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Abstract— A class of hybrid systems with both autonomous
and controlled switchings and jumps is considered where
switching manifolds corresponding to autonomous switchings
and jumps are allowed to be codimension k submanifolds in Rn

with 1≤ k≤ n. Optimal control problems associated to this class
of hybrid systems are studied where in addition to running and
terminal costs, costs associated to switching between discrete
states are allowed. Statements of the Hybrid Minimum Principle
and Hybrid Dynamic Programming as well as their relationship
are presented in this general setting and an illustrative example
is provided.

I. INTRODUCTION

There is now an extensive literature on the optimal control
of hybrid systems (see e.g. [1]–[15]). On one hand, the gener-
alization of the fundamental Pontryagin Maximum Principle
(PMP) [16] results in the Hybrid Minimum Principle (HMP)
[1]–[8] that gives necessary conditions for the optimality of
the trajectory and the control inputs of a given hybrid system
with fixed initial conditions and a sequence of autonomous
and controlled switchings. These conditions are expressed
in terms of the minimization of the distinct Hamiltonians
defined along the hybrid trajectory of the system corre-
sponding to a sequence of discrete states and continuous
valued control inputs on the associated time intervals. A
feature of special interest in the Hybrid Minimum Principle
is the boundary conditions on the adjoint processes and
the Hamiltonian functions at autonomous and controlled
switching times and states; these boundary conditions may be
viewed as a generalization of the optimal control case of the
Weierstrass–Erdmann conditions of the calculus of variations
[17].

The generalization of Dynamic Programming [18] for
hybrid systems, on the other hand, results in the theory of
Hybrid Dynamic Programming (HDP) which employs the
optimal cost to go for the hybrid optimal control problem as
its fundamental notion. Under the assumption of smoothness
of the value function, the Principle of Optimality results in
the celebrated Hamilton-Jacobi-Bellman (HJB) equation of
HDP [9]–[12], [19]–[26]. In the case of non-smooth value
functions, the so-called viscosity solutions give a general
class of solutions to the HJB equation [9]–[11].

The usual assumption in design, analysis and control of
hybrid systems is that switching manifolds corresponding to

This work is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Automotive Partnership Canada
(APC).

A. Pakniyat and P. E. Caines are with the Centre for Intelli-
gent Machines (CIM) and the Department of Electrical and Com-
puter Engineering (ECE), McGill University, Montreal, QC, Canada
pakniyat@cim.mcgill.ca, peterc@cim.mcgill.ca

autonomous switchings and jumps are smooth codimension
1 sub-manifolds of Rn. In some studies like hybrid stability,
this assumption reduces the analysis by decoupling the
sequence of switching and the uniform convergence of hybrid
executions within those with the same switching sequence.
However, in the hybrid optimal control context, the assump-
tion of codimension 1 switching manifolds is not a necessity
since the optimality conditions are expressed in terms of the
admissible controls and their corresponding trajectories that
satisfy the desired switching conditions. While numerous
hybrid optimal control problems can be considered where
the system has switching manifolds with dimensions smaller
than n−1, i.e. where switching manifolds are codimension k
sub-manifold of Rn with k > 1, this class of hybrid systems
has been the subject of a limited number of studies in the
hybrid optimal control context.

In past work of the authors (see [24]–[28]) the results of
the Hybrid Minimum Principle are given for the general class
of hybrid optimal control problems with autonomous and
controlled state jumps and in the presence of a large range
of running, terminal and switching costs. In this paper, the
class of hybrid systems under study is further generalized
by letting the switching manifolds be codimension k sub-
manifold of Rn, with k ∈ {1, · · · ,n}. In addition, as shown in
[24]–[26], the adjoint process in the HMP and the gradient of
the value function in HDP are governed by the same dynamic
equation and have the same boundary conditions and hence
are identical to each other. The same result is shown to hold
in this paper in the presence of low dimensional switching
manifolds. Furthermore, an illustrative example is provided
in which the continuous state lies in R4 and the switching
manifold is in R2, i.e. it is a codimension 2 sub-manifold of
R4.

