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Abstract— A class of stochastic hybrid systems with both
autonomous and controlled switchings and jumps is considered
where autonomous and controlled state jumps at the switching
instants are accompanied by changes in the dimension of the
state space. Optimal control problems associated with this class
of stochastic hybrid systems are studied where in addition to
running and terminal costs, switching between discrete states
incurs costs. Necessary optimality conditions are established in
the form of the Stochastic Hybrid Minimum Principle. A feature
of special importance is the effect of hard constraints imposed
by switching manifolds on diffusion-driven state trajectories
which influence the boundary conditions for the stochastic
Hamiltonian and adjoint processes.

I. INTRODUCTION

The Minimum Principle (MP), also called the Maximum
Principle in the pioneering work of Pontryagin et al. [1], is
a milestone of systems and control theory that led to the
emergence of optimal control as a distinct field of research.
This principle states that any optimal control along with the
optimal state trajectory must solve a two-point boundary
value problem in the form of an extended Hamiltonian
canonical system, as well as a minimization condition (or
a maximization, depending on the sign convention used) for
the Hamiltonian function. Since the original publication of
the MP [1], which was established for deterministic and
continuous dynamical systems, there has been a considerable
effort for the generalization of the Minimum Principle for
broader classes of control systems.

The generalization of the Minimum Principle for hybrid
systems, i.e. control systems with both continuous and dis-
crete states and dynamics, results in the Hybrid Minimum
Principle (HMP) (see e.g. [2]–[15]). The HMP gives neces-
sary conditions for the optimality of the trajectory and the
control inputs of a given hybrid system with fixed initial
conditions and a sequence of autonomous and controlled
switchings. These conditions are expressed in terms of the
minimization of the distinct Hamiltonians indexed by the
discrete state sequence of the hybrid trajectory. A feature
of special interest is the boundary conditions on the adjoint
processes and the Hamiltonian functions at autonomous
and controlled switching times and states; these boundary
conditions may be viewed as a generalization of the optimal
control case of the Weierstrass–Erdmann conditions of the
calculus of variations [16].
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The generalization of the Minimum Principle for contin-
uous parameter stochastic systems results in the Stochastic
Minimum Principle (SMP) (see e.g. [17]–[24]). When diffu-
sion terms are functions of the system state only, the SMP
is derived via similar first-order variational analyses as those
employed in the derivation of the deterministic MP. However,
unlike the deterministic case for which backward ordinary
differential equations for the adjoint process are equivalent
to a forward ODE with a reversal of time, the backward
stochastic differential equation for the adjoint process must
remain non-anticipative, requiring the solution to be ℑt -
adapted. When diffusion terms also depend on the controls,
one is required to study both the first-order and second-order
variations and derive the SMP using a stochastic Hamilto-
nian system consisting of two forward-backward stochastic
differential equations and a minimization condition with an
additional term quadratic in the diffusion coefficient (see e.g.
[19]–[21]).

The optimal control of stochastic hybrid systems, i.e.
control systems that involve the interaction of continuous
dynamics, discrete dynamics and stochastic diffusions, has
been the subject of a limited number of studies. The SMP
formulation in [25] considers only controlled switching and
jumps, and the Stochatsic Dynamic Programming (SDP)
formulation in [26] studies infinite horizon problems where
optimal controls are stationary. In this paper, the hybrid
systems framework in [12]–[14], [27]–[29] is extended to
cover a general class of stochastic hybrid systems with state
dependant diffusion fields which are subject to autonomous
and controlled switchings and state jumps. A feature of
special interest is the effect of hard constraints imposed by
switching manifolds on diffusion-driven state trajectories,
that to the best of our knowledge has not been consid-
ered in the literature before. Furthermore, autonomous and
controlled state jumps at switching instants are allowed to
be accompanied by changes in the dimension of the state
space. Optimal control problems for such stochastic hybrid
systems are studied in the presence of a large range of
running, terminal and switching costs. First order variational
analysis is performed on the stochastic hybrid optimal con-
trol problem via the needle variation methodology and the
necessary optimality conditions are established in the form
of the Stochastic Hybrid Minimum Principle (SHMP).

