsontours, as shown in Fig. 6.8, showing elongated valleys. The outome is thatthe quadrati approximation of this funtion within those valleys is a family of el-lipses that have one semiaxis muh greater than the other one, thereby leading toill-onditioning. Notie that the onstraint is a rather elongated ellipse that on-tributes to the ill-onditioning of the problem.Starting from the initial guess x = [1:5 1:5℄T with a damping ratio of 0.025, theoptimum solution is found in 312 ODA iterations, the result beingxopt = � 0:91760:5873 �whih yields fmin = 6:6963
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Figure 6.8: The ontours of the Rosenbrok (banana) funtion and its quadrationstraint (dashed)
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Chapter 7Inequality-ConstrainedOptimization
7.1 IntrodutionThe onstraints under whih a design problem is formulated involve, more often thannot, inequality onstraints, in addition to equalities. In fat, inequality onstraintsarise naturally in design beause the resoures available to aomplish a design jobare �nite. For example, a designed objet must: �t into a designated region; berealizable within a given budget; and be delivered by a ertain date.In this hapter we address two issues around inequality-onstrained problems:the normality onditions and the methods of solution. As to the former, we will notdwell into their rigorous derivation, whih are elusive to a simple analysis with thetools of linear algebra; rather, we will introdue the �rst-order normality onditionswithout derivation, and illustrate their validity with examples. The seond-ordernormality onditions will be derived using an intuitive approah, more so than amathematial formulation.The reason why linear algebra is no longer suÆient to derive the normality on-ditions of inequality-onstrained problems lies in the nature of inequalities, whihde�ne a region of Rn that is neither a vetor subspae nor a manifold, as we en-ountered when studying equality-onstrained problems. Now we will speak, moregenerally, of the feasible region RF , whih an have sharp edges and verties, notourring in manifolds. For this reason, a simple transformation of the form x(u) isnot suÆient, in general, to guarantee the ful�llment of the inequality onstraints.167



7.2 The Karush-Kuhn-Tuker ConditionsThe �rst-order normality onditions of equality-onstrained problems are lassialresults, �rst proposed by Joseph Louis de Lagrange, brilliant mathematiian bornin Turin in 1736 and dead in Paris in 1813. Lagrange founded in Turin a soietythat would beome the Aademy of Sienes; then, Lagrange went to Berlin, tothe Aademy of Friedrih II, to sueed Euler. Rather late in his life, in 1787, didLagrange move to Paris, invited by Louis XVI to teah at Eole normale. Appointedsenator and made ount by Napoleon, Lagrange beame one of the �rst professorsat Eole polytehnique.The �rst-order normality onditions for inequality-onstrained problems had towait until well into the XX entury. These onditions were dislosed �rst by W.Karush in his M.S. thesis in the Department of Mathematis at the University ofChiago (Karush, 1939). Apparently, these results were never published in thearhival literature, for whih reason they remained unknown. Twelve years later,they were published in the Pro. Seond Berkeley Symposium by Kuhn and Tuker(1951). The redit of these normality onditions has gone mostly to Kuhn andTuker, but given their history, these onditions are sometimes referred to as theKarush-Kuhn-Tuker onditions.The problem at hand is formulated asf(x) ! minx (7.1a)subjet to g(x) � 0p (7.1b)h(x) = 0l (7.1)where inequality (7.1b) is to be taken with a grain of salt: Arrays not forming orderedsets, this relation has no verbatim meaning. It is to be interpreted as shorthand fora set of m inequalities, namely,g1(x) � g1(x1; x2; : : : ; xn) � 0g2(x) � g2(x1; x2; : : : ; xn) � 0...gp(x) � gp(x1; x2; : : : ; xn) � 0To formulate the normality onditions, we proeed as before, namely, by de�ning a168



Lagrangian upon adjoining the equality and the inequality onstraints to the obje-tive funtion, namely,F (x; �; �) � f(x) + �Th(x) + �Tg(x) ! minx;�;� (7.2)where � is found so that h(x) will vanish at a stationary point, the role played by� being desribed below. We start by introduing aDe�nition 7.2.1 (Ative onstraint) When, at a stationary point, the ith on-straint of (7.1b) holds with the equality sign, this onstraint is said to be ative.By extension, we will de�ne as passive any non-ative onstraint.The omponents of � are hosen so that the ontribution of all passive onstraintsto the Lagrangian vanish, that of all ative onstraints neessarily vanishing.While the normality onditions annot be derived by simply making the gradientof the foregoing Lagrangian equal to zero, these onditions look very muh like thoseassoiated with equality-onstrained problems. Indeed, x0 is a feasible stationarypoint if h(x0) = 0l; g(x0) � 0p (7.3a)rf jx=x0 + JT0�+GT0� = 0n (7.3b)� � 0m; �Tg(x) = 0 (7.3)where G0 � G(x0) � �g�x ����x=x0 ; J0 � J(x0) � �h�x ����x=x0 (7.3d)i.e., G and J are, respetively, the p� n and the l � n gradients of the inequality-and equality-onstraint funtions g(x) and h(x), namely,G � 26664 (rg1)T(rg2)T...(rgp)T
37775 ; J � 26664 (rh1)T(rh2)T...(rhl)T

37775 (7.4)Hene, the KKT ondition (7.3b) an be expressed alternatively asrf jx=x0 + �1rh1jx=x0 + �2rh2jx=x0 + � � �+ �1rhljx=x0+ �1rg1jx=x0 + �2rg2jx=x0 + � � �+ �prgpjx=x0 = 0n (7.5)169