II. HYBRID SYSTEMS

A hybrid system (structure) H is a septuple

H= {H := Q×Rn, I := Σ×U,Γ,A,F,Ξ,M } (1)

where the symbols in the expression are defined as below.
A0: Q = {1,2, ..., |Q|} ≡

{
q1,q2, ...,q|Q|

}
, |Q| < ∞ , is a

finite set of discrete states (components).
H :=Q×Rn is called the (hybrid) state space of the hybrid

system H.
I := Σ×U is the set of system input values, where |Σ|< ∞

and U ⊂ Rm is the set of admissible input control values,
where U is an open bounded set in Rm which necessarily
has compact closure Ū .
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The set of admissible (continuous) control inputs
U (U) := L∞ ([t0,T∗) ,U), is defined to be the set of all
measurable functions that are bounded up to a set of measure
zero on [t0,T∗) ,T∗ < ∞, where the boundedness condition
necessarily holds since admissible input functions take values
in the open bounded set U .

Γ : H ×Σ→ H is a time independent (partially defined)
discrete state transition map which is the identity on the
second (Rn) component.

Ξ : H ×Σ→ H is a time independent (partially defined)
continuous state jump transition map which is the identity
on the first (Q) component. All ξσ ∈ Ξ are assumed to be
injective and continuously differentiable in the continuous
state x.

A : Q×Σ→ Q denotes both a finite automaton and the
automaton’s associated transition function on the state space
Q and event set Σ, such that for a discrete state q ∈ Q only
the discrete controlled and uncontrolled transitions into the
q-dependant subset {A(q,σ) ,σ ∈ Σ} ⊂ Q occur under the
projection of Γ on its Q components: Γ : Q×Rn×Σ→H|Q.
In other words, Γ can only make a discrete state transition
in a hybrid state (q,x) if the automaton A can make the
corresponding transition in q.

F is an indexed collection of vector fields
{

fq
}

q∈Q such
that fq ∈ Ck f (Rn×U → Rn), k f ≥ 1, satisfies a uniformx

Lipschitz condition, i.e. there exists L f < ∞ such that∥∥ fq (x1,u)− fq (x2,u)
∥∥ ≤ L f ‖x1− x2‖, x1,x2 ∈ Rn, u ∈ U ,

q ∈ Q. We also assume that there exists K f < ∞ such that

max
q∈Q

(
sup
u∈U

(∥∥ fq (0,u)
∥∥))≤ K f .

M = {mα : α ∈ Q×Q,} denotes a collection of switching
manifolds such that, for any ordered pair α = (p,q), mα

is a smooth, i.e. C∞ codimension k sub-manifold of Rn,
1 ≤ k ≤ n, possibly with boundary ∂mα . In this paper,
we consider time invariant switching manifolds and hence,
each switching manifold is described locally by mα ={

x : m1
α (x) = 0∧·· ·∧mk

α (x) = 0
}

. It is assumed that mα ∩
mβ = /0, for all α,β ∈ Q×Q,α 6= β , except in those cases
where mα is identified with its reverse ordered version mᾱ

giving mα = mᾱ . �

A1: The initial state h0 := (q0,x(t0)) ∈ H is such that
mq0,q j (x0) 6= 0, for all q j ∈ Q. �

III. HYBRID OPTIMAL CONTROL PROBLEMS

A2: Let
{

lq
}

q∈Q, lq ∈ Cnl (Rn×U → R+), nl ≥ 1,
be a family of running cost functions; {cσ}σ∈Σ

∈
Cnc (Rn×Σ→ R+), nc ≥ 1, be a family of switching cost
functions; and g∈Cng (Rn→ R+), ng ≥ 1, be a terminal cost
function satisfying the following:

There exists Kl < ∞ and 1≤ γl < ∞ such that
∣∣lq (x,u)∣∣≤

Kl
(
1+‖x‖γl

)
, for all x ∈ Rn, u ∈U , q ∈ Q.

There exists Kc < ∞ and 1 ≤ γc < ∞ such that |cσ (x)| ≤
Kc
(
1+‖x‖γc

)
, for all x ∈ Rn, σ ∈ Σ.