II. BASIC ASSUMPTIONS

Let (Ω,ℑ,P) be a probability space with filtration ℑt , let
w(�) be a standard Rnw valued Wiener process. Consider a
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hybrid system H as an octuple

H= {H := Q×M, I := Σ×U,Γ,A,F,G,Ξ,M } , (1)

where the symbols in the expression and their governing
assumptions are defined as below.

A0: ℑt = σσσ {w(s) : 0≤ s≤ t}, where σσσ denotes sigma-
algebra.

H :=Q×M is called the (hybrid) state space of the hybrid
system H, where

Q = {1,2, ..., |Q|} ≡
{

q1,q2, ...,q|Q|
}
, |Q| < ∞, is a finite

set of discrete states (components), and
M = {Rnq}q∈Q is a family of finite dimensional continuous

valued state spaces, where nq ≤ n < ∞ for all q ∈ Q.
I := Σ×U is the set of system input values, where
Σ with |Σ| < ∞ is the set of discrete state transition

and continuous state jump events extended with the identity
element, and

U =
{

Uq
}

q∈Q is the set of admissible input control values,
where each Uq ⊂ Rmq is a compact set in Rmq .

The set of admissible (continuous) control inputs
U (U) := L∞ ([t0,T∗) ,U), is defined to be the set of ℑt -
adapted measurable functions that are bounded up to a set of
measure zero on [t0,T∗) ,T∗ < ∞. The boundedness property
necessarily holds since admissible input functions take values
in the compact set U .

Γ : H ×Σ→ H is a time independent (partially defined)
discrete state transition map.

Ξ : H × Σ → H is a time independent (partially de-
fined) continuous state jump transition map. All ξσ ∈ Ξ,
ξσ : Rnq → Rnp , p ∈ A(q,σ) are assumed to be contin-
uously differentiable in the continuous state x ∈ Rnq . In
this paper, we only consider linear jump maps for which
continuous differentiability automatically holds and further,
ξ (c1x1 + c2x2) = c1ξ (x1)+c2ξ (x2)≡ c1∇ξ x1+c2∇ξ x2 for
c1,c2 ∈ R, x1,x2 ∈ Rn.

A : Q×Σ→ Q denotes both a finite automaton and the
automaton’s associated transition function on the state space
Q and event set Σ, such that for a discrete state q ∈ Q only
the discrete controlled and uncontrolled transitions into the
q-dependent subset {A(q,σ) ,σ ∈ Σ} ⊂ Q occur under the
projection of Γ on its Q components: Γ : Q×Rn×Σ→H|Q.
In other words, Γ can only make a discrete state transition
in a hybrid state (q,x) if the automaton A can make the
corresponding transition in q.

F is an indexed collection of Borel measurable vector
fields

{
fq
}

q∈Q such that fq ∈ Ck fq (Rnq ×Uq→ Rnq),
k fq ≥ 1, satisfies a joint uniform boundedness
and Lipschitz condition, i.e. there exists L f < ∞

such that
∥∥ fq (x,u)

∥∥ ≤ L f (1+‖x‖+‖u‖) and∥∥ fq (x1,u1)− fq (x2,u2)
∥∥ ≤ L f (‖x1− x2‖+‖u1−u2‖),

for all x,x1,x2 ∈ Rnq , u,u1,u2 ∈Uq, q ∈ Q.
G is an indexed collection of Borel measurable diffusion

fields
{

gq
}

q∈Q such that gq ∈Ckgq (Rnq → Rnq×nw), kgq ≥ 1,
satisfies a uniform boundedness and Lipschitz condition, i.e.
there exists Lg < ∞ such that

∥∥gq (x)
∥∥ ≤ Lg (1+‖x‖) and∥∥gq (x1)−gq (x2)

∥∥≤ Lg ‖x1− x2‖, for all x1,x2 ∈Rnq , q∈Q.