It is noteworthy that, the omponents of � being non-negative and those of g(x)non-positive, eah �igi(x) is non-positive. Hene, �Tg(x) = 0 of eq.(7.3) implies�igi(x) = 0; i = 1; : : : ; pat a feasible stationary point.Relations (7.3a{) are the Karush-Kuhn-Tuker (KKT) onditions. These are the�rst-order normality onditions of the inequality-onstrained problem at hand, andhene, guarantee a feasible stationary point of RF , but not a minimum. The latteris guaranteed by the seond-order normality onditions, to be studied in Setion 7.3.Remark: In the absene of inequality onstraints, eq.(7.3b) redues to the FONCof equality-onstrained problems, eq.(5.8a).In the third row of the KKT, eqs.(7.3), the third of these relations is referred toas the omplementary slakness, sometimes as the transversality ondition1. Comple-mentary slakness thus guarantees that, at a SP, the Lagrangian equals the objetivefuntion, under the assumption that the equality onstraints are veri�ed.Further, if a of the m inequality onstraints are ative, we an partition vetorg(x0), very likely after a reshu�ing of its omponents, in the formg(x0) = � gagp0 � ; p0 = p� a (7.6)where ga and gp0 are a- and (p � a)-dimensional vetors, respetively. Now, theKarush-Kuhn-Tuker onditions of eq.(7.5) an be restated asrf jx=x0 + �1rh1jx=x0 + �2rh2jx=x0 + � � �+ �lrhljx=x0+ �1rg1jx=x0 + �2rg2jx=x0 + � � �+ �argajx=x0 = 0n; ga = 0a (7.7)where the �rst equation resembles the FONC of equality-onstrained problems, thistime with l + a equality onstraints, as derived in eq.(5.8a).Moreover, the KKT onditions an be ast in the anonial formrxF � �F�x = 0n; r�F � 0p; �Tr�F = 0 (7.8)A proof of the KKT an be found in (Culioli, 1994; Boyd and Vandenberghe, 2004).To illustrate the validity of the KKT onditions, we give in Fig. 7.1 a mehanialinterpretation: A heavy ball of weight w is onstrained to lie in a box, under the1Not to be onfused with the transversality ondition of alulus of variations.170



ation of the gravity �eld g, as depited in Fig. 7.1a; the ball is shown in its equilib-rium position in Fig. 7.1b; in Fig. 7.1, the weight of the ball, equal to �rV , whereV is the potential energy of the ball, is deomposed into the two fores normal tothe box walls. Notie that these two omponents push the walls, but annot pullthem, whih is the reason why �i > 0, for i = 1; 2.

(a) The general layout (b) The ball at its equilib-rium position () A deomposition ofthe weight of the ball atequilibrium positionFigure 7.1: A heavy ball inside a box inlined with respet to the vertial

Figure 7.2: A quadrati objetive fun-tion subjet to linear inequality on-straints

Example 7.2.1Consider the problemf = 12(x21 + x22) ! minx1;x2subjet to x1 + x2 � 10x1 � 0x2 � 0The objetive funtion and the onstraintsare illustrated in Fig. 7.2.For starters, we must express the in-equality onstraints in the standard formadopted at the outset, i.e., as gi(x) � 0,whene, g1 � �x1 � x2 + 10 � 0; g2 � �x1 � 0; g3 � �x2 � 0171



Apparently, the minimum is found at x0 = [5; 5℄T . We evaluate then the itemsentering in the KKT onditions at this point x0:rg1 = ��1�1 � ; rg2 = ��10 � ; rg3 = � 0�1 �rf = �x1x2 � ; ) rf jx=x0 = � 55 �By inspetion, only the �rst onstraint is ative, and hene,g1(x0) = 0; �1 > 0; �2 = �3 = 0The KKT ondition (7.7) thus redues torf jx=x0 + �1rg1jx=x0 = 02; �1 > 0or �1rg1jx=x0 = � rf jx=x0whih states that, at the SP x0 given above, the two gradients, rf jx=x0 andrg1jx=x0, are linearly-dependent. As a onsequene, the above overdetermined sys-tem of two equations in one single unknown, �1, admits one solution that veri�esthe two equations. Upon solving this system, in fat, we obtain �1 = 5 > 0, therebyverifying the seond relation of onditions (7.3).Example 7.2.2 f � 8x21 � 8x1x2 + 3x22 ! minxsubjet to x1 � 3x2 � 32The objetive funtion and the onstraints of this example are depited in Fig. 7.3Again, we start by restating the inequalities in our standard form:g1 � 3� x1 � 0; g2 � x2 � 32Therefore, rg1 = ��10 � ; rg2 = � 01 �172



Figure 7.3: One more quadrati objetive funtion subjet to linear inequality on-straintsondition (7.3b) thus leading to�1rg1jx=x0 + �2rg2jx=x0 = �rf jx=x0where, apparently, x0 = � 33=2� ; rf = � 16x1 � 8x2�8x1 + 6x2 �Hene, rf jx=x0 = � 36�15 �The above normality ondition thus leading to�1 ��10 �+ �2 � 01 � = ��3615 �whih, in this ase, turns out to be a determined system of two equations in twounknowns, its solution being�1 = 36 > 0; �2 = 15 > 0thereby verifying all KKT onditions.Example 7.2.3 (A Linear Program)173



A lass of optimization problems �nding a number of appliations involves alinear objetive funtion subjet to linear equality and inequality onstraints. Thislass is studied within the realm of linear programming. These problems annot besolved with the tools desribed so far, for we have foused on least-square problems,with an extension to more general objetive funtions and equality onstraints. Bythe same token, linear programs arise seldom in mehanial design. To be true, afamily of design problems in strutural engineering, known as limit design, pertain tothe design of strutural elements, beams, olumns and plates, for minimum weight,in suh a way that all modes of plasti failure are avoided. Problems in limit designlead to linear programs.Linear programming is a �rst instane of appliation of the KKT onditions. Weillustrate the onept with the problem below.f � 2x1 � x2 ! minx1;x2subjet to g1(x) � �x1 � 0g2(x) � �x2 � 0g3(x) � x1 + x2 � 1 � 0The objetive funtion and the onstraints of this problem are illustrated in Fig. 7.4.