There exists Kg < ∞ and 1 ≤ γg < ∞ such that |g(x)| ≤
Kg
(
1+‖x‖γg

)
, for all x ∈ Rn. �

Consider the initial time t0, final time t f <∞, initial hybrid
state h0 = (q0,x0), and the upper-bound of maximum number
of swithchings L̄ < ∞. Let

SL =
{
(t0, id) ,

(
t1,σq0q1

)
, . . . ,

(
tL,σqL−1qL

)}
≡ {(t0,q0) ,(t1,q1) , . . . ,(tL,qL)}

(2)

be a hybrid switching sequence and let IL := (SL,u) ,u ∈U
be a hybrid input trajectory which subject to A0 and A1
results in a (necessarily unique) hybrid state process (see
[4]) and is such that L controlled and autonomous switchings
occur on the time interval [t0,T (IL)], where T (IL) ≤ t f . In
this paper, the number of switchings L is held fixed and we
denote the corresponding set of inputs by {IL}.

Define the hybrid cost on
[
t0, t f

]
as

J
(
t0, t f ,h0,L; IL

)
:=

L

∑
i=0

∫ ti+1

ti
lqi (xqi (s) ,u(s))ds

+
L

∑
j=1

cσq j−1q j

(
xq j−1 (t j−)

)
+g
(
xqL

(
t f
))

(3)

subject to

ẋqi (t) = fqi (xqi (t) ,u(t)) , a.e. t ∈ [ti, ti+1) , (4)

h0 =
(
q0,xq0 (t0)

)
= (q0,x0) , (5)

xq j (t j) = ξ

(
xq j−1 (t j−)

)
≡ ξ

(
lim
t↑t j

xq j−1 (t)
)

(6)

where 0≤ i≤ L, 1≤ j≤ L, tL+1 = t f < ∞ and L+2≤ L̄ < ∞.
Then the Hybrid Optimal Control Problem (HOCP) is to

find the infimum Jo
(
t0, t f ,h0,L

)
over the family of input

trajectories {IL}, i.e.

Jo (t0, t f ,h0,L
)
= inf

IL
J
(
t0, t f ,h0,L; IL

)
(7)

�

IV. HYBRID MINIMUM PRINCIPLE

Theorem 1 [29] Consider the hybrid system H together
with the assumptions A0, A1 and A2 as above and the HOCP
(7) for the hybrid cost (3). Define the family of system
Hamiltonians by

Hq j (x,λ ,u) = λ
T fq j (x,u)+ lq j (x,u) (8)

for x ∈ Rn, λ ∈ Rn, u ∈ U , q j ∈ Q. Then for the optimal
switching sequence qo and along the optimal trajectory xo

there exists an adjoint process λ o such that

ẋo =
∂Hqo

∂λ
(xo,λ o,uo) , (9)

λ̇
o =−

∂Hqo

∂x
(xo,λ o,uo) (10)

almost everywhere t ∈
[
t0, t f

]
with

xo (t0) = x0, (11)
xo (t j) = ξ (xo (t j−)) , (12)

λ
o (t f

)
= ∇g

(
xo (t f

))
, (13)

λ
o (t j−)≡ λ

o (t j) = ∇ξ
T

λ
o (t j+)+ pn̂m +∇cσ , (14)
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where p = 0 when t j indicates the time of a controlled
switching and p ∈ R when t j indicates the time of an
autonomous switching, and

n̂m ‖ PROJ
span{∇mi}

fq j−1 (x
o (t j−) ,uo (t j−)) (15)

i.e. n̂m is a vector in Rn parallel to the projection of fq j−1
in the (generally non-orthogonal) vector space generated by
the span of

{
∇mi

q j−1q j

}
, i ∈ {1, · · · ,k}.

