

Spend less time learning, more time designing.

Computer-Aided Design, Pro/Engineer Overview & Some Practical Hints on Work with the Pro/E

> McGill University NSERC Design Engineering Chair

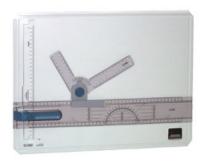
> History

Principles of the computer assisted mechanical design

- General design procedure
- Design phases
- \succ The main aspects of the design with Pro/E
 - Part modelling
 - Assembly
 - Motion analysis
 - Structural analysis
- Some practical hints on the mechanical design
- Conclusion

Slide 2

Alexei Morozov


How was it going 20 or 30 years ago?

20...50 design engineers

- 2 years of work
- Tons of paper
- Drawing board and rulers

Slide 3

Alexei Morozov

And what is the result?

Will it work at all?

You never know before you build a prototype!

Alexei Morozov

NSERC-McGill Chair of Design for Extreme Environment

It is like to meet a bear in a wood

Slide 5

Alexei Morozov

Will it attack?...

Alexei Morozov

...or step back?

Alexei Morozov

You will never know it before you meet!

NSERC-McGill Chair of Design for Extreme Environment

Slide 8

Alexei Morozov

The same principle works in the *Mechanical Design*

Alexei Morozov

NSERC Design Engineering C h a i r NSERC-McGill Chair of Design for Extreme Environment

Will it fly?

Alexei Morozov


Or won't?

Alexei Morozov

NSERC-McGill Chair of Design for Extreme Environment

Will it stand for years and centuries?

Alexei Morozov

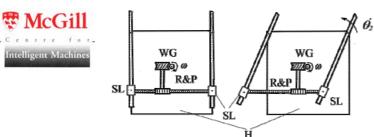
NSERC-McGill Chair of Design for Extreme Environment

Or fall?

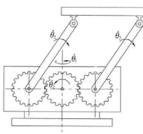
Alexei Morozov

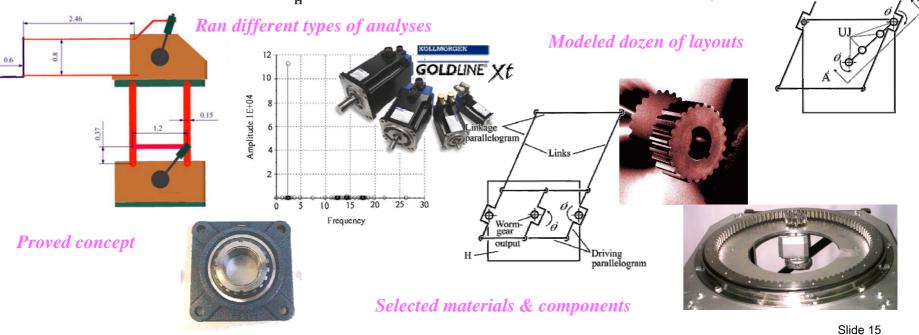
NSERC-McGill Chair of Design for Extreme Environment

To answer these simple questions engineers had to build and then to see what would happen


Do they still have to do this?

Alexei Morozov




NSERC-McGill Chair of Design for Extreme Environment

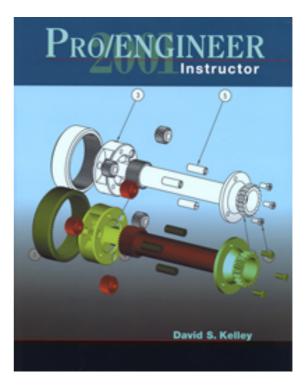
Example: M³ Project

Alexei Morozov

Example: M³ Project (cont'd)

The system has been built and installed in University of Western Ontario, London, Ontario

Slide 16


Alexei Morozov

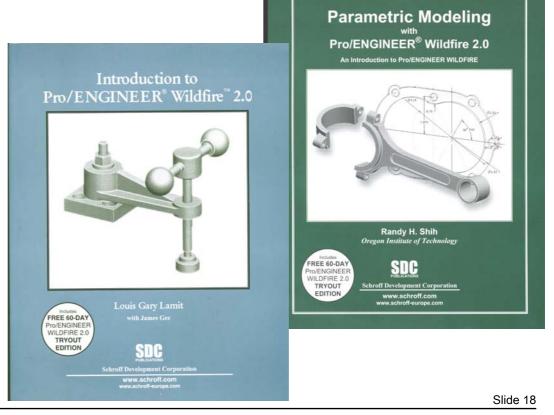
Pro/Engineer has all you need: from part modeling to animation, structural analysis and drafting