Figure 7.4: A linear program174



In this ase, G = 24�1 00 �11 1 35 ; rf = � 2�1 � ; x0 = � 01 �The KKT onditions lead to� 2�1 �+ ��1 0 10 �1 1 �24�1�2�3 35 = � 00 �Apparently, g1 and g3 are ative, and hene,�1; �3 > 0; �2 = 0thereby ending up with a system of two equations in two unknowns, �1 and �3. Uponsolving this system, we obtain, suessively,�3 = 1 > 0; �1 = 3 > 0thereby verifying the KKT onditions.7.3 Seond-Order Normality ConditionsThe simplest way of stating the suÆient onditions for a minimum, i.e., the seond-order normality onditions, is by imposing the ondition that, at a stationary pointx0 withinRF , any feasible move�xF will produe a growth, and hene, a worsening,of the objetive funtion while respeting the onstraints. In other words, at afeasible minimum, we annot derease the objetive funtion without violating theonstraints. That is, �f � f(x0 +�xF )� f(x0) > 0 (7.9)�h � h(x0 +�xF )� h(x0) = 0l (7.10)g(x0 +�xF ) � 0p (7.11)A feasible move, moreover, is to be understood here at the �rst-order approximationof the objetive funtion and the onstraint funtions g(x) and h(x). In this light,then, eq.(7.10) onstrains �xF to lie in the nullspae of J, i.e.,J�xF = 0l (7.12)175



If we reall now the partitioning of g(x) introdued in eq.(7.6), relation (7.11) anbe orrespondingly partitioned as�ga(x) � ga(x0 +�xF )� ga(x0) = 0a (7.13a)gp0(x) � gp0(x0 +�xF ) < 0p0 (7.13b)the feasible move thus requiring that the passive onstraints remain passive and thattheir ative ounterparts remain ative. If we now letGa denote rga, the �rst-orderapproximation of eq.(7.13a) leads toGa(x)�xF = 0a (7.14)and we need not worry about the passive onstraints (7.13b), whih will be respetedas long as k�xFk is \small enough." Now we an adjoin eq.(7.14) to eq.(7.12) inthe form J�xF = 0l+a; J � " JGa # (7.15)Further, we introdue, orrespondingly, a n� (n� l�a) orthogonal omplementL of J, i.e., J L = O(l+a)�(n�l�a) (7.16)The suÆient seond-order normality onditions an now be stated in exatlythe same form as for equality-onstrained problems. That is, we de�ne now the(n� l � a)� (n� l � a) feasible Hessian asrrf � LT (rrf)Land hene, the suÆient SONC an be stated as:A stationary point of an inequality-onstrained problem is a minimum ifthe feasible Hessian is positive-de�nite.7.3.1 Overonstrained ProblemsIn the speial ase in whih l + a > n, the orthogonal omplement L does notexist for a full-rank J. In this ase, the problem is overonstrained, and hene,ill-de�ned. However, if J is rank-de�ient, of rank smaller than n, then some of theonstraints are redundant, at least to a �rst order, and the problem may admit aminimum. If l + a = n, then the equality onstraints yield a determined system ofnonlinear equations, whih an be solved using the Newton-Raphson method. Anyof the solutions thus obtained is a solution andidate for the original optimizationproblem. 176



Example 7.3.1 The KKT and Seond-Order ConditionsConsider the problem f(x) = (x1 � 1)2 + (x2 + 2)2 ! minx1;x2subjet to g(x) = x1 � x2 + 0:5 � 0Solution: We start by �nding a feasible stationary point x0 via the KKT onditions:rf + �rg = 0where rf = 2" x1 � 1x2 + 2 # ; rg = " 1�1 #Hene, the KKT onditions lead to2" x1 � 1x2 + 2 #+ �" 1�1 # = " 00 #Now, if we assume that g is ative, the above equation yields, with � > 0,2(x1 � 1) + � = 02(x2 + 2)� � = 0whih, upon summation, lead to x1 + x2 = �1while the inequality onstraint, written as an ative onstraint, leads in turn tox1 � x2 = �0:5The solution of the two foregoing equations is x1 = �0:25; x2 = �0:75, whene� = 2:5 > 0 and hene, the KKT onditions are veri�ed. Now we verify the seond-order suÆient onditions: In our ase,J = [(rga)T ℄ = [ 1 �1 ℄ ) L = " 11 #and rrf = " 2 00 2 #177



Figure 7.5: A quadrati objetive funtion to be minimized under one equality andone inequality onstraintTherefore, rrf = [ 1 1 ℄" 2 00 2 #" 11 # = 4 > 0thereby verifying the seond-order suÆient ondition. Hene, x0 = [ �0:25 �0:75 ℄Tis indeed a minimum.Notie that, in this ase, rrf happens to be positive-de�nite, and hene, thefeasible Hessian is bound to be positive-de�nite as well. The omputation of rrfin this ase ould thus have been dispensed with.
7.4 Methods of SolutionTwo lasses of methods are available to solve inequality-onstrained problems: a)diret methods, whih handle the inequalities as suh, and b) indiret methods, whihtransform the problem into one of two types, either unonstrained or equality-onstrained. Indiret methods being simpler to implement, we will fous on these,whih we will study �rst. Diret methods will be outlined at the end of the hapter.178



Inequality-onstrained problems an be solved using the approah introdued foreither unonstrained or equality-onstrained problems, upon onverting the problemat hand into an unonstrained or, orrespondingly, an equality-onstrained problem.This an be done by various methods; we fous on two, namely, slak variables andpenalty funtions.7.5 Indiret MethodsIn this setion, the methods of slak variables and of penalty funtions are disussed.7.5.1 Slak VariablesUpon introduing the slak variables s1; s2; � � � ; sp into inequalities (7.1b), we on-vert these inequalities into equality onstraints, namely,(x; s) � 26664 g1 + s21g2 + s22...gp + s2p
37775 = 0; x � 26664 x1x2...xn