Moreover, the Hamiltonian is minimized with respect to
the control input

Hqo (xo,λ o,uo)≤ Hqo (xo,λ o,u) (16)

for all u ∈ U ; and at a switching time t j the Hamiltonian
satisfies

Hq j−1 (t j−)≡ Hq j−1 (t j) = Hq j (t j)≡ Hq j (t j+) (17)

�

V. HYBRID DYNAMIC PROGRAMMING AND ITS
RELATION TO THE HYBRID MIMIMUM PRINCIPLE

In Hybrid Dynamic Programming the value function V
evaluated at a time t ∈

[
t0, t f

]
and the state h = (q,x) is

defined as the optimal cost-to-go for the hybrid system (1)
with the performance function (3). For simplicity of notation,
in the statement of Hybrid Dynamic Programming, we use x
instead of xo in order to indicate that x refers to the general
solution of the corresponding HOCP passing through it. We
adapt the same notation for qo, to

j , etc.

Theorem 2 [29] If at the instant t and the hybrid state
(q,x) the value function V for the HOCP (3) is differentiable
then it necessarily satisfies the following Hamilton-Jacobi-
Bellman (HJB) equation

−∂V
∂ t
− inf

u

{
lq (x,u)+

〈
∇xV, fq (x,u)

〉}
= 0 (18)

In addition, the value function satisfies the following
terminal time condition

V
(
t f ,qL,x,0

)
= g(x) (19)

and the boundary conditions

V (t j,q,x,L− j+1)

= min
σ

{
V (t j,Γ(q,σ) ,ξ (x) ,L− j)+ cσ (x)

}
(20)

subject to
m1

σ (x) = 0, · · · ,mk
σ (x) = 0 (21)

if t j is a time of an autonomous switching; and

V (τ,q,x,L− j+1)≤V (τ,Γ(q,σ) ,ξ (x) ,L− j)+ cσ (x)
(22)

with the equality achieved for τ = t j, the time of a controlled
switching. �

Theorem 3 [29] If in addition to the assumptions A0, A1
and A2 the functions fq and lq are continuously differentiable
for all q ∈ Q, and the (necessarily Lipschitz) value function
V is twice continuously differentiable almost everywhere

in Lebesgue sense on R × Rn then the adjoint process
locally describes the gradient of the value function, i.e. at
all Lebesgue points and times

λ
o (t) = ∇xV (t,q,x, .))|x=xo a.e. t ∈

[
t0, t f

]
(23)

where xo denotes the optimal trajectory passing through the
point x and λ o is the adjoint process corresponding to xo. �

VI. ILLUSTRATIVE EXAMPLE

A. Problem Formulation
Consider the following mechanical system with two point

masses m1 and m2 each one attached to separate spring and
damper with the configuration depicted in Figure 1. The
spring and the damper attached to the mass m1 have the
stiffness and damping coefficients k1 and c1 respectively and
apply forces to m1 in the direction of the x axis and the spring
and the damper attached to the mass m2 have the stiffness and
damping coefficients k2 and c2 respectively and apply forces
to m2 in the direction of the y axis. The neutral positions
for the springs k1 and k2 have the coordinates (d1,0) and
(0,d2) respectively in the coordinate system shown in Figure
1. Denoting x1 := x, x2 := ẋ, x3 := y and x4 := ẏ the dynamics
of the system is described as

ẋ1 = x2

ẋ2 =−
k1

m1
x1−

c1

m1
x2 +

1
m1

u1 +
k1

m1
d1

ẋ3 = x4

ẋ4 =−
k2

m2
x3−

c2

m2
x4 +

1
m2

u2 +
k2

m2
d2

(24)

which has the matrix representation

ẋ = A1x+B1u+D1 (25)

with

A1 =


0 1 0 0
−k1
m1

−c1
m1

0 0
0 0 0 1
0 0 −k2

m2

−c2
m2

 ,

B1 =


0 0
1

m1
0

0 0
0 1

m2

 ,D1 =


0

k1
m1

d1

0
k2
m2

d2

 (26)

When both masses pass through the origin at the same
time a collision occurs. Denoting the time of the collision
by ts this incident corresponds to a switching manifold in the
form of a codimension 2 submanifold of R4 described by

m : {x1 (ts−) = 0 ∧ x3 (ts−) = 0} (27)

Consider a completely plastic collision in which the
masses attach to each other and hence, the speeds after the
collision determined by the law of conservation of linear
momentum are related to speeds before the collision by