M = {mα : α ∈ Q×Q,} denotes a collection of switching
manifolds such that, for any ordered pair α ≡ (α1,α2) =
(q,r), mα is a smooth, i.e. C∞, codimension 1 sub-manifold
of Rnq , described locally by mα = {x ∈ Rnq : mα (x) = 0}. It
is assumed that mα ∩mβ = /0, whenever α1 = β1 but α2 6= β2,
for all α,β ∈ Q×Q. �

We note that the case where mα is identified with its
reverse ordered version mᾱ giving mα = mᾱ is not ruled
out by this definition, even in the non-trivial case mp,p
where α1 = α2 = p. The former case corresponds to the
common situation where the switching of vector fields at
the passage of the continuous trajectory in one direction
through a switching manifold is reversed if a reverse passage
is performed by the continuous trajectory, while the latter
case corresponds to the standard example of the bouncing
ball.

Switching manifolds will function in such a way that
whenever a trajectory governed by the controlled vector
field and the diffusion field meets the switching manifold
transversally there is an autonomous switching to another
controlled vector field or there is a jump transition in the
continuous state component, or both. A transversal arrival
on a switching manifold mq,r, at state x occurs whenever

∇mq,r (x)
T fq (x,u) 6= 0, (2)

for x ∈
{

x ∈ Rnq : mq,r (x) = 0
}

, u ∈Uq, q,r ∈ Q.

A1: In this paper, we further assume that

gr
(
ξσq,r (x)

)
= ξσq,r (gq (x)) , (3)

and for all x ∈
{

x ∈ Rnq : mq,r (x) = 0
}

we assume that〈
gq (x) ,∇mq,r (x)

〉
= 0. (4)

�
The former condition considers equivalent diffusion fields

before and after switching events and the latter corresponds
to the absence of transversal diffusion fields on the switching
surface. For the case of systems under turbulence-driven
diffusion fields and with switching manifolds formed by
solid surfaces both (3) and (4) in A1 automatically hold.
In addition to the basic assumptions in A0 and A1, it is
assumed that:

A2: The initial state h0 := (q0,x(t0)) ∈ H is such that
mq0,q (x0) 6= 0, for all q ∈ Q. �

III. HYBRID OPTIMAL CONTROL PROBLEMS

A3: Let
{

lq
}

q∈Q , lq ∈ Cnl (Rnq ×Uq→ R+) ,nl ≥ 1,
be a family of Borel measurable running cost func-
tions; {cσ}σ∈Σ

∈ Cnc (Rnq ×Σ→ R+) ,nc ≥ 1, be a fam-
ily of Borel measurable switching cost functions; and
h ∈Cnh

(
Rnq f → R+

)
,nh ≥ 1, be a Borel measurable termi-

nal cost function satisfying the following assumptions:
(i) There exists Kl < ∞ and 1 ≤ γl < ∞ such that∣∣lq (x1,u1)− lq (x2,u2)

∣∣≤Kl (‖x1− x2‖+‖u1−u2‖), for
all x1,x2 ∈ Rnq , u1,u2 ∈Uq, q ∈ Q.
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(ii) There exists Kc < ∞ and 1≤ γc < ∞ such that |cσ (x)| ≤
Kc
(
1+‖x‖γc

)
, σ ∈ Σ, x ∈ Rnq , q ∈ Q.

(iii) There exists Kh < ∞ and 1≤ γh < ∞ such that |h(x)| ≤
Kh
(
1+‖x‖γh

)
, x ∈ Rnq f , q f ∈ Q. �

Consider the initial time t0, final time t f < ∞, and initial
hybrid state h0 = (q0,x0). For a fixed number of switchings
L < ∞, let τL := {t0, t1, t2, . . . , tL} be a strictly increasing
ℑt -adapted sequence of times and σi ∈ Σ, i ∈ {1,2, · · · ,L}
extended with σ0 = id be a discrete event sequence that form
a hybrid switching sequence

SL =
{
(t0, id) ,

(
t1,σq0q1

)
, . . . ,

(
tL,σqL−1qL

)}
≡ {(t0,q0) ,(t1,q1) , . . . ,(tL,qL)} . (5)

With the set of admissible continuous control inputs given
as U =

⋃L
i=0 L∞ ([ti, ti+1) ,Uqi) with tL+1 = t f , a ℑt -adapted

hybrid input process is denoted by IL := (SL,u), u ∈ U ,
u(t) : ℑt −measurable.