37775 ; s � 26664 s1s2...sp
37775 (7.17)Notie that the slak variables being unknown, they have to be treated as additionaldesign variables, the dimension of the design spae being orrespondingly inreased.In onsequene, the design vetor is now of dimension n+ p, i.e.,� � �xs � (7.18)Now, the gradient of the objetive funtion with respet to the new design-variable vetor takes the form r�f � � rfrsf � (7.19a)where rf � �f�x ; rsf � �f�s = 0p (7.19b)the seond relation following beause the slak variable do not appear expliitly inthe objetive funtion.Likewise, the Hessian with respet to the new design-variable vetor � takes theform r�r�f = � rrf r(rsf)rs(rf) rsrsf � (7.20a)179



with the notationr(rsf) � �2f�x�s = � �2f�s�x�T � [rs(rf)℄T ; rsrsf � �2f�s2 (7.20b)However, sine rsf = 0p, the above Hessian expression redues tor�r�f = �rrf OnpOTnp Op � (7.21)That is, the Hessian of the objetive funtion with respet to the new design-variable vetor � is singular. In ase rrf is positive-de�nite, r�r�f is positive-semide�nite. Hene, in applying the method of slak variables to solve inequality-onstrained problems, Hessian stabilization|see Setion 6.4.1|will always be needed.Now, the problem an be formulated as an equality-onstrained problem, if weadjoin the p inequalities (7.17) to the original l, thereby obtaining a new set ofequality onstraints: h(�) = 0l+p (7.22)therefore, the problem at hand an be solved using ODA.Example 7.5.1 (Minimization of the Design Error of a Four-Bar Linkagewith an Input Crank)Determine the link-lengths of the four-bar linkage shown in Fig. 7.6, that will produethe set of input-output pairs f i; �igq1 shown in Table 7.1, where  and � denote theinput and output angles.Table 7.1: The input-output pairs of f i; �ig101i 1 2 3 4 5 i 123:8668Æ 130:5335Æ 137:2001Æ 143:8668Æ 150:5335Æ�i 91:7157Æ 91:9935Æ 92:8268Æ 94:2157Æ 96:1601Æi 6 7 8 9 10 i 157:2001Æ 163:8668Æ 170:5335Æ 177:2001Æ 183:8668Æ�i 98:6601Æ 101:7157Æ 105:3268Æ 109:4935Æ 114:2157ÆThe link-lengths are obtained via the Freudenstein parameters k1, k2 and k3,de�ned as k1 = a21 + a22 � a23 + a242a2a4 ; k2 = a1a2 ; k3 = a1a4 (7.23a)180



Figure 7.6: A four-bar linkagewith the inverse relationsa2 = a1k1 ; a3 = pk22 + k23 + k22k23 � 2k1k2k3jk2k3j ; a4 = a1k3 (7.23b)for a given value of a1. The synthesis equations for the planar four-bar linkage anbe written in the form: (Liu and Angeles, 1992)Sk = b (7.24)where S is the synthesis matrix, and k is the vetor of linkage parameters. Moreover,S, k and b are de�ned asS = 26664 1 os�1 � os 11 os�2 � os 2... ... ...1 os �q � os q
37775 k = 24 k1k2k3 35 b = 26664 os( 1 � �1)os( 2 � �2)...os( q � �q)

37775 (7.25)The design error is de�ned as d � b� Sk (7.26)the purpose of the optimization exerise being to minimize the Eulidean norm ofthe design error, while ensuring that its input link is a rank. The onditions forfull mobility of the input rank are (Liu and Angeles, 1992)g1(x) = (k1 + k3)2 � (1 + k2)2 < 0g2(x) = (k1 � k3)2 � (1� k2)2 < 0181



By introduing two slak-variables s1 and s2, the inequality onstraints are onvertedinto equality onstraints, i.e.,h1(x) = (k1 + k3)2 � (1 + k2)2 + s21 = 0 (7.27a)h2(x) = (k1 � k3)2 � (1� k2)2 + s22 = 0 (7.27b)The design vetor � thus beomes � = [k1 k2 k3 s1 s2℄T . From the initial guess�0 = [0:28 0:74 0:12 1:69 1:2℄T , the solution was found to be �opt = [0:3248 0:5875�0:009725 1:556 0:2415℄T , and the orresponding link lengths are a1 � 1, a2 = 1:702,a3 = 103:4 and a4 = 102:8. The Eulidean norm of the minimum design error is5� 10�2.The problem with this design is that it leads to a quite disproportionate linkage:two of its links have lengths two orders of magnitude bigger than those of the othertwo!In the foregoing referene, a tehnique is introdued to eliminate this dimensionalunbalane by means of a penalty funtion.7.5.2 Penalty FuntionsThe idea behind penalty-funtion methods is to approah the optimum solutionasymptotially, by extrapolation of a sequene of optimum solutions to unonstrainedproblems. There are two possibilities: the solution is approahed either within thefeasible region or from without, the penalty funtion being orrespondingly referredto as interior or exterior. It is noteworthy that exterior penalty-funtion methodsare appliable only to problems whereby the optimum �nds itself at the boundaryof the feasible region, but misses interior optima. Hene, we fous here on interiorpenalty funtions.Interior Penalty FuntionsGiven an objetive funtion f(x) subjet to inequality onstraints, as de�ned ineq.(7.1b), a sequene of interior penalty funtions f�kg�1 is onstruted as�k(x; rk) � f(x)� rk pXi=1 1gi(x) k = 1; 2; � � � ; � (7.28)where the term �rkPpi=1[1=gi(x)℄ is alled the penalty term, and all the rk fatorsare positive and observe a dereasing order, i.e.,r1 > r2 > r3 � � � > r� > 0 (7.29)182



The idea here is that the searh for the minimum is onduted within the feasibleregion. Under these onditions, the summation in the penalty term remains negative,and hene, a positive penalization is always added to the objetive funtion. As thedesign-variable vetor approahes the onstraint gi(x) = 0, it does so from the left,i.e., gi(x) ! 0�, and 1=gi(x) ! �1, the penalty term thus beoming a \large"positive quantity, whose value is kept �nite thanks to the presene of the \small"fator rk.Now, a sequene of unonstrained minimization problems is de�ned:�k(x; rk) � f(x)� rk pXi=1 1gi(x) ! minx ; k = 1; 2; � � � ; � (7.30)Let x1o, x2o, : : :, x�o be the sequene of orresponding unonstrained minima. Next,these minima are interpolated to a vetor funtion xo(r):xo(r) � 0 + ��1X1 krk=2 (7.31)thereby obtaining a system of �n equations in �n unknowns, the n omponents ofthe � unknown vetor oeÆients f k g��10 . Note that the foregoing equations areall linear in the unknowns, and hene, they an be solved for the unknowns usingGaussian elimination, as desribed below. First, eq.(7.31) is written for r = ri, withi = 1; 2; : : : ; �: xo(ri) � 0 + 1r1=2i + 2r2=2i + � � �+ ��1r(��1)=2i (7.32)or xo(ri) � [ 0 1 � � � ��1 ℄26664 1r1=2i...r(��1)=2i
37775 ; i = 1; 2; : : : ; � (7.33)In the next step, we regroup all � vetor equations above to produe a matrixequation. To this end, we de�ne the matriesR � 26664 1 1 � � � 1r1=21 r1=22 � � � r1=2�... ... . . . ...r(��1)=21 r(��1)=22 � � � r(��1)=2�

37775 (7.34a)Xo � [xo(r1) xo(r2) xo(r�) ℄ (7.34b)C � [ 0 1 � � � ��1 ℄ (7.34)183



It is noteworthy that square matries with the gestalt of R of eq.(7.34a) our quitefrequently in system theory, where they are termed Vandermonde matries. Forthis reason, sienti� ode inludes ommands that ease the onstrution of suhmatries. For example, Maple inludes the ommandVandermondeMatrix(r; output)in whih r is the array [r1; r2; : : : ; r�℄T , and output is the name assigned to thematrix thus onstruted. The ommand inludes various options.Thus, the � vetor equations (7.32) beome, in matrix form,CR = Xo (7.35a)whene, C = XoR�1 (7.35b)or, if eq.(7.35a) is written in the usual form, with the unknown matrix C to the leftof its matrix oeÆient, the foregoing equation should �rst be transposed, the resultthen being CT = R�TXTo (7.35)with exponent �T indiating the inverse of the transpose or, equivalently, the trans-pose of the inverse. One the � vetor oeÆients sought are available, the optimumof the inequality-onstrained problem, xopt, is alulated asxopt = limr!0x(r)i.e., xopt = 0 (7.36)In omputing the above value, note that 0 is the �rst olumn of the unknownmatrix C or, equivalently, the �rst row of its transpose. In either ase, it is notpossible to obtain 0 as the solution of one single vetor equation. A matrix equationmust be solved in order to obtain 0. Suh an equation is to be solved as a sequeneof linear systems using LU-deomposition, one olumn of the matrix at a time.Example 7.5.2 (A Two-dimensional Optimization Problem Subjet to In-equality Constraints)Consider an optimization problem with an objetive funtion de�ned asf = x2 + 2y2 ! minx;y (7.37)184



subjet to the inequality onstraintsg1 � �x � 0 (7.38a)g2 � �y � 0 (7.38b)g3 � 1� x� y � 0 (7.38)

Figure 7.7: Isoontours of the penalty funtion with r1 = 0:1

Figure 7.8: Isoontours of the penalty funtion with r2 = 0:01From a sketh of the onstraints and the ontours of the objetive funtion in thex-y plane, it should be apparent that the minimum of f is attained at a point wherethe gradient rf is parallel to the normal to the line g3(x; y) = 0. The optimumvalues of x and y are, then xopt = 23 ; yopt = 13185



Figure 7.9: Isoontours of the penalty funtion with r3 = 0:001We demonstrate below the appliation of penalty funtions to obtain the foregoingoptimum. We have�k � x2 + 2y2 � rk ��1x � 1y � 1x + y � 1� ; k = 1; : : : ; 3 ! minx; ysubjet to no onstraints, forr1 = 0:1; r2 = 0:01; r3 = 0:001The penalty-funtion isoontours for di�erent rk values are shown in Figs. 7.7{7.9. In those �gures, the isoontour of the objetive funtion f that inludes theonstrained minimum is indiated with a dashed urve.The optima xo(rk) � [ xo(rk); yo(rk) ℄T for the three given values of rk were foundby the ODA, using subroutine ARBITRARY, asxo(r1) = � 0:79410:4704� ; xo(r2) = � 0:71400:3703 � ; xo(r3) = � 0:68360:3434 � (7.39)We now �t the values of fxo(rk)g31 to the funtionxo(r) = 0 + 1r1=2 + 2rWe thus haveR = 24 1 1 10:3163 0:1000 0:031630:1000 0:0100 0:0010035 ; Xo = � 0:7941 0:7140 0:68360:4704 0:3703 0:3434� (7.40)The oeÆient matrix C is thus found to beC = XoR�1 = � 0:6687 0:4790 �0:26050:3317 0:3612 0:2443 � (7.41)186



Therefore, xopt = 0 = � 0:66870:3317� (7.42)whih yields the optimum with two signi�ant digits of auray.7.6 Diret MethodsOf the various diret methods for the solution of inequality-onstrained problems,we shall disuss here three:(i) The method of the feasible diretions;(ii) the generalized redued-gradient method; and(iii) the omplex method.7.6.1 The Method of the Feasible DiretionsThe method is due to Zoutendijk (1960). An outline of the method will be given ina future edition.7.6.2 The Generalized Redued-Gradient MethodThis method, abbreviated as the GRG method, is an evolution of the gradient-projetion method proposed by Rosen (1960). Further developments led to theredued-gradient method, as appliable to arbitrary objetive funtions with linearequality onstraints and inequalities of the form x � 0. The generalization of theredued-gradient method lies in its appliability to nonlinear equality and inequalityonstraints.The method is best desribed if the problem at hand is formulated in a slightlydi�erent format than the one we have used so far: Given the objetive funtion f(x)and the C1-ontinuous funtions hj(x), for j = 1; : : : ; l + p,f(x) ! minx (7.43a)subjet to hj(x) � 0; j = 1; : : : ; p (7.43b)hp+j(x) = 0; j = 1; : : : ; l (7.43)li � xi � ui; i = 1; : : : ; n (7.43d)187



