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Abstract— Hybrid optimal control problems are studied for
systems where autonomous and controlled state jumps are
allowed at the switching instants and in addition to running
costs, switching between discrete states incurs costs. A key
aspect of the analysis is the relationship between the Hamilto-
nian and the adjoint process in the Minimum Principle before
and after the switching instants as well as the relationship
between adjoint processes in the Minimum Principle and the
gradient of the value function. In this paper we prove that
under certain assumptions the adjoint process in the Hybrid
Minimum Principle and the gradient of the value function
in Hybrid Dynamic Programming are governed by the same
dynamic equation and have the same boundary conditions and
hence are identical to each other.

I. INTRODUCTION

There is now an extensive literature on the optimal control
of hybrid systems (see e.g. [1]–[11]). On one hand, the gen-
eralizations of the Pontryagin Maximum Principle (PMP),
which is a necessary condition for optimality, results in the
Hybrid Minimum Principle (HMP) [1]–[3], [6], [7], [12]–
[14]. Namely, given the initial conditions and a sequence
of autonomous or controlled switchings, the HMP gives
necessary conditions for the optimality of the trajectory
and the control inputs of a given hybrid system. These
conditions are expressed in terms of the minimization of
the distinct Hamiltonians defined along the sequence of the
discrete states of the hybrid trajectory. A feature of special
interest is the boundary conditions on the adjoint processes
and the Hamiltonian functions at autonomous and controlled
switching times and states; these boundary conditions may be
viewed as a generalization of the optimal control case of the
Erdmann-Weierstrass conditions of the calculus of variations
[15].

On the other hand, Dynamic Programming (DP) provides
sufficient conditions for optimality based upon the Dynamic
Programming Principle [16], [17]. With the exception of
Hybrid Dynamic Programming (HDP) for regional dynamic
systems [18], [19], the discretized version of HDP for
continuous systems [20], [21] and the verification theorem in
[22], the current generalizations of Dynamic Programming
to hybrid systems are formulated for systems that undergo
jumps at autonomous and controlled switching times [8]–
[11]. However, the assumed HDP jump condition [8]–[11],
which apparently is restrictive due to the requirement of the
system to jump to a certain set, does not appear in the HMP
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formulation. In past works of the authors (see [23], [24]) the
results of the HMP were given in the general case where
autonomous and controlled state jumps are allowed at the
switching instants and, in addition to running costs, it is
assumed that switching between discrete states incurs costs.
Moreover, it was stated in [24] that under certain conditions,
the adjoint process in the Minimum Principle and the gradi-
ent of the value function in Dynamic Programming are equal
and an analytic example was provided. In this paper, we
give a proof for this relationship by showing that the adjoint
process in the Hybrid Minimum Principle and the gradient
of the value function in Hybrid Dynamic Programming are
governed by the same dynamic equation and have the same
boundary conditions and hence are identical to each other.

II. HYBRID SYSTEMS

A hybrid system (structure) H is a septuple

H= {H := Q×Rn, I := Σ×U,Γ,A,F,Ξ,M } (1)

where the symbols in the expression are defined as below.
A0: Q = {1,2, ..., |Q|} ≡

{
q1,q2, ...,q|Q|

}
, |Q| < ∞ , is a

finite set of discrete states (components).
H :=Q×Rn is called the (hybrid) state space of the hybrid

system H.
I := Σ×U is the set of system input values, where |Σ|<∞.
Γ : H ×Σ→ H is a time independent (partially defined)

discrete state transition map which is the identity on the
second (Rn) component.

Ξ : H ×Σ→ H is a time independent (partially defined)
continuous state jump transition map which is the identity
on the first (Q) component. All ξσ ∈ Ξ are assumed to be
injective and continuously differentiable in the continuous
valued state x.

A : Q×Σ→ Q denotes both a finite automaton and the
automaton’s associated transition function on the state space
Q and event set Σ, such that for a discrete state q ∈ Q only
the discrete controlled and uncontrolled transitions into the
q-dependant subset {A(q,σ) ,σ ∈ Σ} ⊂ Q occur under the
projection of Γ on its Q components: Γ : Q×Rn×Σ→H|Q.
In other words, Γ can only make a discrete state transition
in a hybrid state (q,x) if the automaton A can make the
corresponding transition in q.