Consider the hybrid performance function

J
(
t0, t f ,h0,L; IL

)
:= E

{
L

∑
i=0

∫ ti+1

ti
lqi (xqi (s) ,u(s))ds

+
L

∑
j=1

cσq j−1q j

(
t j,xq j−1 (t j−)

)
+h
(
xqL

(
t f
))}

, (6)

subject to

dxqi(t)= fqi(xqi(t) ,uqi(t))dt+gqi(xqi(t))dw, t∈ [ti, ti+1) ,

(7)
xq0 (t0) = x0 , (8)

xq j (t j) = ξσq j−1q j

(
xq j−1 (t j−)

)
≡ ξσq j−1q j

(
lim
t↑t j

xq j−1 (t)
)
,

(9)

where 0 ≤ i ≤ L, 1 ≤ j ≤ L, tL+1 = t f < ∞. If t j is the time
of an autonomous switching, then

mq j−1q j

(
xq j−1 (t j−)

)
= 0. (10)

The Hybrid Optimal Control Problem (HOCP) is defined
as the infimization of the hybrid cost (6) over the family of
hybrid input trajectories with L switchings IIIL, i.e.

Jo (t0, t f ,h0,L
)
= inf

IL∈IIIL
J
(
t0, t f ,h0,L; IL

)
. (11)

�

IV. STOCHASTIC HYBRID MINIMUM PRINCIPLE

Theorem 1 Consider the hybrid system H together with
the assumptions A0, A1, A2 and A3 as above and the HOCP
(11) for the hybrid cost (6). Define the family of system
Hamiltonians by

Hq (xq,uq,λq,Kq)= lq (xq,uq)+λ
T
q fq (xq,uq)+ tr

[
KT

q gq (xq)
]
,

(12)

with q ∈Q, xq ∈Rnq , uq ∈Uq, λq ∈Rnq , Kq ∈Rnq×nw . Then
for the optimal input uo and the corresponding trajectory xo

there exists λ o,Ko
q : ℑt − adapted, such that

dxq
o =

∂Hqo

∂λq

(
xo

q,u
o
q,λ

o
q ,K

o
q
)

dt +
∂Hqo

∂Kq

(
xo

q,u
o
q,λ

o
q ,K

o
q
)

dw,

(13)

dλq
o =−

∂Hqo

∂xq

(
xo

q,u
o
q,λ

o
q ,K

o
q
)

dt +Ko
q dw, (14)

almost everywhere t ∈
[
t0, t f

]
with

xo
q0
(t0) = x0, (15)

xo
q j
(t j) = ξσq j−1 ,q j

(
xo

q j−1
(t j−)

)
, (16)

λ
o
qL

(
t f
)
=

∂g
∂xqL

(
xo

qL

(
t f
))

, (17)

λ
o
q j−1

(t j) =

[
∂ξσq j−1 ,q j

∂xq j−1

]T

λ
o
q j
(t j+)+ p

∂mq j−1,q j

∂xq j−1

+
∂cσq j−1,q j

∂xq j−1

,

(18)

where p ∈ R when t j indicates the time of an autonomous
switching, and p = 0 when t j indicates the time of a
controlled switching.

Moreover,

Hqo
(
xo

q,u
o
q,λ

o
q ,K

o
q
)
≤ Hqo

(
xo

q,v,λ
o
q ,K

o
q
)
, (19)

almost everywhere t ∈
[
t0, t f

]
, almost surely for all v :

ℑt −measurable random variables in Uq, that is to say the
Hamiltonian is minimized with respect to the control input;
and at a switching time t j the Hamiltonian satisfies

Hq j−1 (t j−)≡ Hq j−1 (t j) = Hq j (t j)≡ Hq j (t j+) . (20)

�
Proof: This is a brief version of the proof in [30] to

appear in detail in a consecutive paper. Consider the case
of a hybrid optimal control problem with a single switching
case, i.e. with L = 1, t f = tL+1 = t2 and with the notation
ts := t1.