The problem is �rst reformulated upon elimination of the �rst p inequalities bymeans of nonnegative slak variables xn+1; : : : ; xn+p. The onstraints beome now:hj(x) + xn+j = 0; j = 1; : : : ; p (7.44a)hp+j(x) = 0; j = 1; : : : ; l (7.44b)li � xi � ui; i = 1; : : : ; n (7.44)xn+j � 0; j = 1; : : : ; p (7.44d)Notie that the slak variables introdued in eq.(7.44a) are non-negative, while thoseof Subsetion 7.5.1 are quadrati. The reason for the di�erene is that the latterwere introdied in the framework of least squares; the former have a histori origin,greatly inuened by the simplex method of linear programming, whereby all deision,or design, variables are regarded as non-negative.We thus end up with a new problem:f(x) ! minx (7.45a)subjet to hj(x) = 0; j = 1; : : : ; l + p (7.45b)li � xi � ui; i = 1; : : : ; p + n (7.45)Inequalities (7.45) will be termed bilateral.Remark: In light of eqs.(7.43), the problem at hand has n0 � (n � l) degreesof freedom, and hene, (n � l) design variables|or a ombination thereof|an befreely presribed.Strategy: Partition the set of design variables into two sets: (n � l) independentdesign variables and (l+p) dependent design variables, a.k.a. state variables. Relabelthe design variables, if neessary.De�nitions:x � �yz � ; y � 26664 x1x2...xn�l
37775 ; z � 26664 xn�l+1xn�l+2...xp+n

37775 ; h � 26664 h1(x)h2(x)...hl+p
37775 (7.46)� y: (n� l)-dimensional vetor of independent variables� z: (l + p)-dimensional vetor of dependent variables or state variables188



� The partial derivatives �f=�y, �f=�z, �h=�y, and �h=�z denote derivativesthat do not take into aount the dependene of z from y� df=dy denotes the total derivative of f with respet to y, whih takes intoaount the dependent variables, and is, hene, a (n� l)-dimensional vetor� dh=dy denotes the total derivative of h with respet to y, whih takes intoaount the dependent variables, and is, hene, a (l + p)� (n� l) matrixThat is, dfdy � 26664 df=dx1df=dx2...df=dxn�l
37775 ; dhdy � � dhdx1 dhdx2 : : : dhdxn�l� (7.47)Remark: Beause of the onstraints (7.45b), the partial derivatives with respet toz are dependent upon those with respet to y. Indeed, sine the equalities (7.45b)must hold, we must have h(y; z(y)) = 0 (7.48a)whih means that the total derivative of h with respet to y must vanish. From thehain rule, dhdy � �h�y + �h�z �z�y = 0 (7.48b)Let C � �h�y = 26664 �h1=�x1 �h1=�x2 � � � �h1=�xn�l�h2=�x1 �h2=�x2 � � � �h2=�xn�l... ... . . . ...�hl+p=�x1 �hl+p=�x2 � � � �hl+p=�xn�l

37775 (7.48)
D � �h�z = 26664 �h1=�z1 �h1=�z2 � � � �h1=�zl+p�h2=�z1 �h2=�z2 � � � �h2=�zl+p... ... . . . ...�hl+p=�z1 �hl+p=�z2 � � � �hl+p=�zl+p

37775 (7.48d)whene C is a (l + p) � (n � l) matrix, while D is a (l + p) � (l + p) matrix. Wethus have ) C+D�z�y = 0Solving for �z=�y from the above equation yields�z�y = �D�1C (7.49)189



Also notie that �f�x � � �f=�y�f=�z � (7.50)By appliation of the hain rule, the total derivative of f with respet to y is givenby dfdy = �f�y + � �z�y�T �f�zSubstitution of eq.(7.49) into the above equation leads todfdy = �f�y � (D�1C)T �f�z= [ 1n�l �(D�1C)T ℄ � �f=�y�f=�z � �M�f�x (7.51)where� 1n�l: (n� l)� (n� l) identity matrix� M: a (n� l)� (p+ n) matrix, namely,M � [ 1n�l �(D�1C)T ℄ (7.52)De�nition: The redued gradient of f is de�ned as the (n� l)-dimensional vetordf=dyRemarks:� The redued gradient of f is a linear transformation of the gradient of f withrespet to x, the transformation being given by matrix M� In the absene of inequalities (7.45), the normality ondition of Problem(7.45a & b) are dfdy �M�f�x = 0 (7.53)i.e., at a stationary point of Problem (7.45a & b), the gradient of f withrespet to x need not vanish; only its projetion onto matrix M must vanish.Apart from inequalities (7.45), whih are relatively simple to handle, the prob-lem an be treated as an unonstrained one.It is noteworthy that MT plays the role of the isotropi orthogonal omplementL of J � �h=�x. Indeed, from eq.(7.49),�z = �z�y�y = �D�1C�y190



or D�1C�y +�z = 0l+pwhih an be ast in the form[D�1C 1l0 ℄ ��y�z � = 0l+pwhere l0 � l + p. Further, realling the onstraints h(x) = 0, we have�h�x�x � J�x = 0whene, J = [D�1C 1l0 ℄Now, JMT = [D�1C 1l0 ℄ � 1n�l�D�1C � = D�1C�D�1C = Ol0�n0with n0 � n�l. Therefore,MT is an orthogonal omplement of J. However, ontraryto L, MT , or M for that matter, is not isotropi.We need two searh diretions at the ith iteration: one for y and one for z. To�nd these diretions, we start by realling eq.(7.48a), whene�h = �h�y|{z}�C �y + �h�z|{z}�D �z = 0l+p (7.54)Let, at the ith iteration, �y = �si; �z = �ti; � > 0 (7.55)Substitution of eq.(7.55) into eq.(7.54) leads to�Csi + �Dti = 0Sine � > 0, the above equation leads, in turn, toCsi +Dti = 0whene, ti = �D�1Csi (7.56)191