U ⊂ Rm is the set of admissible input control values,
where U is an open bounded set in Rm which necessarily
has compact closure Ū .

U (U) := L∞ ([t0,T∗) ,U), which is the set of all measur-
able functions that are bounded up to a set of measure zero
on [t0,T∗) ,T∗ < ∞. The boundedness property necessarily
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holds since admissible input functions take values in the open
bounded set U .

F is an indexed collection of vector fields
{

fq
}

q∈Q
such that fq ∈Ck (Rn×U → Rn) ,k≥ 1, satisfies a uniformx

Lipschitz condition, i.e. there exists L f < ∞ such that∥∥ fq (x1,u)− fq (x2,u)
∥∥ ≤ L f ‖x1− x2‖, x1,x2 ∈ Rn, u ∈ U ,

j ∈ Q. We also assume that there exists K f < ∞ such that

max
q∈Q

(
sup
u∈U

(∥∥ fq (0,u)
∥∥))≤ K f .

M =
{

m̃k
α : α ∈ Q×Q,k ∈ Z+

}
denotes a collection

of switching manifold components, also called guard
components, such that, for any ordered pair α = (p,q),
m̃k

α is a smooth, i.e. C∞ codimension 1 sub-manifold of
Rn, possibly with boundary ∂ m̃k

α , described locally by
m̃k

α =
{

x : m̃k
α (x) = 0

}
. It is assumed that m̃k

α ∩ m̃k
β
= /0, for

all α,β ∈ Q×Q,α 6= β , k, l ∈ Z+, except in those cases
where, for some j, m̃ j

α is identified with its reverse ordered
version m̃ j

ᾱ
giving m̃ j

α = m̃ j
ᾱ

. �

A1: The initial state h0 := (q0,x(t0)) ∈ H is such that
mq0,q j (x0) 6= 0, for all q j ∈ Q. �

III. HYBRID OPTIMAL CONTROL PROBLEM

A2: Let
{

lq
}

q∈Q , lq ∈ Cnl (Rn×U → R+) ,nl ≥
1, be a family of cost functions; {cσ}σ∈Σ

∈
Cnc (Rn×Σ→ R+) ,nc ≥ 1, be a family of switching
cost functions; and g ∈ Cng (Rn→ R+) ,ng ≥ 1, be a
terminal cost function satisfying the following:

There exists Kl < ∞ and 1≤ γl < ∞ such that
∣∣lq (x,u)∣∣≤

Kl
(
1+‖x‖γl

)
, x ∈ Rn,u ∈U,q ∈ Q.

There exists Kc < ∞ and 1 ≤ γc < ∞ such that |cσ (x)| ≤
Kc
(
1+‖x‖γc

)
, x ∈ Rn,σ ∈ Σ.

There exists Kg < ∞ and 1 ≤ γg < ∞ such that
|g(x)| ≤ Kg

(
1+‖x‖γg

)
, x ∈ Rn. �

Consider the initial time t0, final time t f <∞, initial hybrid
state h0 = (q0,x0), and the upper-bound of maximum number
of swithchings L̄ < ∞. Let

SL =
{
(t0, id) ,

(
t1,σq0q1

)
, . . . ,

(
tL,σqL−1qL

)}
≡ {(t0,q0) ,(t1,q1) , . . . ,(tL,qL)}

be a hybrid switching sequence and let IL := (SL,u) ,u ∈U ,
where U = U o or U = U cpt, be a hybrid input trajectory
which subject to A0 and A1 results in a (necessarily unique)
hybrid state process (see [3]) and is such that L + 2 < L̄
controlled and autonomous switchings occur on the time
interval [t0,T (IL)], where T (IL) ≤ t f . In this paper, the
number of switchings L is held fixed and we denote the
corresponding set of inputs by {IL}. Define the hybrid cost
function on

[
t0, t f

]
as

J
(
t0, t f ,h0,L; IL

)
:=

∑
L
i=0
∫ ti+1

ti lqi (xqi (s) ,u(s))ds

+∑
L
j=1 cσq j−1q j

(
t j,xq j−1 (t j−)

)
+g
(
xqL

(
t f
)) (2)

subject to

ẋqi (t) = fqi (xqi (t) ,u(t)) ,a.e. t ∈ [ti, ti+1) ,

h0 =
(
q0,xq0 (t0)

)
= (q0,x0) ,

xq j (t j) = ξ

(
xq j−1 (t j−)

)
≡ ξ

(
lim
t↑t j

xq j−1 (t)
) (3)

where 0≤ i≤ L, 1≤ j≤ L, tL+1 = t f < ∞ and L+2≤ L̄ < ∞.
Then the Hybrid Optimal Control Problem (HOCP) is to

find the infimum Jo
(
t0, t f ,h0,L

)
over the family of input

trajectories {IL}, i.e.