(m1 +m2)vx (ts+)≡ (m1 +m2)vx (ts) = m1v1x (ts−)
(m1 +m2)vy (ts+)≡ (m1 +m2)vy (ts) = m2v2y (ts−)

(28)
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Fig. 1. The system studied in the example

that determines the corresponding autonomous jump map as
x1 (ts)
x2 (ts)
x3 (ts)
x4 (ts)

=


1 0 0 0
0 m1

m1+m2
0 0

0 0 1 0
0 0 0 m2

m1+m2




x1 (ts−)
x2 (ts−)
x3 (ts−)
x4 (ts−)


(29)

Assuming decoupled stiffness and damping in the two
directions (see e.g. [30], [31]) the dynamics of the system
after the collision is described by

ẋ1 = x2

ẋ2 =−
k1

m1 +m2
x1−

c1

m1 +m2
x2 +

1
m1 +m2

u1 +
k1

m1 +m2
d1

ẋ3 = x4

ẋ4 =−
k2

m1 +m2
x3−

c2

m1 +m2
x4 +

1
m1 +m2

u2 +
k2

m1 +m2
d2

(30)
which has the matrix representation

ẋ = A2x+B2u+D2 (31)

with

A2 =


0 1 0 0
−k1

m1+m2

−c1
m1+m2

0 0
0 0 0 1
0 0 −k2

m1+m2

−c2
m1+m2

 ,

B2 =


0 0
1

m1+m2
0

0 0
0 1

m1+m2

 ,D2 =


0

k1
m1+m2

d1

0
k2

m1+m2
d2

 (32)

For the hybrid system described above consider the opti-
mal control problem

J (x0,T,u) =
∫ T

0
l (x,u)dt + c(x(ts−))+g(x(T )) (33)

with the running costs

l1 (x,u) = l2 (x,u)≡ l (x,u) =
1
2
(
u2

1 +u2
2
)
=

1
2

uT u (34)

Take the switching cost as the kinetic energy just before
switching (i.e. collision) which is

c(x(ts−)) =
1
2

m1 (x2 (ts−))2 +
1
2

m2 (x4 (ts−))2 (35)

and assume that the terminal cost penalizes the total energy
at the final time T , i.e.

g(x(T )) =
1
2
(m1 +m2)(x2 (T ))

2 +
1
2
(m1 +m2)(x4 (T ))

2

+
1
2

k1 (x1 (T )−d1)
2 +

1
2

k2 (x3 (T )−d2)
2 (36)

Consequently, the hybrid optimal control problem is de-
fined as finding the minimum of J in (33) and the corre-
sponding minimizing control inputs for the given system.

B. The HMP Results

Employing Theorem 1, the Hamiltonian is formed as

Hi (x,λ ,u) = λ
T (Aix+Biu+Di)+

1
2

uT u (37)

The Hamiltonian minimization condition (16) gives

∂Hi

∂u
= 0 ⇒ uo =−BT

i λ
o (38)

and hence, from (9) and (10)

ẋo = Aixo−BiBT
i λ

o +Di (39)

λ̇
o =−AT

i λ
o (40)

with the initial condition for xo given as

xo (0) = x0 (41)

and its boundary condition (12) given as

x(ts) = Px(ts−) (42)

where P is defined from (29) as

P =


1 0 0 0
0 m1

m1+m2
0 0

0 0 1 0
0 0 0 m2

m1+m2

 (43)

The terminal condition for λ o is given from (13) as

λ
o (T ) = ∇g(x(T )) = G

(
x− r f

)
(44)

with G and r f determined from (36) as

G =


k1 0 0 0
0 m1 +m2 0 0
0 0 k2 0
0 0 0 m1 +m2

 ,r f =


d1
0
d2
0

 (45)