First, consider a needle variation at time t ∈
(
ts, t f

)
in the

form of

uε (τ) =


uo

q0
(τ) if t0 ≤ τ < ts

uo
q1
(τ) if ts ≤ τ < t

v if t ≤ τ < t + ε

uo
q1
(τ) if t + ε ≤ τ ≤ t f

. (21)

This corresponds to a perturbed trajectory x̂ε (τ) ,τ ∈[
t0, t f

]
for which xε

q0
(τ) = xo

q0
(τ), t0 ≤ τ < ts and xε

q1
(τ) =

xo
q1
(τ), ts ≤ τ ≤ t, and for t ≤ τ ≤ t f we may write:

δxε
q1
(τ) := xε

q1
(τ)− xo

q1
(τ)

=
∫ t+ε

t

[
fq1

(
xε

q1
(s) ,v

)
− fq1

(
xo

q1
(s) ,uo

q1
(s)
)]

ds

+
∫

τ

t+ε

[
fq1

(
xε

q1
(s) ,uo

q1
(s)
)
− fq1

(
xo

q1
(s) ,uo

q1
(s)
)]

ds

+
∫

τ

t

[
gq1

(
xε

q1
(s)
)
−gq1

(
xo

q1
(s)
)]

dw(s) . (22)
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Defining the first order state variation as

y(τ) :=
d

dε
xε (τ)

∣∣∣∣
ε=0

, (23)

the first order dynamics of state sensitivity are derived as

dyq1 (τ) =
∂ fq1

∂xq1

(
xo

q1
(τ) ,uo

q1
(τ)
)

yq1 (τ)dτ

+
∂gq1

∂xq1

(
xo

q1
(τ)
)

yq1 (τ)dw(τ) , (24)

yq1 (t) = fq1

(
xo

q1
(t) ,v

)
− fq1

(
xo

q1
(t) ,uo

q1
(t)
)
. (25)

Similarly, the first order (forward) cost variations are
shown to be governed by

d
dτ

zq1 (τ) =
∂ lq1

∂xq1

(
xo

q1
(τ) ,uo

q1
(τ)
)

yq1 (τ) (26)

zq1 (t) = lq1

(
xo

q1
(t) ,v

)
− lq1

(
xo

q1
(t) ,uo

q1
(t)
)
. (27)

It is deduced from the optimality conditions that

d
dε

J (uε)

∣∣∣∣
ε=0

= E

{
zq1

(
t f
)
+

[
∂h

∂xq1

(
xo

q1

(
t f
))]T

yq1

(
t f
)}
≥ 0.

(28)
Similar to the classical case, forward and backward tran-

sition matrices (see e.g. [19]) or the Riesz Representation
Theorem (see e.g. [20]), can be employed to show that there
exist λ o

q1
,Ko

q1
such that

λ
o
q1

(
t f
)
=

∂h
∂xq1

(
xo

q1

(
t f
))

, (29)

and
d

dε
J (uε)

∣∣∣∣
ε=0

= E
{

zq1

(
t f
)
+
[
λ

o
q1

(
t f
)]T yq1

(
t f
)}

= E
{

zq1 (t)+
[
λ

o
q1
(t)
]T yq1 (t)

}
, (30)

Therefore,

E
{

lq1

(
xo

q1
(t) ,v

)
+
[
λ

o
q1
(t)
]T fq1

(
xo

q1
(t) ,v

)
−lq1

(
xo

q1
(t) ,uo

q1
(t)
)
−
[
λ

o
q1
(t)
]T fq1

(
xo

q1
(t) ,uo

q1
(t)
)}
≥ 0,
(31)

which results in

lq1

(
xo

q1
(t) ,uo

q1
(t)
)
+
[
λ

o
q1
(t)
]T fq1

(
xo

q1
(t) ,uo

q1
(t)
)

≤ lq1

(
xo

q1
(t) ,v

)
+
[
λ

o
q1
(t)
]T fq1

(
xo

q1
(t) ,v

)
, (32)

a.s. for all v : ℑt −measurable random variables in Uq1 .
The Hamiltonian minimization condition (19) in location
q1 directly follows (32). Furthermore, the adjoint process
dynamics are governed by

dλ
o
q1
=−

(
∂ lq1

∂xq1

(
xo

q1
,uo

q1

)
+

[
∂ fq1

∂xq1

(
xo

q1
,uo

q1

)]T

λ
o
q1

+
nw

∑
k=1

[
∂gq1

∂xq1

(
xo

q1

)]T

Ko(k)
q1

)
dt +Ko

q1
(t)dw(t) . (33)