Jo (t0, t f ,h0,L
)
= inf

IL
J
(
t0, t f ,h0,L; IL

)
(4)

IV. HYBRID MINIMUM PRINCIPLE

Theorem 1 [25] Consider the hybrid system H together
with the assumptions A0, A1 and A2 as above and the HOCP
(4). In addition, assume that in any discrete state q j ∈Q the
system (3) is locally state-to-state controllable on any time
interval. Define the family of system Hamiltonians by

Hq j (x,λ ,u) = λ
T fq j (x,u)+ lq j (x,u) (5)

x,λ ∈ Rn,u ∈ U,q j ∈ Q . Assume that the optimal control
uo is such that uo (t) ∈ U a.e. t ∈

[
t0, t f

]
and consider the

optimal value for the cost function J
(
t0, t f ,h0,L; IL

)
Jo
(
t0, t f ,h0,L

)
=

∑
L
i=0
∫ ti+1

s=ti lqi

(
xo

qi
(s) ,uo (s)

)
ds

+∑
L
i=1 cσqi−1qi

(
ti,xo

qi−1
(ti−)

)
+g
(
xo

qL

(
t f
)) (6)

Then along the optimal trajectory qo,xo, there exists an
adjoint process λ o for which

λ̇
o =−

∂Hqo

∂x
(xo,λ o,uo) , a.e. t ∈

[
t0, t f

]
(7)

λ
o (t f

)
= ∇g

(
xo (t f

))
, (8)

and

λ
o (t j−)≡ λ

o (t j) = ∇ξ
T

λ
o (t j+)+ p∇m+∇cσ , (9)

with p ∈ R when t j indicates the time of an autonomous
switching, and p = 0 when t j indicates the time of a con-
trolled switching. Moreover, the Hamiltonian is minimized
with respect to the control input

H (qo,xo,λ o,σo,uo)≤ H (qo,xo,λ o,σo,u) (10)

for all u ∈ U ; and at a switching time t j the Hamiltonian
satisfies

Hq j−1 (t j−) = Hq j (t j+)+ p
∂m
∂ t

+
∂cσ

∂ t
(11)

�
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V. HYBRID DYNAMIC PROGRAMMING

In Hybrid Dynamic Programming the value function V
evaluated at a time τ ∈

[
t0, t f

]
and the state h = (q,x) is

defined as the optimal cost-to-go for the hybrid system (1)
with the performance function (6). For simplicity of notation,
in the rest of the paper and unless otherwise stated, we use x
instead of xo in order to indicate that x refers to the general
solution of the corresponding HOCP passing through it. Then
the Hybrid Dynamic Programming Theorem [25] states that
for q j ∈ Q which corresponds to a time interval

(
t j−1, t j

]
,

and for any τ ∈
(
t j−1, t j

]
, it is the case that

V (τ,q,x(τ) ,L− j) = infu{
∫ t j

τ lq j−1 (x,u)ds
+∑

L
i= j
∫ ti+1

ti lqi (x,u)ds
+∑

L
i= j cσqi−1qi

(
ti,xqi−1 (ti−)

)
+g
(
xqL

(
t f
))
}

(12)

Along an optimal trajectory q,x,u the left limit of the value
function will be denoted by

V
(
t j−,q j−1,x,L− j+1

)
= lim

t↑t j
V
(
t,q j−1,x,L− j+1

)
(13)

VI. THE RELATIONSHIP BETWEEN THE MINIMUM
PRINCIPLE AND DYNAMIC PROGRAMMING

It is known that in classical optimal control the gradient of
the value function in Dynamic programming is equal to the
adjoint process in the Minimum Principle (or the negative
of the co-state in the Pontryagin Maximum Principle)
under certain assumptions [17], [26]. In this section, we
prove in Theorem 2 that this relationship holds almost
everywhere between the gradient of the value function
in Hybrid Dynamic Programming and the adjoint process
in the Hybrid Minimum Principle. Before proceeding to
Theorem 2, we shall give a formal definition of Mayer
HOCP.