Two things I want to give you:

- General sense of the design process and its consistensy
- Some practical hints for different aspects of work & problem solution in the Pro/E

Slide 17

Alexei Morozov



Pro/Engineer Introduction (cont'd)

Schroff Development Corporation http://www.schroff.com

Introduction to Pro/Engineer WildFire 2.0, *Louis Gary Lamit*

Parametric Modeling with Pro/Engineer WildFire 2.0, Randy H. Shih



Alexei Morozov



Pro/Engineer Introduction (cont'd)

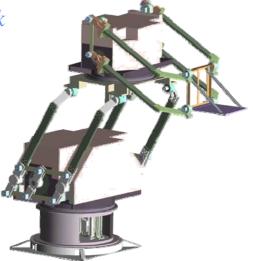
Schroff Development Corporation http://www.schroff.com

Pro/Engineer WildFire 2.0. Tutorial, Roger Toogood

Pro/Engineer WildFire 2.0. Advanced Tutorial, Roger Toogood

Alexei Morozov

Pro/Engineer Introduction (cont'd)


How simple is it?

1st version of my model

- Very simplified
- Took 3 weeks of work

Last version of my model

- 400 components
- Took 1 week of work

Slide 20

Alexei Morozov

General Design Procedure – 5 main goals:

• simulation and visualization of the whole system and its operation before prototyping

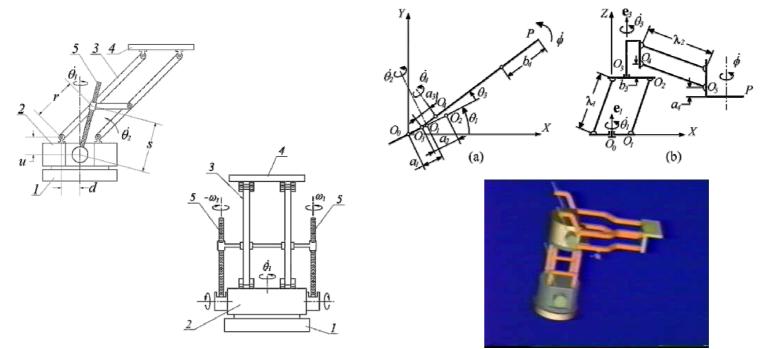
• estimation of the main features of the competing layouts and selection of the one most suitable for the specifications

• designing the main units and the components of the selected layout

• dimensioning the physical parameters of the manipulator for mathematical modeling in order to verify the strength of the individual components and to fulfill modal analysis

• developing the detailed manufacturing drawings

Slide 21


NSERC-McGill Chair of Design for Extreme Environment

Alexei Morozov

Design Phases

1. Simulation and visualization of the overall manipulator

On this phase we derive the general kinematics of the mechanism and produced a visualization of its workspace

Slide 22

Alexei Morozov

Design Phases

1. Simulation and visualization of the overall manipulator

Main Tasks:

□ Simulation of the overall mechanism;

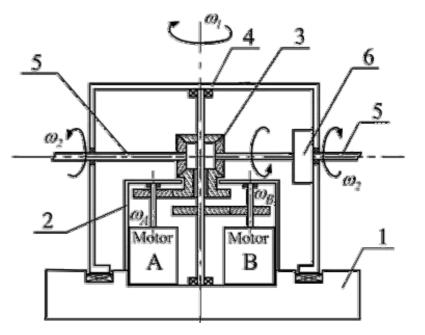
□ animation;

□ expert appraisal of efficiency and workspace;

□ preliminary analysis of forces, torques, inertial parameters, speeds and accelerations

Slide 23

Alexei Morozov

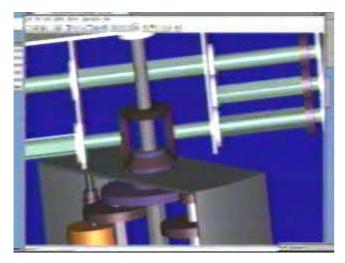


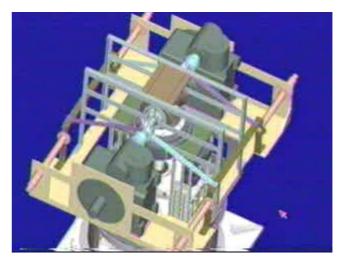
Design Phases

2. Simulation of the drive system in full detail and detailed design of the manipulator

Main Task:

- Detailed design of the driving system;
- \Box expert appraisal of the design;
- □ preliminary kinetostatic analysis of the driving system


Alexei Morozov



NSERC-McGill Chair of Design for Extreme Environment

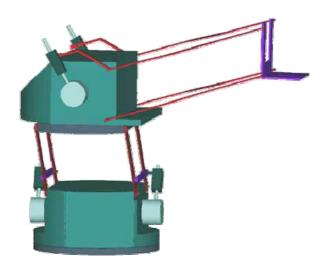
Design Phases

2. Simulation of the drive system in full detail and detailed design of the manipulator

This phase resulted in the detailed design of the drive system, the skeleton of the whole system, to which all other components and units were attached.

One of the most important steps in this phase is the complete dimensional design of the whole system.

Slide 25


Alexei Morozov

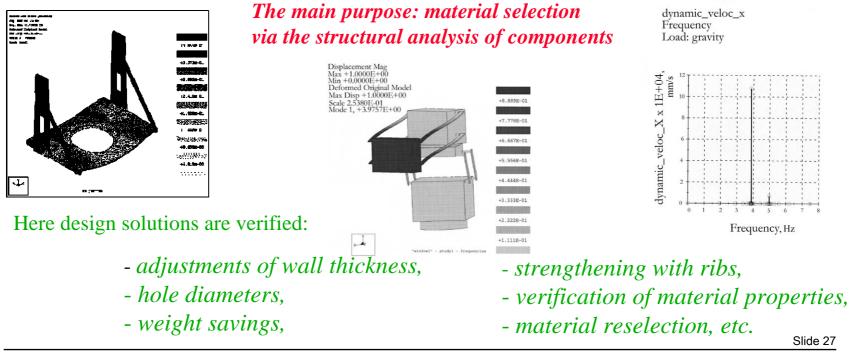
Design Phases

The first 2 phases of the design resulted in the developing systems with 2 different drive mechanisms

Ball-screw driven manipulator

Worm gear driven manipulator

Slide 26


Alexei Morozov

Design Phases

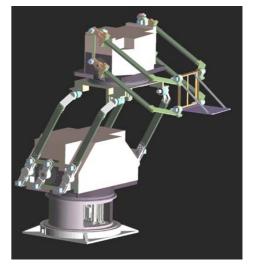
3. Structural analysis

After selection of the layout, modeling and assembling components into the mechanism, its mass, strength and inertial properties must be verified and corrected in this phase

NSERC-McGill Chair of Design for Extreme Environment

Alexei Morozov

Design Phases

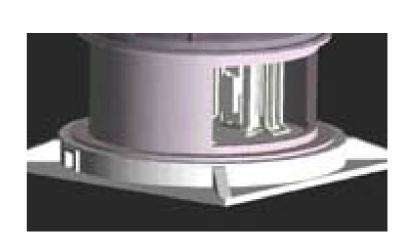

4. Preproduction corrections

This phase is devoted to issuing manufacturing drawings and to adjusting design details in terms of manufacturing processes

This phase is related not with the functional features of the design, but rather with manufacturing standards and technological processes

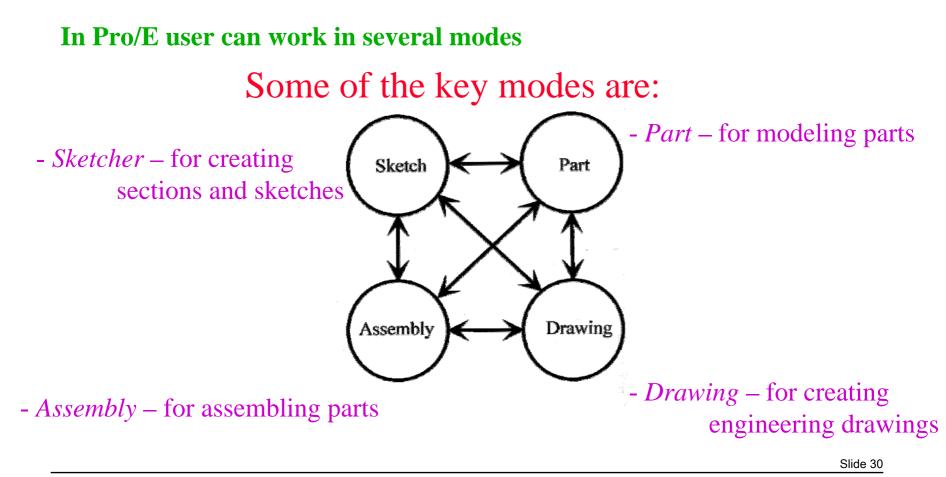
Do you see a difference between these two images?