All we need now is si. Sine we want to minimize f(x; y), a plausible hoie issi = � dfdy ����(yi;zi) (7.57)Further, substitution of eq.(7.57) into eq.(7.56) leads to the desired expression forti, namely, ti = D�1Cdfdy ����(yi;zi) (7.58)thereby obtaining the two desired searh diretions.We thus have an update of x:xi+1 � �yi + �sizi + �ti � (7.59)The optimum value �� of � is found upon solving an unonstrained problem ofone-dimensional minimization:f(yi + �si; zi + �ti) ! min� (7.60)Remark: The foregoing optimization is implemented without onsideration of in-equalities (7.45). Hene, a test must be onduted to verify whether those on-straints are obeyed.Adjustment: Let �i, for i = 1; : : : ; p + n, be the positive value of � that rendersone of the two inequalities of eah of relations (7.45) ative. Then, let �opt be theadjusted value of � that does not violate the above inequalities, i.e.,�opt = minf��; f�i gp+n1 g (7.61)Hene, xi+1 � �yi + �optsizi + �optti � (7.62)Remark: After the foregoing adjustment has taken plae, nothing guarantees thatthe onstraints (7.45b) are veri�ed. Hene, one further adjustment is needed:Complying with the equality onstraints: With y �xed to its urrent value,yurr, we orret the urrent value zurr of z by means of the Newton-Raphson algo-rithm, i.e.,1. hurr ! h(zurr;yurr) 192



2. h(zurr +�z;yurr) � hurr + �h�z ����y=yurr; z=zurr �z ! 03. �z = �" �h�z ����y=yurr; z=zurr#�1 hurr � �D�1hurr4. zurr ! zurr +�z; hurr ! h(zurr;yurr)5. If khurrk � � stop; else, go to 1where � is a presribed tolerane. One the Newton-Raphson adjustment is om-pleted, the optimization algorithm proeeds to the next iteration. The overall iter-ative proedure is �nished when a onvergene riterion has been met.Drawbaks of the GRG method:� Suess is heavily dependent upon the user's hoie of independent and depen-dent variables: Its rate of onvergene dereases as �(D) grows (Luenberger,1984)� The speed of onvergene is slowed down by the Newton-Raphson iterations:we have an iteration loop within an exterior iteration loop!In spite of the foregoing drawbaks, however, the GRG method is rather popular,for it is even available in Exel, an oÆe-automation software pakage that has beenused in the teahing of optimum design (Tai, 1998).Example 7.6.1 The equilibrium on�guration of a N-link hain (Luen-berger, 1984)We revisit here the problem of Example 6.4.2, for a N -link hain, as shown inFig. 6.5, whih we reprodue in Fig. 7.10 for quik referene.We reall that the hain attains its equilibrium on�guration when its potentialenergy attains its minimum value. As in the above-mentioned example, we use theon�guration of Fig. 7.10b as initial guess and �nd the equilibrium on�guration forthe values N = 4, d = 1:5 m, and ` = 0:5 mSolution: In following Luenberger's formulation, we let the ith link span an x dis-tane xi and a y distane yi. If V � �f(x1; y1; x2; y2 : : : ; xN ; yN) denotes the193



Figure 7.10: A N -link hain at: (a) its unknown equilibrium on�guration; and (b)a known on�guration to be used as an initial guesspotential energy of the hain, and � is the mass density of the links per unit length,then minimizing V is equivalent to minimizing f , whih is given byf(x1; y1; x2; y2 : : : ; xN ; yN) = 12y1 + (y1 + 12y2) + : : :+(y1 + y2 + : : :+ yN�1 + 12yN�1)= 12 NXi=1 [2(N � i) + 1℄ ! minf xi;yi gN1subjet to NXi=1 yi = 0x2i + y2i � 0:52 = 0�0:5 � xi; yi � +0:5; i = 1; : : : ; NFor N = 4, we havef(x1; y1; x2; y2 x3; y3; ; x4; y4) = 12(7y1 + 5y2 + 3y3 + y4) ! minfxi;yig41subjet to h1 � x1 + x2 + x3 + x4 � 1:5 = 0h2 � y1 + y2 + y3 + y4 = 0h3 � x21 + y21 � 0:52 = 0h4 � x22 + y22 � 0:52 = 0h5 � x23 + y23 � 0:52 = 0h6 � x24 + y24 � 0:52 = 0�0:5 � xi; yi � +0:5; i = 1; : : : ; 4194



Use symmetry to simplify the problem:x3 = x2; x4 = x1; y3 = �y2; y4 = �y1) f(x1; y1; x2; y2) � 3y1 + y2 ! minfxi; yig21Remark: Now onstraint h2 = 0 is identially veri�ed and hene, is deleted. Weare thus left with the onstraintsh1 � x1 + x2 � 0:75 = 0h2 � x21 + y21 � 0:52 = 0h3 � x22 + y22 � 0:52 = 0�0:5 � xi; yi � +0:5; i = 1; : : : ; 2Now we have:� Design variables: x1; y1; x2; y2 ) n = 4� Equality onstraints: hi = 0, for i = 1; 2; 3 ) l = 3� Degree of freedom: n � l = 1 ) one single independent variable. Choose y1.Hene, y � [y1℄; z � 24 x1x2y2 35Preliminary alulations:�f�y = � �f�y1� = [3℄; �f�z = 24 �f=�x1�f=�x2�f=�y2 35 = 24 00135h � 24 x1 + x2 � 0:75x21 + y21 � 0:25x22 + y22 � 0:2535Hene, �h�y � h �h=�y1 �h=�y2 i = 24 02y10 35 � C;�h�z � [ �h=�x1 �h=�x2 �h=�y2 ℄ = 24 1 1 02x1 0 00 2x2 2y2 35 � D195