Definition 1. Mayer Hybrid Optimal Control Problem (i):
Define the extended continuous state

x̂q :=
[

xq
zq

]
(14)

such that the extended vector fields become

˙̂xq = f̂q (x̂,u) :=
[

fq (x,u)
lq (x,u)

]
(15)

with the initial condition

ĥ0 =
(
q0, x̂q0 (t0)

)
=

(
q0,

[
x0
0

])
(16)

and the switching boundary condition governed by the ex-
tended jump function defined as

x̂q j (t j) = ξ̂(i)

(
x̂q j−1 (t j−)

)
:=

[
ξ

(
xq j−1 (t j−)

)
zq j−1 (t j−)

]
(17)

Then the Bolza HOCP (2) turns into the Mayer HOCP (i)
with

J
(
t0, t f , ĥ0,L; IL

)
:= ĝ

(
x̂qL

(
t f
))

+
L

∑
i=1

cσ

(
ti,xqi−1 (ti−)

)
(18)

where ĝ
(
x̂qL

(
t f
))

= z
(
t f
)
+g
(
x
(
t f
))

�

Definition 2. Mayer Hybrid Optimal Control Problem (ii):
Define the extended state x̂q as (14) and the extended vector
field f̂q as (15) with the initial condition (16); and define the
extended jump function as

x̂(t j) = ξ̂(ii) (x̂(t j−)) :=
[

ξ (x(t j−))
z(t j−)+ c(x(t j−))

]
(19)

Then the Bolza HOCP (2) turns into the Mayer HOCP (ii)
with

J
(
t0, t f , ĥ0,L; IL

)
:= ĝ

(
x̂qL

(
t f
))

(20)

where ĝ
(
x̂qL

(
t f
))

= z
(
t f
)
+g
(
x
(
t f
))

�

Lemma 1 The extended adjoint processes in definitions
(i) and (ii) of the Mayer HOCP are both equal to

λ̂ (t) =
[

λ (t)
1

]
(21)

where λ (t) is the adjoint process for the Bolza HOCP (2).
�

Proof: For both definitions the extended Hamiltonian
is

Ĥ = λ̂
T f̂q (x̂,u) =

[
λ T λn+1

][ fq (x,u)
lq (x,u)

]
(22)

The extended adjoint process dynamics is then

˙̂
λ =− ∂ Ĥ

∂ x̂ =

[
− ∂ Ĥ

∂x
− ∂ Ĥ

∂ z

]
=

[
− ∂ Ĥ

∂x
0

]
=

[
− ∂

∂x

(
λ T fq (x,u)+ lq (x,u)

)
0

] (23)

with the terminal condition

λ̂
(
t f
)
= ∇x̂ĝ

(
x̂
(
t f
))

=

[
∇xĝ

(
x̂
(
t f
))

∇zĝ
(
x̂
(
t f
)) ]= [ ∇xg

(
x
(
t f
))

1

]
(24)

For definition (i) the boundary conditions for the extended
adjoint process is

λ̂ (t j−)≡ λ̂ (t j) = ∇x̂ξ̂(i)

∣∣∣T
x̂(t j−)

λ̂ (t j+)

+p ∇x̂m̂|x(t j−) + ∇x̂ĉ|x(t j−)

(25)

which is

λ̂ (t j−)≡ λ̂ (t j) =

 ∂ ξ̂(i)
∂x

∂ ξ̂(i)
∂ z

T

λ̂ (t j+)+ p∇x̂m̂+∇x̂ĉ

=


∂ξ1
∂x1

· · · ∂ξ1
∂xn

∂ξ1
∂ z

...
. . .

...
...

∂ξn
∂x1

· · · ∂ξn
∂xn

∂ξn
∂ z

∂ z
∂x1

· · · ∂ z
∂xn

∂ z
∂ z


T

λ̂ (t j+)+ p∇x̂m̂+∇x̂ĉ

=


∂ξ1
∂x1

· · · ∂ξ1
∂xn

0
...

. . .
...