Slide 28


Alexei Morozov

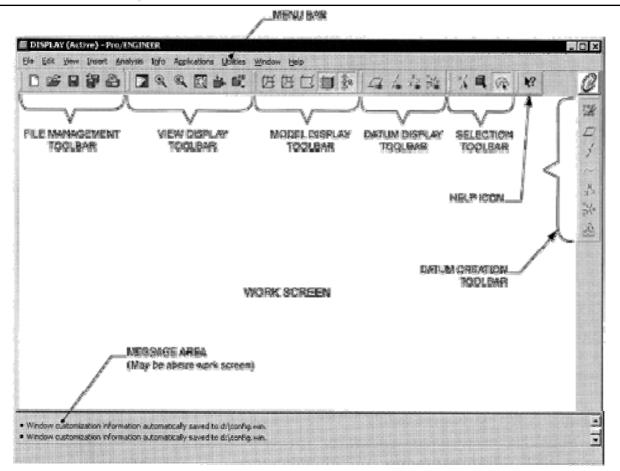
Design Phases

4. Preproduction corrections


Which one will be cheaper for manufacturing?

Slide 29

Alexei Morozov


Main Aspects of the Design using Pro/Engineer

Alexei Morozov

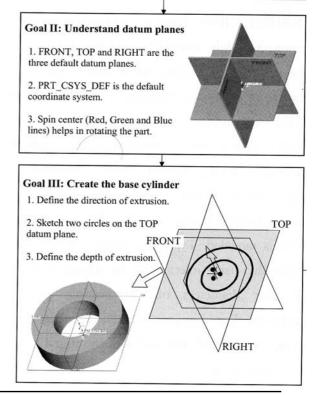
General Overview of Pro/Engineer

Slide 31

Alexei Morozov

Solid Modelling

Where to start? First 3 steps for the beginners:


Selection of units
Metric
Imperial

Be ready to use both of them!!!

- Creation of datum planes

- Protrusion: creation of simple part

	"Ctrl" Key +	
Left Mouse	Middle Mouse	Right Mouse
Zoom	Spin	Pan

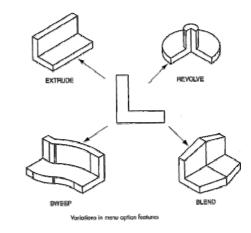
Alexei Morozov

Simple protrusion

THIN FEATURE

Thin versus salid feature

* Solid Modelling

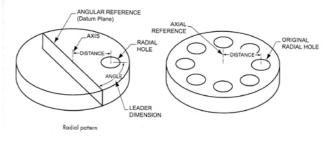

Point on

RT_CSYS_RC

Center of the circle

the outer divide

Variations in menu option features


V2.55 V6.25 Peicti on the immedicate Peicting Peictin

___! _ _

Solids and surfaces

SOLID FEATURE

Patterns from a single features

Slide 33

Alexei Morozov

152.51

* Solid Modelling

How to start?

✓ 15-20 minute introduction lesson (with a person with experience or using the tutorial), about assigning units, creating datum planes, making protrusions and holes.

✓ Take one of the books, for example, *Pro/ENGINEER: WILDFIRE 2.0. Tutorial and Multimedia CD*, by Roger Toogood. SDC Publications, www.schroff.com.

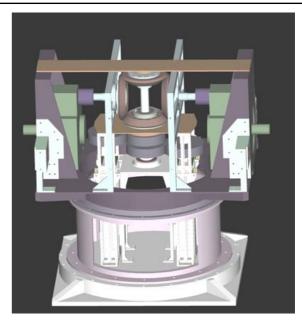
> ✓ Sit down at the computer and create the sample model from the book. In two days you will be fully operating.

✓ Start work on your own project!

And that's it!

Slide 34

NSERC-McGill Chair of Design for Extreme Environment


Alexei Morozov

Assembling

Purposes:

✓ Prove of concept;
 ✓ Estimation of work zone;
 ✓ Producing demo animation;
 ✓ Running force/torage and ye

Running force/torque and velocity/acceleration analyses;
 Running structure analyses, checking mass, vibration and dimensions, and verification of the selected materials.