Now consider a needle variation at time t ∈ (t0, ts) in the
form of

uε (τ) =



uo
q0
(τ) if t0 ≤ τ < t

v if t ≤ τ < t + ε

uo
q0
(τ) if t + ε ≤ τ < ts−δ ε

uo
q1
(ts) if ts−δ ε ≤ τ < ts

uo
q1
(τ) if ts ≤ τ ≤ t f

. (34)

where δ ε ≥ 0 corresponds to the case when the perturbed
trajectory arrives on the switching manifold m(x) = 0 at an
earlier instant (the case with a later arrival time is handled
in a similar fashion).

For τ ∈ [t0, ts−δ ε), we may write:

δxε
q0
(τ) := xε

q0
(τ)− xo

q0
(τ)

=
∫ t+ε

t

[
fq0

(
xε

q0
(s) ,v

)
− fq0

(
xo

q0
(s) ,uo

q0
(s)
)]

ds

+
∫

τ

t+ε

[
fq0

(
xε

q0
(s) ,uo

q0
(s)
)
− fq0

(
xo

q0
(s) ,uo

q0
(s)
)]

ds

+
∫

τ

t

[
gq0

(
xε

q0
(s)
)
−gq0

(
xo

q0
(s)
)]

dw(s) , (35)

and derive the first order state variation as

dyq0 (τ) =
∂ fq0

∂xq0

(
xo

q0
(τ) ,uo

q0
(τ)
)

yq0 (τ)dτ (36)

+
∂gq0

∂xq0

(
xo

q0
(τ)
)

yq0 (τ)dw(τ) , (37)

yq0 (t) = fq0

(
xo

q0
(t) ,v

)
− fq0

(
xo

q0
(t) ,uo

q0
(t)
)
. (38)

For τ ∈ [ts−δ ε , ts), the early-switched perturbed trajectory
evolves in Rq1 while the original trajectory is still in Rq0 . At
ts, both trajectories are in Rq1 , and we may write

δxε
q1
(ts) = xε

q1
(ts)− xo

q1
(ts)

=ξ
(
xε

q1
(ts−δ

ε−)
)
+

ts∫
ts−δ ε

fq1

(
xε

q1
(τ) ,uo

q1
(ts)
)
dτ+

ts∫
ts−δ ε

gq1

(
xε

q1
(τ)
)
dw(τ)

−ξ

xo
q1
(ts−δ

ε−)+
ts∫

ts−δ ε

fq0

(
xo

q0
(τ) ,uo

q0
(τ)
)
dτ+

ts∫
ts−δ ε

gq0

(
xo

q0
(τ)
)
dw(τ)

.

(39)

By invoking (3) in A1 and employing the Burkholder-
Davis-Gundy (BDG) inequality (see e.g. [31], [32]) we
deduce

yq1 (ts)=∇ξ yq0 (ts−)+ lim
ε→0

δ ε

ε

[
fq1

(
ξ
(
xo

q0
(ts−)

)
,uo

q1
(ts)
)

−∇ξ fq0

(
xo

q0
(ts−) ,uo

q0
(ts−)

)]
, (40)

almost surely, where by using (4) in A1 and the BDG
inequality, the limit in (40) is determined as

lim
ε→0

δ ε

ε
=

∇mT yq0 (ts−)
∇mT fq0

(
xo

q0
(ts−) ,uo

q0
(ts−)

) , (41)
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almost surely. Denoting

γs :=
1

∇mT fq0

(
xo

q0
(ts−) ,uo

q0
(ts−)