...
∂ξn
∂x1

· · · ∂ξn
∂xn

0
0 · · · 0 1


T

λ̂ (t j+)+

[
p∇m+∇c

0

]

(26)
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This gives

λ̂ (t j−) =
[

λ (t j−)
λn+1 (t j−)

]
≡
[

λ (t j)
λn+1 (t j)

]
=

[
∇ξ T 0

0 1

][
λ (t j+)

λn+1 (t j+)

]
+

[
p∇m+∇c

0

]
=

[
∇ξ |Tx(t j−)λ (t j+)+∇c+ p∇m

λn+1 (t j+)

] (27)

From the zero dynamics for λn+1 (Eq. (23)) with the
terminal condition being equal to 1 (Eq. (24)) and continuity
conditions at switching times (Eq. (27)) it is concluded that
λn+1 (t) = 1 for all t ∈

[
t0, t f

]
.

Since in definition (ii) switching costs are embedded in
the extended jump functions, extended switching costs are
zero giving the boundary conditions (9) as

λ̂ (t j−)≡ λ̂ (t j) = ∇ξ̂(ii)

∣∣∣T
x̂(t j−)

λ̂ (t j+)+ p ∇m̂|x̂(t j−) (28)

which is

λ̂ (t j−)≡ λ̂ (t j) =

 ∂ ξ̂(ii)
∂x

∂ ξ̂(ii)
∂ z

T

λ̂ (t j+)+ p∇m̂

=


∂ξ1
∂x1

· · · ∂ξ1
∂xn

∂ξ1
∂ z

...
. . .

...
...

∂ξn
∂x1

· · · ∂ξn
∂xn

∂ξn
∂ z

∂ [z+c]
∂x1

· · · ∂ [z+c]
∂xn

∂ [z+c]
∂ z


T

λ̂ (t j+)+ p∇m̂

=


∂ξ1
∂x1

· · · ∂ξ1
∂xn

0
...

. . .
...

...
∂ξn
∂x1

· · · ∂ξn
∂xn

0
∂c
∂x1

· · · ∂c
∂xn

1


T

λ̂ (t j+)+ p
[

∇m
0

]

(29)
This gives

λ̂ (t j−) =
[

λ (t j−)
1

]
≡
[

λ (t j)
1

]
=

[
∇ξ T ∇c

0 1

][
λ (t j+)

1

]
+ p

[
∇m
0

]
=

[
∇ξ |Tx(t j−)λ (t j+)+∇c+ p∇m

1

] (30)

which is the same as Eq. (27). The adjoint processes for both
definitions of the Mayer HOCP are governed by the same
dynamics (23) and specified by the same terminal condition
(24) and the same boundary conditions (27) and (30); hence
the lemma is proved.

Theorem 2 Under the assumptions of Theorem 1, with the
additional assumptions that the value function V , fq and lq
are twice continuously differentiable for all q∈Q, the adjoint
process for the optimal switching sequence and the gradient
of the value function are governed by the same differential
equations, i.e.

d
dt

λ
o =−

(
λ

oT ∂ fqo

∂x
+

∂ lqo

∂x

)
(xo,uo) (31)

and
d
dt

∇xV =−
(

∇xV T ∂ fqo

∂x
+

∂ lqo

∂x

)
(xo,uo) (32)

and have the same boundary conditions, i.e.

λ
o (t f

)
= ∇g

(
xo (t f

))
(33)

and

λ
o (t j−) = ∇ξ |Tx(t j−)λ

o (t j+)+ p ∇m|x(t j−) + ∇c|x(t j−)
(34)

for the adjoint process, and

∇xV
(
t f ,qo,x

(
t f
)
,0
)
= ∇g

(
xo (t f

))
(35)

and
∇V
(
t j−,q j−1,x(t j−) ,L− j+1

)
= ∇ξ |Tx(t j−)∇V (t j+,q j,x(t j+) ,L− j)

+p ∇m|x(t j−) + ∇c|x(t j−)

(36)

for the gradient of the value function. Hence, from the
uniqueness resulting from continuous differentiability of the
differential equations (31) and (32), the adjoint process and
the gradient of the value function are almost everywhere
identical on an optimal trajectory, i.e.