Slide 35

Alexei Morozov

Useful feature	VOLUME = 1.1985176e-02 INCH [*] 3 SURFACE AREA = 9.7499328e-01 INCH [*] 2 AVERAGE DENSITY = 1.0000000e+00 POUND / INCH [*] 3 MASS = 1.1985176e-02 POUND
	CENTER OF GRAVITY with respect to _FOUR_BAR coordinate frame: X Y Z -1.9945446e-01 1.8195779e-01 0.0000000e+00 INCH
Pro/E can	INERTIA with respect to _FOUR_BAR coordinate frame: (POUND * INCH ^{2})
automatically	INERTIA TENSOR: Ixx Ixy Ixz 5.8457792e-03 -1.0863211e-03 0.0000000e+00 Iyx Iyy Iyz -1.0863211e-03 5.6215728e-03 0.0000000e+00
calculate for you	Izx Izy Izz 0.0000000e+00 0.0000000e+00 1.1462431e-02
✓ Volume,	INERTIA at CENTER OF GRAVITY with respect to _FOUR_BAR coordinate frame: (POUND * INCH^2)
✓ Surface area,	
✓ Average density,	MASS PROPERTIES OF COMPONENTS OF THE ASSEMBLY (in assembly units and the _FOUR_BAR coordinate frame)
✓ Mass,	DENSITY MASS C.G.: X Y Z
✓ Center of gravity,	LINK_270NW MATERIAL:
✓ Inertia tensors	1.00000e+00 1.19852e-02 -1.99454e-01 1.81958e-01 5.84604e-10

both for assembly and for individual components

Slide 36

Alexei Morozov

Pro/Mechanica (Motion)

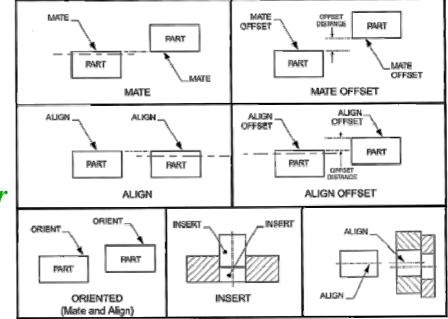
After initial or preliminary design of the components and making assembly you may run Animation of the assembly in Motion mode of Pro/Mechanica.

In this procedure you can

> obtain forces and torques in all joints and even cross-sections,

> select proper motors, gears, bearings, basing on the obtained information

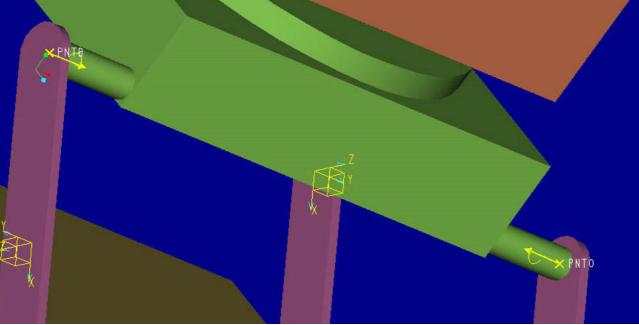
Slide 37


Alexei Morozov

Pro/Mechanica (Motion)

Very important constraints relating Assembly and Motion modes

- a) all surfaces in assembly should accurately and precisely fit each other
- b) all axes should accurately coincide


The least error leads to the model in Motion mode completely screwed up. Be extremely attentive and apply all restrictions to the model very carefully!

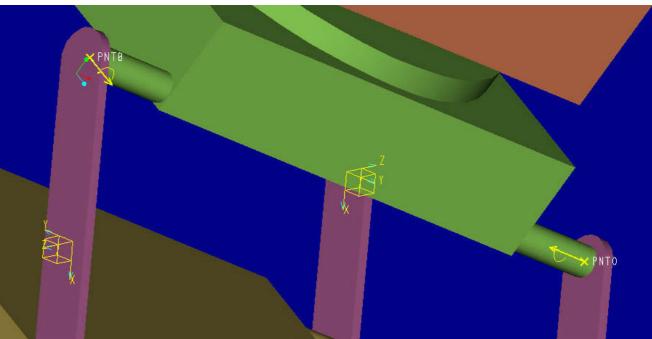
Slide 38

Alexei Morozov

Pro/Mechanica (Motion) Creating pin joints in Motion mode
 Do you suppose these beautiful pin joints will be created automatically?

If you assign an axis of a pin joint in Pro/E, where do you think it will be directed?

Alexei Morozov


Pro/Mechanica (Motion)

Don't trust the program and the computer!

After creation of a joint assume by default that the pin was created in a wrong way!

How to avoid this?