The boundary condition for λ o is determined by (14) as

λ
o (t j−)≡ λ

o (t j) = PT
λ

o (t j+)+ pn̂m +Cx (46)

with C defined from (35) as

C =


0 0 0 0
0 m1 0 0
0 0 0 0
0 0 0 m2

 (47)
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Fig. 2. The results for the parameter values m1 = m2 = 1, k1 = k2 = 1,
c1 = c2 = 1, d1 = d2 = 0.1, the initial condition x0 = [−0.25,0,−0.15,0]T

and the terminal time T = 4

and n̂m determined from (15) as

n̂m ‖ PROJ

span

{[ 1
0
0
0

]
,

[ 0
0
1
0

]}{A1xo (ts−)−B1BT
1 λ

o (ts−)+D1
}

=


x2 (ts−)

0
x4 (ts−)

0

 (48)

Taking n̂m equal to its defining vector in (48), the boundary
condition (46) becomes

λ o
1 (ts)

λ o
2 (ts)

λ o
3 (ts)

λ o
4 (ts)

=


λ o

1 (ts+)+ px2 (ts−)
m1

m1+m2
λ o

2 (ts+)+m1x2 (ts−)
λ o

3 (ts+)+ px4 (ts−)
m2

m1+m2
λ o

4 (ts+)+m2x4 (ts−)

 (49)

The scalar parameter p and the switching time ts together
with the optimal trajectory and its corresponding adjoint
process are determined by solving the differential equations
(39) and (40) subject to the initial, terminal and boundary
conditions (41), (42), (44) and (49) together with the Hamil-
tonian continuity condition from (17) as

λ
oT
(ts+)

[
A2xo

(ts+)−B2BT
2 λ

o
(ts+)+D2

]
+

1
2

λ
oT
(ts+)B1BT

1 λ
o
(ts+)

= λ
oT
(ts−)

[
A1xo

(ts−)−B1BT
1 λ

o
(ts−)+D1

]
+

1
2

λ
oT
(ts−)B1BT

1 λ
o
(ts−)

(50)
or

λ
oT
(ts+)

[
A2xo

(ts+)−
1
2

B2BT
2 λ

o
(ts+)+D2

]
= λ

oT
(ts−)

[
A1xo

(ts−)−
1
2

B1BT
1 λ

o
(ts−)+D1

]
(51)

The results for the parameter values m1 = m2 = 1, k1 =
k2 = 1, c1 = c2 = 1, d1 = d2 = 0.1, the initial condition x0 =[
−0.25 0 −0.15 0

]T and the terminal time T = 4 are
demonstrated in Figure 2.

C. HDP Results from their Relation to the HMP Results

Employing Theorem 3 and the results of Theorem 1
established in the previous part, we find the value function
satisfying the necessary conditions in Theorem 2. To this end
we rewrite equations (39) and (40) in the matrix form[

ẋo

λ̇ o

]
=

[
Ai −BiBT

i
0 −AT

i

][
xo

λ o

]
+

[
Di
0

]
(52)

and denote its state transition matrix by φi. Then the solution
of (52) for t ∈ (ts,T ] can be written as[

xo (t)
λ o (t)

]
= φ2 (t, ts)

[
xo (ts)

λ o (ts+)

]
+
∫ t

ts
φ2 (t,τ)

[
D2 (τ)

0

]
dτ

(53)
and also as[

xo (T )
λ o (T )

]
= φ2 (T, t)

[
xo (t)
λ o (t)

]
+
∫ T

t
φ2 (T,τ)

[
D2 (τ)

0

]
dτ

(54)
Partitioning φ in the form of

φ2 (T, t) =
[

φ2,11 (T, t) φ2,12 (T, t)
φ2,21 (T, t) φ2,22 (T, t)

]
(55)

and denoting[
fd2,1 (t)
fd2,2 (t)

]
:=
∫ T

t

[
φ2,11 (T, t) φ2,12 (T, t)
φ2,21 (T, t) φ2,22 (T, t)

][
D2 (τ)

0

]
dτ

(56)
we can rewrite (54) as

xo (T ) = φ2,11 (T, t)xo (t)+φ2,12 (T, t)λ
o (t)+ fd2,1 (t) (57)

λ
o (T ) = φ2,21 (T, t)xo (t)+φ2,22 (T, t)λ

o (t)+ fd2,2 (t) (58)

