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Frequency response of op-amp amplifier. f. ’S B |
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Ry
Vo= Vi Ry T+ R,
(3.19)
FIGURE 3.15
Attenuation using dividing network.
FIGURE 3.14
True differential input instrument amplifier.
(From Franco, 2002.)
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FIGURE 3.16

Categories of electrical filters: (a) lowpass; (b) highpass; (c) bandpass;
(d) bandstop.
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FIGURE 3.17

Gain of lowpass Butterworth filters as a
function of order and frequency.
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FIGURE 3.18
Gain of lowpass Chebyshev filters as a
function of order and frequency.
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Comparison of Butterworth and Bessel phase-angle
variation with frequency.
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FIGURE 3.24

Lowpass Bytterworth filter using op-amp: (a) op-amp circuit; (b) frequency response.

To determine the frequency response, we will use ac circuit analysis to examine
the behavior of the circuit when a single-frequency sinusoidal signal is input. This input
signal takes the form Vi ¢/?ft where V,,; is the sine-wave amplitude and fis the fre-
quency. In deriving Eq. (3.17), the expression for the gain on an inverting amplifier, we
used resistances R; and R, in the feedback loop. If instead we had used complex im-
pedances Z; and Z,, the resulting equation for gain G would have been

) (3.21)

We can apply this equation to the filter in Figure 3.21(a). Z, consists of C and R, in par-
allel. Since the impedance of a capacitor is 1/j2afC, the value of Z, is found to be

1 Ry

Z, = - (3.22)
1 1+ 2nfCR
(—) + j2mfC jamfCRy
R,
Zy is simply Ry, so the expression for G, Eq. (3.21), becomes
1 R 1 V.
G= 2 G -0 (3.23)

"Ry1+ j2afCR,  °1+ j2nfCR,

where G, the low-frequency gain (—Ry/R;), is the same as that of the simple inverting
amplifier (without the presence of capacitor C). It should be noted that the gain G is
represented by a complex number.



If we take the absolute value of the terms in Eq. (3.23), we obtain the following
expression:

G 1 1
— e 3.24
Go 1+ ]27TfCR2 A\ /1 + (2’7TfCR2)2 ( )

The corner frequency, f,, for a Butterworth filter is defined as the frequency where the
magnitude of the gain is reduced 3 dB from its low-frequency value, G,. Equation (3.2)
shows that 3 dB corresponds to a reduction in gain, G, by a fraction equal to 0.707. Sub-
stituting the value G = 0.707G,, into Eq. (3.24) gives

0.707G
‘ o 07072 — i (3:25)
Go V1 + (27 fCRy)?

This can be solved for the corner frequency f.:

1
2‘7TCR2

. (3.26)

It should be noted that the corner frequency for a lowpass filter computed by Eq. (3.26)
cannot be any higher than the cutoff frequency for the inverting amplifier itself.

Equation (3.24) can be used to determine the roll-off rate as frequency becomes
high relative to the corner frequency. At high frequencies, 2w fCR, is large compared
to 1, and Eq. (3.25) reduces to

G

G,

1
"~ 2wfCR,

(3.27)

This shows that if the frequency is doubled (a change of 1 octave), the gain will be re-
duced by a factor of 1/2. Based on Eq. (3.2), a reduction in gain G by 1/2 corresponds to
—6 dB. Thus the roll-off is 6 dB per octave.

Equations (3.23) and (3.26) can be combined to give an expression for gain in
terms of f.

G—_‘/ﬁ-—G,‘_}*
Vi U1+ j(fIfe)

Equation (3.28) can be used to evaluate the phase angle of V, relative to V. The phase
of V, relative to V; is then the phase of 1/[1 + j(f/f.)]:
_ —f -1 f
¢ =tan’l—- = —tan} = 3.29
7. 2 G2)
While Eq. (3.16) has the same form as Eq. (3.29), Eq. (3.16) results from characteristics

of the op-amp itself, whereas Eq. (3.29) is a consequence of the capacitor in the feed-
back loop.

(3.28)
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FIGURE 3.22
First-order Butterworth highpass filter using an op-amp: (a) op-amp circuit;
(b) frequency response.

Figure 3.22 shows an op-amp circuit and frequency response for a first-order
high-pass Butterworth filter. The formula for the cutoff frequency, which can be de-
rived in a manner similar to that for the low-pass filter, is given by

_ 1
27TR1C

fe (3.30)
It should also be noted that highpass filters using op-amps are in fact bandpass filters
since the filter amplifier also has a high-frequency cutoff.

Figure 3.23 shows an op-amp circuit and frequency response for a first-order But-
terworth bandpass filter. The upper and lower cutoff frequencies for the bandpass filter
are given by

1 1
= —— = 3.31
fcl 27TR1C1 fc2 27TR2C2 ( )
11
1
G
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R,
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- v, ! i
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! 1
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= = Frequency
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FIGURE 3.23

Bandpass filter using op-amp: (a) op-amp circuit; (b) frequency response.
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FIGURE 3.24
Op-amp circuits for (a) integration and (b) differentiation.
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Op-amp comparator: (a) circuit; (b) output
voltage. (a)

(®)

For the differentiator circuit shown in Figure 3.24(b), the output voltage is the time de-
rivative of the input voltage:

dvi(t)

V() = =RC— (3.33)



	OpAmps79z.pdf
	261LP713_Page_2
	261LP713_Page_3
	261LP713_Page_4
	261LP713_Page_5
	261LP713_Page_6