λ
o = ∇xV a.e. t ∈

[
t0, t f

]
(37)

�
Proof: Eq. (31) is a direct result of the HMP in Theo-

rem 1. The proof of Eq. (32) follows the same procedure as in
[26]. Under the assumption of the theorem, the value function
V is continuously differentiable locally around xo

qo (t) a.e.
t ∈
[
t j, t j+1

]
for j = 0,1, · · · ,L, thus it satisfies the Hamilton-

Jacobi-Bellman (HJB) equation

∇tV +min
u

{
lqo (x,u)+

〈
∇xV, fqo (x,u)

〉}
= 0 (38)

with the terminal condition

V
(
t f ,qo,x

(
t f
)
,0
)
= g

(
xo (t f

))
(39)

In particular, on an optimal hybrid trajectory (qo,xo) which
is minimized locally with the optimal control input (σo,uo);
for all u ∈U (

∇tV + lqo +
〈
∇xV, fqo

〉)
(xo,uo)

≤
(
∇tV + lqo +

〈
∇xV, fqo

〉)
(xo,u)

(40)

must hold, and (see [26]) for all x in a neighborhood of xo

we have (
∇tV + lqo +

〈
∇xV, fqo

〉)
(xo,uo)

≤
(
∇tV + lqo +

〈
∇xV, fqo

〉)
(x,uo)

(41)

i.e.
xo = argmin

x

(
∇tV + lqo +

〈
∇xV, fqo

〉)
(x,uo) (42)

Assuming that the argument in (42) is continuously dif-
ferentiable in x, Eq. (42) is equivalent to

∂

∂x

(
∇tV + lqo +

〈
∇xV, fqo

〉)
(x,uo) = 0 (43)
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on the optimal trajectory xo. Since V , fqo and lqo are assumed
to be twice continuously differentiable we may take the
partial derivative inside and write

∂ 2V
∂x∂ t

+
∂ lqo

∂x
+

〈
∂ 2V
∂x2 , fqo

〉
+

〈
∂V
∂x

,
∂ fqo

∂x

〉
= 0 (44)

But from the definition of the total derivative, we have

d
dt

∂V
∂x

=
∂ 2V
∂ t∂x

+

〈
∂ 2V
∂x2 , fqo

〉
=

∂ 2V
∂x∂ t

+

〈
∂ 2V
∂x2 , fqo

〉
(45)

where the second equality holds due to the fact that V is
twice continuously differentiable. Thus from (44) and (45)
we get

d
dt

∂V
∂x

=−
(

∂ lqo

∂x
+

〈
∂V
∂x

,
∂ fqo

∂x

〉)
(46)

which gives (32).
For the terminal and boundary conditions, we note that

Eq. (33) and Eq. (34) are results of the HMP and Eq. (35)
is simply derived by taking the gradient of (39). To show
the boundary condition (36) for the value function, consider
the Mayer HOCP equivalent to the HOCP for (6) with the
switching cost included in the extended jump function as
in Definition 2 and Eq. (19). For simplicity of notation we
remove the hat ( ˆ ) symbol from the letter symbols in the
Mayer representation of the system and simply write x,λ ,ξ ,
etc. instead of x̂, λ̂ , ξ̂ , etc.

For t j, the jth switching time, assume an autonomous
switching event with its corresponding switching manifold
m≡ mq j−1q j (x) = 0. The analysis for the controlled switch-
ing case is simply performed by removing the constraint
condition given by m. Consider a reference trajectory x(t)
that intersects the switching manifold at t j and an adjacent
trajectory x′ (t) that intersects the switching manifold at time
t j + δ t as depicted in Fig. 1. The choice of x′ is such that
‖δx(t)‖ := ‖x′ (t)− x(t)‖ < ε , t ∈ [t0, t j)∪

[
t j +δ t, t f

]
with

ε being arbitrarily small. The existence of such choices
are insured by the property of continuous dependence on
initial conditions [3]. Notice that the choice of ε and δ t are
independent.

Because the switching costs are embedded in the extended
jump functions, the following equalities hold at the times of
switching

V
(
t j−,q j−1,x(t j−) ,L− j+1

)
=V (t j+,q j,x(t j+) ,L− j) (47)

and

V
(
t j +δ t−,q j−1,x′ (t j +δ t−) ,L− j+1

)
=V (t j +δ t+,q j,x′ (t j +δ t+) ,L− j) (48)

The following equations hold due to representation of the
system in the Mayer format

V (t j+,q j,x(t j+) ,L− j)
=V (t j +δ t+,q j,x(t j +δ t+) ,L− j) (49)

and

V
(
t j−,q j−1,x′ (t j−) ,L− j+1

)
=V

(
t j +δ t−,q j−1,x′ (t j +δ t−) ,L− j+1

) (50)

