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Abstract: Hybrid optimal control problems are studied for systems where autonomous and controlled
state jumps are allowed at the switching instants and in addition to running costs, switching between
discrete states incurs costs. Key aspects of the analysis are the relationship between the Hamiltonian
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well as the relationship between the adjoint process in the Hybrid Minimum Principle and the gradient
process of the value function in Hybrid Dynamic Programming. The results are illustrated through an
analytic example with linear dynamics and quadratic costs.
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1. INTRODUCTION

There is now an extensive literature on the optimal control of
hybrid systems. On one hand, the generalization of the Pon-
tryagin Maximum Principle (PMP) [Pontryagin et al. (1962)]
results in the Hybrid Minimum Principle (HMP) [Clarke and
Vinter (1989a,b); Garavello and Piccoli (2005); Passenberg
et al. (2011); Shaikh and Caines (2007b); Sussmann (1999a,b);
Taringoo and Caines (2011, 2013); Xu and Antsaklis (2004)]
that gives necessary conditions for the optimality of the tra-
jectory and the control inputs of a given hybrid system with
fixed initial conditions and a sequence of autonomous and con-
trolled switchings. These conditions are expressed in terms of
the minimization of the distinct Hamiltonians defined along the
hybrid trajectory of the system corresponding to a sequence
of discrete states and continuous valued control inputs on the
associated time intervals. A feature of special interest in the
Hybrid Minimum Principle is the boundary conditions on the
adjoint processes and the Hamiltonian functions at autonomous
and controlled switching times and states; these boundary con-
ditions may be viewed as a generalization of the optimal control
case of the Weierstrass–Erdmann conditions of the calculus of
variations [Shaikh and Caines (2007a)].

On the other hand, the generalization of Dynamic Programming
[Bellman (1966)] for hybrid systems results in the theory of Hy-
brid Dynamic Programming (HDP) which employs the notion
of the optimal cost to go for the hybrid optimal control problem
as its fundamental notion. Under the assumption of smoothness
of the value function, the Principle of Optimality results in the
celebrated Hamilton-Jacobi-Bellman (HJB) equation of HDP
[Barles et al. (2010); Bensoussan and Menaldi (1997); Branicky
et al. (1998); Caines et al. (2007); Da Silva et al. (2012); Dhar-
matti and Ramaswamy (2005); Hedlund and Rantzer (2002);
Schöllig et al. (2007); Shaikh and Caines (2009)]. In the case
of non-smooth value functions, the so-called viscosity solutions
give a general class of solutions to the HJB equation [Barles

et al. (2010); Bensoussan and Menaldi (1997); Dharmatti and
Ramaswamy (2005)].

In past work of the authors (see [Pakniyat and Caines (2013,
2014a,c)]) the results of the Hybrid Minimum Principle are
given for the general class of hybrid optimal control problems
with autonomous and controlled state jumps and in the presence
of a large range of running, terminal and switching costs. It is
further proved in [Pakniyat and Caines (2014c)] that the adjoint
process in the HMP and the gradient of the value function in
HDP are governed by the same dynamic equation and have the
same boundary conditions and hence are identical to each other.
An illustrative example was provided in [Pakniyat and Caines
(2014a)] with scalar nonlinear dynamics equations and nonlin-
ear costs. This paper elaborates the HMP - HDP relationship
once more by demonstrating the analytical construction of the
value function from its gradient process in the case of hybrid
optimal control problems with linear dynamics and quadratic
costs.

2. HYBRID OPTIMAL CONTROL PROBLEMS

For the hybrid optimal control problems (HOCP) defined in
[Pakniyat and Caines (2013, 2014a,b,c)], consider the infimiza-
tion of the following hybrid cost

J
(
t0, t f ,h0,L; IL

)
:=

L

∑
i=0

∫ ti+1

ti
lqi (xqi (s) ,u(s))ds

+
L

∑
j=1

cσq j−1q j

(
xq j−1 (t j−)

)
+g
(
xqL

(
t f
))

(1)

subject to the dynamics
ẋqi (t) = fqi (xqi (t) ,u(t)) , a.e. t ∈ [ti, ti+1) , (2)

where 0≤ i≤ L and tL+1 = t f < ∞, with the initial condition

h0 =
(
q0,xq0 (t0)

)
= (q0,x0) , (3)
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and the switching jumps maps

xq j (t j) = ξ

(
xq j−1 (t j−)

)
≡ ξ

(
lim
t↑t j

xq j−1 (t)
)

(4)

where 1≤ j ≤ L.