) , (42)

the first order dynamics of the state sensitivity are

yq0 (t) = fq0

(
xo

q0
(t) ,v

)
− fq0

(
xo

q0
(t) ,uo

q0
(t)
)
, (43)

dyq0 (τ) =
∂ fq0

∂xq0

(
xo

q0
(τ) ,uo

q0
(τ)
)

yq0 (τ)dτ

+
∂gq0

∂xq0

(
xo

q0
(τ)
)

yq0 (τ)dw(τ) , (44)

yq1 (ts) =
[
∇ξ + γs

(
f s
q1
−∇ξ f s

q0

)
∇mT ] yq0 (ts−) , (45)

dyq1 (τ) =
∂ fq1

∂xq1

(
xo

q1
(τ) ,uo

q1
(τ)
)

yq1 (τ)dτ

+
∂gq1

∂xq1

(
xo

q1
(τ)
)

yq1 (τ)dw(τ) , (46)

where in the above equations f s
q0

:= fq0

(
xo

q0
(ts−) ,uo

q0
(ts−)

)
and f s

q1
:= fq1

(
xo

q1
(ts) ,uo

q1
(ts)
)
.

Furthermore, the first order dynamics of the (forward) cost
sensitivity are determined by

zq0 (t) = lq0

(
xo

q0
(t) ,v

)
− lq0

(
xo

q0
(t) ,uo

q0
(t)
)
, (47)

d
dτ

zq0 (τ) =
∂ lq0

∂xq0

(
xo

q0
(τ) ,uo

q0
(τ)
)

yq0 (τ) , (48)

zq1 (ts) = zq0(ts−)+
[
∇c+γs

(
ls
q1
−ls

q0
−∇cTf s

q0

)
∇m
]Tyq0(ts−),

(49)
d

dτ
zq1 (τ) =

∂ lq1

∂xq1

(
xo

q1
(τ) ,uo

q1
(τ)
)

yq1 (τ) . (50)

Similar to the previous part, forward and backward tran-
sition matrices or the Riesz Representation Theorem can be
employed to show that there exist λ o

q0
,Ko

q0
such that

d
dε

J (uε)

∣∣∣∣
ε=0

= E
{

zq1

(
t f
)
+
[
λ

o
q1

(
t f
)]T yq1

(
t f
)}

= E
{

zq0 (t)+
[
λ

o
q0
(t)
]T yq0 (t)

}
, (51)

Therefore,

E
{

lq0

(
xo

q0
(t) ,v

)
+
[
λ

o
q0
(t)
]T fq0

(
xo

q0
(t) ,v

)
−lq0

(
xo

q0
(t) ,uo

q0
(t)
)
−
[
λ

o
q0
(t)
]T fq0

(
xo

q0
(t) ,uo

q0
(t)
)}
≥ 0,
(52)

which results in

lq0

(
xo

q0
(t) ,uo

q0
(t)
)
+
[
λ

o
q0
(t)
]T fq0

(
xo

q0
(t) ,uo

q0
(t)
)

≤ lq0

(
xo

q0
(t) ,v

)
+
[
λ

o
q0
(t)
]T fq0

(
xo

q0
(t) ,v

)
, (53)

a.s. for all v : ℑt −measurable random variables in Uq0 .
The Hamiltonian minimization condition (19) in location q0
directly follows (53) which together with (32) completes the
proof of (19) for the case under study.

The adjoint equation is given by

dλ
o
q0
=−

(
∂ lq0

∂xq0

(
xo

q0
,uo

q0

)
+

[
∂ fq0

∂xq0

(
xo

q0
,uo

q0

)]T

λ
o
q0

+
nw

∑
k=1

[
∂gq0

∂xq0

(
xo

q0

)]T

Ko(k)
q0

)
dt +Ko

q0
(t)dw(t) . (54)

The adjoint process dynamics (14) are directly deduced
from (54) and (33) together with the Hamiltonian definition
(12). In order to derive the adjoint boundary conditions (18)
we consider (30) for t ↓ ts and (51) for t ↑ ts to write

E
{

zq1 (ts)+
[
λ

o
q1
(ts+)

]T yq1 (ts)
}

= E
{

zq0 (ts−)+
[
λ

o
q0
(ts)
]T yq0 (ts−)

}
. (55)