Substituting xo (T ) and λ o (T ) from (57) and (58) into (44)
gives

G
(
φ2,11 (T, t)xo (t)+φ2,12 (T, t)λ

o (t)+ fd2,1 (t)− r f
)

= φ2,21 (T, t)xo (t)+φ2,22 (T, t)λ
o (t)+ fd2,2 (t) (59)

or

[Gφ2,11 (T, t)−φ2,21 (T, t)]xo (t)+G fd2,1 (t)−Gr f − fd2,2 (t)

= [φ2,22 (T, t)−Gφ2,12 (T, t)]λ o (t) (60)

that gives

λ
o (t) =

[φ2,22 (T, t)−Gφ2,12 (T, t)]
−1 [Gφ2,11 (T, t)−φ2,21 (T, t)]xo (t)

+[φ2,22 (T, t)−Gφ2,12 (T, t)]
−1 [G fd2,1 (t)−Gr f − fd2,2 (t)

]
(61)

The existence of the inverse in the previous equation is
provided by a theorem of Kalman [32]. Defining

K2 (t):=[φ2,22 (T, t)−Gφ2,12 (T, t)]
−1 [Gφ2,11 (T, t)−φ2,21 (T, t)]

(62)
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and

s2(t):=[φ2,22 (T, t)−Gφ2,12 (T, t)]
−1 [G fd2,1(t)−Gr f− fd2,2(t)

]
(63)

the equation (61) is expressed as

λ
o (t) = K2 (t)xo (t)+ s2 (t) , t ∈ (ts,T ] (64)

with

K2 (T ) = G (65)
s2 (T ) =−Gr f (66)

In particular, for the right limit at ts we have

λ
o (ts+) = K2 (ts)xo (ts)+ s2 (ts) (67)

Similarly, for the solution of (52) for t ∈ [0, ts) we have

xo (ts−) = φ1,11 (ts, t)xo (t)+φ1,12 (ts, t)λ
o (t)+ fd1,1 (t)

(68)
λ

o (ts) = φ1,21 (ts, t)xo (t)+φ1,22 (ts, t)λ
o (t)+ fd1,2 (t)

(69)

with the definition of fd1,1 (t) and fd1,2 (t) for t ∈ [0, ts) being[
fd1,1 (t)
fd1,2 (t)

]
:=
∫ ts

t

[
φ1,11 (ts,τ) φ1,12 (ts,τ)
φ1,21 (ts,τ) φ1,22 (ts,τ)

][
D1 (τ)

0

]
dτ

(70)
Using (42) and the boundary condition (46) we may write

λ
o (ts) = PT

λ
o (ts+)+ pn̂m +Cxo (ts−)

= PT [K2 (ts)xo (ts)+ s2 (ts)]+ pn̂m +Cxo (ts−)
=
[
PT K2 (ts)P+C

]
xo (ts−)+PT s2 (ts)+ pn̂m (71)

Substituting xo (ts−) and λ o (ts) from equations (68) and
(69) we get

φ1,21 (ts, t)xo (t)+φ1,22 (ts, t)λ
o (t)+ fd1,2 (t) =[

PTK2 (ts)P+C
][

φ1,11(ts, t)xo(t)+φ1,12(ts, t)λ
o(t)+ fd1,1(t)

]
+PT s2 (ts)+ pn̂m (72)

or [
φ1,22 (ts, t)−

[
PT K2 (ts)P+C

]
φ1,12 (ts, t)

]
λ

o (t)

=
([

PT K2 (ts)P+C
]

φ1,11 (ts, t)−φ1,21 (ts, t)
)

xo (t)

+
[
PTK2 (ts)P+C

]
fd1,1 (t)− fd1,2 (t)+PT s2 (ts)+ pn̂m

(73)

With the definition of

K1 (t) :=
[
φ1,22 (ts, t)−

[
PT K2 (ts)P+C

]
φ1,12 (ts, t)

]−1([
PT K2 (ts)P+C

]
φ1,11 (ts, t)−φ1,21 (ts, t)

)
(74)

and

s1 (t) :=
[
φ1,22 (ts, t)−

[
PT K2 (ts)P+C

]
φ1,12 (ts, t)