�

3. HYBRID MINIMUM PRINCIPLE

Theorem 1 [Pakniyat and Caines (2014a,b,c, 2015)] Define the
family of system Hamiltonians by

Hq j (x,λ ,u) = λ
T fq j (x,u)+ lq j (x,u) (5)

x,λ ∈ Rn,u ∈ U,q j ∈ Q. Then along the optimal trajectory
qo,xo, there exists an adjoint process λ o such that

ẋo =
∂Hqo

∂λ
(xo,λ o,uo) , (6)

λ̇
o =−

∂Hqo

∂x
(xo,λ o,uo) (7)

almost everywhere t ∈
[
t0, t f

]
with

xo (t0) = x0, (8)
xo (t j) = ξ (xo (t j−)) , (9)

λ
o (t f

)
= ∇g

(
xo (t f

))
, (10)

λ
o (t j−)≡ λ

o (t j) = ∇ξ
T

λ
o (t j+)+ p∇m+∇cσ , (11)

where p ∈ R when t j indicates the time of an autonomous
switching, and p = 0 when t j indicates the time of a controlled
switching.

Moreover, the Hamiltonian is minimized with respect to the
control input

Hqo (xo,λ o,uo)≤ Hqo (xo,λ o,u) (12)
for all u∈U ; and at a switching time t j the Hamiltonian satisfies

Hq j−1 (t j−)≡ Hq j−1 (t j) = Hq j (t j)≡ Hq j (t j+) (13)
�

4. HYBRID DYNAMIC PROGRAMMING

Consider the hybrid system (2) and the HOCP for the hybrid
cost (1). For simplicity of notation, in the rest of the paper and
unless otherwise stated, we use x instead of xo in order to in-
dicate that x refers to the general solution of the corresponding
HOCP passing through it. We adapt the same notation for qo,
to

j , etc.

At a time t ∈
[
t0, t f

]
that corresponds to some 1 ≤ j ≤ L+ 1

such that t ∈
(
t j−1, t j

]
and for the state h = (q,x) in the hybrid

state space, the cost to go function is formed as

J
(
t, t f ,q,x,L− j+1; IL− j+1

)
=
∫ t j

t
lq (x,u)ds+

L

∑
i= j

cσqi−1qi

(
ti,xqi−1 (ti−)

)
+

L

∑
i= j

∫ ti+1

ti
lqi (xqi (s) ,u(s))ds+g

(
xqL

(
t f
))

(14)

and the value function V is defined as the optimal cost to go
over the family of hybrid control inputs, i.e.

V (t,q,x,L− j+1) := inf
IL− j+1

J
(
t, t f ,q,x,L− j+1; IL− j+1

)
(15)

Theorem 2 [Pakniyat and Caines (2014b, 2015)] If at the in-
stant t and the hybrid state (q,x) the value function V is dif-
ferentiable then it necessarily satisfies the following Hamilton-
Jacobi-Bellman (HJB) equation

−∂V
∂ t

(t,q,x,L− j+1) = inf
u

Hq

(
x,

∂V
∂x

(t,q,x,L− j+1) ,u
)

(16)
where

Hq

(
x,

∂V
∂x

,u
)

:= lq (x,u)+
∂V
∂x

T

fq (x,u) (17)

In addition, the value function satisfies the following terminal
time condition

V
(
t f ,qL,x,0

)
= g(x) (18)

and the boundary conditions
Hq j−1 (t j−)≡ Hq j−1 (t j) = Hq j (t j)≡ Hq j (t j+) (19)

and

V (t j,q,x,L− j+1)= min
σ∈Σ j

{
V (t j,q j,ξσ (x) ,L− j)+ cσ (x)

}
(20)

where Σ j = Σ if t j is a time of a controlled switching. In
the case of an autonomous switching, the set Σ j reduces to a
subset of admissible discrete inputs which are consistent with
the switching manifold condition mq,q j (x) = 0.