One of the easiest ways: to use datum points

Slide 40

Alexei Morozov

Pro/Mechanica (Motion)

Be careful:

Do not use the option of creating datum points in the assembly mode!

The datum point created in assembly mode will be associated with the whole assembly.

You will not be able to associate individual components with this points!

Return to the part modeling mode and create all needed datum points for each component in their individual files. Slide 41

Alexei Morozov

Pro/Mechanica (Motion)

Very important rule when you work with Pro/Engineer:

Always remember that this is only a program, and its abilities are restricted by several factors:

• Power and capacity of the computer

Example – Finite Element Method, developed in early 20th century and only in 60-s, when computers appeared, it became possible to use this method for applications

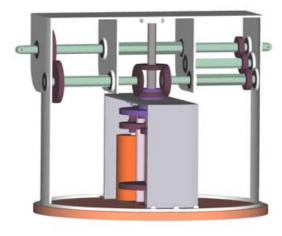
• Qualification of a programmer who wrote this program You cannot do anything with this, except one thing: carefully estimate the abilities of the program you want to use. Pro/ENGINEER has enough capabilities to meet your demands and specifications.

Slide 42

Alexei Morozov

Pro/Mechanica (Motion)

- Mathematical apparatus and mathematical models used in the program
 Even the best software may have its limits and you will have to find your own way to outflank the obstacle
 - Your own qualification and experience Some problems can be avoided only by
 - a) method of poking and trying,
 - b) contacting PTC's technical support, or
 - c) consulting with manuals


The influence of this cause of problem will decrease with time passing and you only have to be patient and persistent

Slide 43

NSERC-McGill Chair of Design for Extreme Environment

Alexei Morozov

Pro/Mechanica (Structure)

Purposes:

- \checkmark To find modes of natural frequencies
- \checkmark To conduct stress analysis and find possible deformations of the structure, and as a result
- ✓ To verify selection of used materials, geometry of critical components, mass distribution

Ways to do it

To run it

- *# for the whole structure in general,*
- # for individual components.

This is what will give you an idea about reliability of your mechanism without building a real prototype

Slide 44

Alexei Morozov

Pro/Mechanica (Structure)

If you feel that your model

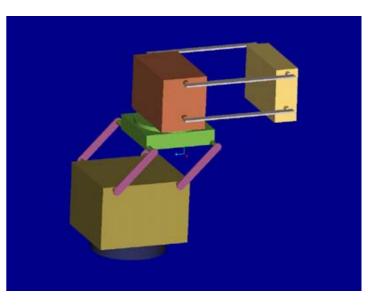
- is too complex,
- has dozens or hundreds of components,
- has a lot of joints which are not significant in a particular type of analysis...

Substitute your model with a simplified equivalent model!

Make sure that main parameters of your simplified model are equivalent to the corresponding parameters of the actual one!

Slide 45

Alexei Morozov



Pro/Mechanica (Structure)

For this purpose I have

- assigned to the solid modules the material with custom density,
- didn't care about the behavior of internal components,
 only was looking for vibrations and deformations of links,
- Icked the hinges between the proximal and the distal modules and the linkages,
- was not interested in behavior of pins and gear trains, considering the locked manipulator.

Example: *simplified model of my manipulator*

Slide 46

NSERC-McGill Chair of Design for Extreme Environment

Alexei Morozov

Practical Hints on the Mechanical Design

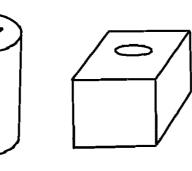
- a) Always remember about manufacturing cost of your design.
- b) Design your components as simple as possible. Sometimes it is cheaper to manufacture 15 small simple components instead of one intricate object.
- c) Don't forget about the assembling procedure. The assembling people should be able to reach easily any component, any nut, screw, bolt, hole and thread.
- d) The consistency of the assembling is important. Components should not become an obstacle for attaching of a following component to the previous one.

Simple Design - Simple Manufacturing - Simple Assembling

Slide 47

Alexei Morozov

Practical Hints on the Mechanical Design



Remember this?

Last question for today What is better (cheaper) to manufacture

a round (or cylindrical) surface,

or a rectangular (plain) surface?

Slide 48

Alexei Morozov

Conclusion

Be persistent... Be inventive... Be rational... Be logical... in your design!

And your solar car... or snowmobile... or steamer... ...even a mousetrap... eventually will be roving Mars!

Slide 49

NSERC-McGill Chair of Design for Extreme Environment

Alexei Morozov