Substitution of yq1 (ts) and zq1 (ts) from (45) and (49)
results in

E
{

zq0 (ts−)+
[
∇c+ γs

(
ls
q1
− ls

q0
−∇cT f s

q0

)
∇m
]T

yq0 (ts−)

+
[
λ

o
q1
(ts+)

]T [
∇ξ + γs

(
f s
q1
−∇ξ f s

q0

)
∇mT ] yq0 (ts−)

}
= E

{
zq0 (ts−)+

[
λ

o
q0
(ts)
]T yq0 (ts−)

}
. (56)

or

E
{[

∇c+ p∇m+∇ξ
T

λ
o
q1
(ts+)−λ

o
q0
(ts)
]T

yq0 (ts−)
}
= 0,

(57)
in which the notation

p := γs

(
ls
q1
− ls

q0
−∇cT f s

q0
+λ

o
q1
(ts+)T ( f s

q1
−∇ξ f s

q0

))
,

(58)
is used. In order to prove the Hamiltonian continuity condi-
tion (20) we note that on one hand:

Hq0 (ts)≡ Hq0

(
xo

q0
(ts−) ,uo

q0
(ts−) ,λ o

q0
(ts) ,Ko

q0
(ts)
)

= ls
q0
+λ

s
q0

T f s
q0
+ tr

([
Ks

q0

]T gs
q0

)
= ls

q0
+
[
p∇m+∇c+∇ξ

T
λ

s
q1

]T
f s
q0
+ tr

([
Ks

q0

]T gs
q0

)
= ls

q0
+γs∇mT f s

q0

(
ls
q1
− ls

q0
−∇cT f s

q0
+λ

s
q1

T ( f s
q1
−∇ξ f s

q0

))
+∇cT f s

q0
+λ

s
q1

T
∇ξ f s

q0
+ tr

([
Ks

q0

]T gs
q0

)
= ls

q1
+λ

s
q1

T f s
q1
+ tr

([
Ks

q0

]T gs
q0

)
, (59)

where in the derivation of the last equality γs is substituted
from (42). On the other hand,

Hq1 (ts)≡ Hq1

(
xo

q1
(ts) ,uo

q1
(ts) ,λ o

q1
(ts+) ,Ko

q1
(ts+)

)
= ls

q1
+λ

s
q1

T f s
q1
+ tr

([
Ks

q1

]T gs
q1

)
= ls

q1
+λ

s
q1

T f s
q1
+ tr

([
Ks

q1

]T
ξ
(
gs

q0

))
= ls

q1
+λ

s
q1

T f s
q1
+ tr

([
ξ
(
Ks

q1

)]T gs
q0

)
= ls

q1
+λ

s
q1

T f s
q1
+ tr

([
Ks

q0

]T gs
q0

)
. (60)

In the derivation of the above arguments, we made use the
linearity of the mapping ξ provided in A0, and we employed
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the assumption (3) in A1. This completes the proof of the
Stochastic Hybrid Minimum Principle.

V. CONCLUDING REMARKS

In this paper, the Stochastic Hybrid Minimum Principle
(SHMP) has been established for a general class of hybrid
systems with both autonomous and controlled switchings and
state jumps subject to possible changes in the dimension of
the state space. The inevitability of switchings and jumps
upon arrival on switching manifolds is of particular impor-
tance in the modelling of mechanical impact problems (e.g.
[29] as well as the celebrated bouncing ball example) and
friction-resisted dynamical systems with distinct evolutions
under static and dynamic frictions (see e.g. [14]). The SHMP
established here generalizes the deterministic HMP presented
in [12]–[15], [27]–[29]. Furthermore, as proved in the case of
deterministic hybrid optimal control problems (see e.g. [13],
[15]), the adjoint process in the HMP and the gradient of the
value function in Hybrid Dynamic Programming (HDP) are
indentical to each other almost everywhere. So due to the fact
that the same relationship holds for continuous parameter
stochastic optimal control problems (see e.g. [21]), it is
natural to expect the adjoint process in the SHMP and the
gradient of the value function in Stochastic HDP (SHDP) to
be identical almost everywhere. Indeed, the formulation of
SHDP and the investigation of its relationship to the SHMP
is the subject of another study expected to be presented in a
consecutive paper.
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