Feasible initial guess: From Fig. 7.10b, in m,x1 = x2 = 0:37500; y1 = y2 = 12p12 � 0:752 = 0:33072 ) x1 = 26664 0:330720:375000:375000:33072
37775Hene, furr � f(x1) = 3� 0:33072 + 0:33072 = 1:32288C = 24 00:661440 35 ; D = 24 1 1 00:75000 0 00 0:7500 0:6614435and D�1 = 24 0 1:3333 01 �1:3333 0�1:1339 1:5119 1:511935Further,�z�y = �D�1C (7.63)= �24 0 1:3333 01 �1:3333 0�1:1339 1:5119 1:51193524 00:661440 35 = 24�0:881920:88192�1:0000035 (7.64)) dfdy = �f�y + ��z�y�T �f�z = �f�y � (D�1C)T �f�z= 3 + [�0:88192 0:88192 �1:0000 ℄24 00135 = [3℄� [1℄ = [2℄Searh diretions: s1 = � dfdy ����x=x1 = �[2℄Hene, t1 = �D�1Cs1 = 24�0:881920:88192�1:0000035 [�2℄ = 24 1:7638�1:76382:0000 35) �x = �yz � = ��s1�t1 � = �26664�2:00001:7638�1:76382:0000
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and xnew = xurr +�x = 26664 0:33072� 2:0000�0:37500 + 1:7638�0:37500� 1:7638�0:33072 + 2:0000�
37775Thus, f(x+�x) = f(�) = 3(y1 +�y1) + (y2 +�y2)= 3(0:33072� 2�) + 0:33072 + 2� = 1:3229� 4�Hene, in order to minimize f(�) we must make � (> 0) as large as the onstraintsallow us. In the next step we �nd the set f�i g41 allowing us to attain the equalityon one side of the set of inequalities (7.45):y1 : 0:33072� 2:0000�1 = �0:5 ) �1 = 0:830722:0000 = 0:41536x1 : 0:37500 + 1:7638�2 = 0:5 ) �2 = 0:125001:7638 = 0:070868x2 : 0:37500� 1:7638�2 = �0:5 ) �3 = 0:875001:7638 = 0:49608y2 : 0:33072 + 2:0000�1 = 0:5 ) �4 = 0:169282:0000 = 0:084640whene, �opt = minf0:41536; 0:070868; 0:49608; 0:084640g = 0:070868Therefore, xnew = 26664 0:33072� 2:0000� 0:0708680:37500 + 1:7638� 0:0708680:37500� 1:7638� 0:0708680:33072 + 2:0000� 0:070868

37775 = 26664 0:188980:50000:25000:47246
37775) fnew = 3� 0:18898 + 0:47246 = 1:0394whih means that we brought down the objetive funtion by 21% of its original valuein one single iteration. However, nothing guarantees that the equality onstraintsare satis�ed. Let us verify:hnew = h(xnew) = 24 0:5000 + 0:25000� 0:750000:50002 + 0:188982 � 0:500020:250002 + 0:472462 � 0:50002 35 = 24 0:00000:0357130:03571835 6= 0Hene, a orretion to z, with y kept at its urrent value yurr, is warranted:Dnew�z = �hnew197



where Dnew � D(xnew) = 24 1 1 01 0 00 0:5000 0:9449235Hene,24 1 1 01 0 00 0:5000 0:944923524�x1�x2�y2 35 = 24 0:00000:0357130:03571835 ) �z = 24�0:0357130:035713�0:05669835Thus, h(znew +�z;ynew) = 24 0:00000:00127860:004486635Hene, the norm of h has been brought down by one order of magnitude. Besides,f(znew + �z;ynew) = 0:9827, and hene, the objetive funtion was brought downby an additional 5.5%, thereby ompleting one full iteration. Further iterations areleft to the reader as an exerise.7.6.3 The Complex MethodA omplex in IRn is a polyhedron with m > n + 1 verties; e.g., in 2D, a omplexis a quadrilateron; in 3D a ube is an example of a omplex. We desribe belowa method due to Box (1965). The method is based on a omplex C with m = 2nverties, for n � 2. Implementations are reported in (Kuester and Mize, 1973) and(Xu et al., 1994).Box's Algorithm1. Given one feasible vertex x1 of the initial omplex, generate theremaining 2n�1 verties so that omplex is feasible: C = fxig2n1 2RF , the feasible region2. Let fi � f(xi) and fM = maxffig2n %xM is the worst vertex3. Let C 0 = fxig2ni=1; i6=M and let x be the position vetor of the entroidof C 0, i.e., x = 12n� 1  2nXi=1 xi � xM!198



Figure 7.11: Replaement of the worst vertex of the omplex by a reetion4. Reover lost vertex of omplex by refleting xM about x by meansofxnew  xM  x� �(xM � x) � (1 + �)x� �xM ; � > 0 (�Box = 1:3)5. if xnew 2 RF, ontinue; else5.1 xnew  12(x+ xnew)5.2 if xnew 2 RF , ontinue; else go to 5.1abort if too many iterations6. go to 2; if xnew is not new worst vertex ontinue; elsexnew  �(xM � x); 0 < � < 17. stop when onvergene riterion has been met.A possible onvergene riterion is to stop when the di�erene between the max-imum value fM of the objetive funtion and its minimum, fm, is smaller than apresribed ratio �1 times the same di�erene at the original omplex. An alternativeriterion involves the size of the urrent omplex, given by the rms value of thedistanes of the verties from the entroid: whenever this values is smaller thana presribed ratio �2 times the orresponding value for the original omplex, theproedure stops. A ombination of the two riteria is advisable.199
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More on the Chain ProblemExample 7.6.2 Find f that balanes the weight of the links, noting that f is hori-zontal, for an arbitrary on�guration h �1 �2 iT .

Figure 7.12: ChainSolution: Apply the Priniple of Virtual Work: P �i = 0, where �i is power devel-oped by the ith external fore. Aording to Fig.7.12, �1 and �2 is power developedby weight of 1st and 2nd link, while �3 is power developed by fore f . Hene, wehave �1 = �`g � _1; �2 = �`g � _2; �3 = f � _o2Then, we haveg � _1 = �g 2̀ _�1 sin �1g � _2 = g � ( _o1 + _2=o1) = 2g � _1 + g � _2=o1 = �g`( _�1 sin �1 + 12 _�2 sin �2)f � _o2 = f � ( _o1 + 2 _o2=o1) = F`( _�1 os �1 + _�2 os �2)201



where F � kfk. Applying the Priniple of Virtual Work, we derive��g`22 _�1 sin �1 � �g`2( _�1 sin �1 + 12 _�2 sin �2) + F`( _�1 os �1 + _�2 os �2) = 0or [��g`(12 sin �1 + sin �1) + F os �1℄ _�1 + [�12�g` sin �2 + F os �2℄ _�2 = 0Sine _�1 and _�2 are independent, we obtain��g`32 sin �1 + F os �1 = 0;��g`12 sin �2 + F os �2 = 0;or 3 sin �1 � � os �1 = 0; sin �2 � � os �2 = 0 (7.65)where we introdue the notation � � F�g`=2Equations (7.65) represent �rst-order normality onditions sought.
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