]−1([
PT K2 (ts)P+C

]
fd1,1 (t)− fd1,2 (t)+PT s2 (ts)+ pn̂m

)
(75)

it is concluded that

λ
o (t) = K1 (t)xo (t)+ s1 (t) , t ∈ [0, ts) (76)

Note that the following relations hold by the definitions
of Ki (t) and si (t):

K1 (ts) = PT K2 (ts)P+C (77)

s1 (ts) = PT s2 (ts)+ pn̂m (78)

Taking the time derivative of (64) and (76) it can be shown
that

K̇i = KiBiBT
i Ki−KiAi−AT

i Ki (79)

ṡi =−
(
AT

i −KiBiBT
i
)

si−KiDi (80)

From equation (23) and the result of Theorem 3 the
gradient of the value function is equal to the adjoint process
and hence

V (t,q2,x,0) =
1
2

xT K2 (t)x+ s2 (t)
T x+α2 (t) (81)

where from Theorem 2 and the terminal condition (19),
α2 (T ) should satisfy

α2 (T ) =
1
2

DT
2 D2 (82)

From Theorem 2 and the HJB equation (18) we must have

1
2

xT K̇2x+ ṡ2
T x+ α̇2 +

1
2
(K2x+ s2)

T B2BT
2 (K2x+ s2)

+(K2x+ s2)
T (A2x−B2BT

2 [K2x+ s2]+D2
)
= 0 (83)

which results in

1
2

xT (K̇2 +K2A2 +AT
2 K2−K2B2BT

2 K2
)

x(
ṡ2 +AT

2 s2−K2B2BT
2 s2 +K2D2

)T
x

+ α̇2−
1
2

sT
2 B2BT

2 s2 + sT
2 D2 = 0 (84)

and hence (see also (79) and (80))

α̇2 =
1
2

sT
2 B2BT

2 s2− sT
2 D2, t ∈ (ts,T ] (85)

Similarly

V (t,q1,x,1) =
1
2

xT K1 (t)x+ s1 (t)
T x+α1 (t) (86)

concludes that

α̇1 =
1
2

sT
1 B1BT

1 s1− sT
1 D1, t ∈ [0, ts) (87)

which, together with (85), gives

α̇i =
1
2

sT
i BiBT

i si− sT
i Di (88)

For determining the boundary condition for α (t) at ts we
consider the boundary condition (20) for V that states

V (ts−,q1,x,1) =V (ts+,q2,Px,0)+
1
2

xTCx (89)

i.e.

1
2

xT K1 (ts−)x+ s1 (ts−)T x+α1 (ts−)

=
1
2

xT [PT K2 (ts+)P+C
]

x+ s2 (ts+)T Px+α2 (ts+) (90)
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From the boundary conditions for Ki and si in (77) and
(78) we get

α1 (ts−)+ pn̂T
mx = α2 (ts+) (91)

but since for all x ∈ {x : m(x) = 0}

n̂T
mx =

[
x2 (ts−) 0 x4 (ts−) 0

]
0
x2
0
x4

= 0 (92)

the boundary condition for α (t) at ts becomes

α1 (ts−)≡ α1 (ts) = α2 (ts)≡ α2 (ts+) (93)

Hence, the value function is constructed in the form
of the equations (81) and (86) where Ki, si and αi are
respectively the solutions of (79), (80) and (88) with the
terminal conditions (65), (66) and (82) and the boundary
conditions (77), (78) and (93). �

VII. CONCLUDING REMARKS

The generalization of the hybrid optimal control theory
to include the class of hybrid systems with low dimensional
switching manifolds makes possible the modelling and op-
timal control of a larger class of hybrid systems including
collision and rendez-vous problems. In general, for N masses
to meet in the same location simultaneously, the rendez-
vous point corresponds to a codimesion d N submanifold
in R2dN , the state space corresponding to the dynamics of
the N masses in the d-dimensional physical space, i.e. 3N
constraints for the 3 dimensional space, 2N constraints for
planar motions and N constraints for linear motions.
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