Fig. 1. The choice of trajectories for variation of the value function

Eq. (47) and (49) give

V
(
t j−,q j−1,x(t j−) ,L− j+1

)
=V (t j +δ t+,q j,x(t j +δ t+) ,L− j) (51)

and Eq. (48) and (50) give

V
(
t j−,q j−1,x′ (t j−) ,L− j+1

)
=V (t j +δ t+,q j,x′ (t j +δ t+) ,L− j) (52)

Subtracting (51) from (52) and an application of Taylor
series expansion yields〈

∇V
(
t j−,q j−1,x(t j−) ,L− j+1

)
,δx(t j−)

〉
=
〈
∇V (t j +δ t+,q j,x(t j +δ t+) ,L− j) ,δx(t j +δ t)

〉
+O

(
ε2
)

(53)
The following exact relations hold according to the dy-

namics and jump maps governing the system’s trajectory (see
also Fig. 1)

xq j (t j +δ t+) = xq j (t j)+d2

= ξ

(
xq j−1 (t j−)

)
+d2

(54)

and
x′q j

(t j +δ t+) = ξ

(
x′q j−1

(t j +δ t−)
)

= ξ

(
x′q j−1

(t j−)+d1

) (55)

These equations give

δx(t j +δ t+) = x′q j
(t j +δ t)− xq j (t j +δ t)

= ∇ξ (δx(t j−)+d1)−d2 +O
(
ε2
) (56)

where

d1 =
−
〈
δx(t j−) ,∇m

〉
〈 f1,∇m〉

f1 +O
(
ε

2)
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and

d2 =
−
〈
δx(t j−) ,∇m

〉
〈 f1,∇m〉

f2 +O
(
ε

2)
This gives Eq. (56) as

δx(t j +δ t+) = ∇ξ δx(t j−)
+
〈δx(t j−),∇m〉
〈 f1,∇m〉 ( f2−∇ξ f1)+O

(
ε2
) (57)

Substituting (57) in (53) gives〈
∇V
(
t j−,q j−1,x(t j−) ,L− j+1

)
,δx(t j−)

〉
=
〈
∇V (t j +δ t,q j,x(t j +δ t) ,L− j) ,∇ξ δx(t j−)

〉
+

〈
∇V (t j +δ t,q j,x(t j +δ t) ,L− j)

,
〈δx(t j−),∇m〉
〈 f1,∇m〉 ( f2−∇ξ f1)

〉 (58)

Denoting

γ =

〈
δx(t j−) ,∇m

〉
〈 f1,∇m〉

(59)

and noting that〈
∇V (t j +δ t,q j,x(t j +δ t) ,L− j) ,∇ξ δx(t j−)

〉
=〈

∇ξ T ∇V (t j +δ t,q j,x(t j +δ t) ,L− j) ,δx(t j−)
〉 (60)

and 〈
∇V (t j +δ t,q j,x(t j +δ t) ,L− j) ,γ ( f2−∇ξ f1)

〉
=
〈
∇V (t j +δ t,q j,x(t j +δ t) ,L− j) ,( f2−∇ξ f1)

〉
γ

= p
〈
∇m,δx(t j−)

〉
(61)

with

p :=
〈

∇V (t j +δ t,q j,x(t j +δ t) ,L− j) ,
( f2−∇ξ f1)

〈 f1,∇m〉

〉
(62)

we can write Eq. (58) as〈
∇V
(
t j−,q j−1,x(t j−) ,L− j+1

)
,δx(t j−)

〉
=
〈
∇ξ T ∇V (t j +δ t,q j,x(t j +δ t) ,L− j) ,δx(t j−)

〉
+
〈

p∇m,δx(t j−)
〉 (63)

Since (63) holds for every choice of δx(t j−)∈ X̂ we must
have

∇V
(
t j−,q j−1, [x+δx] (t j−) ,L− j+1

)
=

∇ξ T ∇V (t j +δ t,q j,x(t j +δ t) ,L− j)+ p∇m (64)

Letting δ t→ 0, Eq. (64) becomes equivalent to the bound-
ary condition (28) for the adjoint process. Thus the boundary
conditions for ∇V ≡ ∇x̂V and λ̂ o are the same. Employing
Lemma 1 the boundary condition (64) can be restated as in
(36).
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