�

5. THE RELATIONSHIP BETWEEN THE MINIMUM
PRINCIPLE AND DYNAMIC PROGRAMMING

Theorem 3 [Pakniyat and Caines (2014c)] If the functions fq
and lq are continuously differentiable for all q ∈ Q, and the
value function V is twice continuously differentiable almost
everywhere in Lebesgue sense on R×Rn then at all Lebesgue
points and times the gradient of the value function and the
adjoint process for the corresponding (optimal) switching se-
quence are governed by the same differential equations, i.e.

d
dt

∇V =− ∂

∂x
fqo (xo,uo)T

∇V − ∂

∂x
lqo (xo,uo) (21)

and
d
dt

λ
o =− ∂

∂x
fqo (xo,uo)T

λ
o− ∂

∂x
lqo (xo,uo) (22)

and have the same boundary conditions, i.e.

∇V
(
t f ,qo,x

(
t f
)
,0
)
= ∇g

(
xo (t f

))
, (23)

∇V
(
t j−,q j−1,x(t j−) ,L− j+1

)
= ∇ξ |Tx(t j−)∇V (t j+,q j,x(t j+) ,L− j)

+ p ∇m|x(t j−) + ∇c|x(t j−) (24)

for the gradient of the value function, and
λ

o (t f
)
= ∇g

(
xo (t f

))
, (25)

λ
o (t j−) = ∇ξ |Tx(t j−)λ

o (t j+)+ p ∇m|x(t j−) + ∇c|x(t j−)
(26)

for the adjoint process. Hence, from the uniqueness of the
solutions of (21) and (22) that are identical almost everywhere
on t ∈

[
t0, t f

]
, it is concluded that the adjoint process locally

describes the gradient of the value function, i.e.
λ

o = ∇xV (27)
almost everywhere in Lebesgue sense on R×Rn. �
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6. ILLUSTRATIVE EXAMPLE

Consider the hybrid system with the indexed vector fields

ẋ =
[

ẋ1
ẋ2

]
= f1 (x,u) =

[
x2

−x1 +u

]
(28)

and

ẋ =
[

ẋ1
ẋ2

]
= f2 (x,u) =

[
x2
u

]
(29)

where autonomous switchings occur on the switching manifold
described by

m(x1 (ts) ,x2 (ts))≡ x2 (ts) = 0 (30)

Assume that the hybrid optimal control problem is defined as
the minimization of the total cost functional

J =
∫ t f

t0

1
2

u2dt +
1
2
(x1 (ts))

2 +
1
2
(
x2
(
t f
)
− vre f

)2 (31)

6.1 The HMP Results

Employing the HMP, the corresponding Hamiltonians are de-
fined by

H1 = λ1x2 +λ2 (−x1 +u)+
1
2

u2 (32)

and
H2 = λ1x2 +λ2u+

1
2

u2 (33)

The Hamiltonian minimization with respect to u (Eq. (12))
gives

uo =−λ2 (34)
for both q = 1 and q = 2.

The adjoint process dynamics (7) is then

λ̇1 =
−∂H1

∂x1
= λ2 (35)

λ̇2 =
−∂H1

∂x2
=−λ1 (36)

for q = 1 and

λ̇1 =
−∂H2

∂x1
= 0 (37)

λ̇2 =
−∂H2

∂x2
=−λ1 (38)

for q = 2.

The terminal condition for the adjoint process (10) gives

λ1
(
t f
)
=

∂g
∂x1

= 0 (39)

λ2
(
t f
)
=

∂g
∂x2

= x2
(
t f
)
− vre f (40)

Eq. (37) together with (39) give
λ1 = 0 t ∈

(
ts, t f

]
(41)

Substituting (41) into (38) gives

λ̇2 = 0 (42)
and from (40) we get

λ2 = x2
(
t f
)
− vre f t ∈

(
ts, t f

]
(43)

The boundary conditions (11) on adjoint processes at the
switchings instant give

λ1 (ts) = λ1 (ts+)+
∂c
∂x1

+ p
∂m
∂x1

= x1 (ts) (44)

λ2 (ts) = λ2 (ts+)+
∂c
∂x2

+ p
∂m
∂x2

= x2
(
t f
)
− vre f + p (45)

Eq. (44) and (45) serve as a terminal condition for the adjoint
processes dynamics (35) and (36) which has a general solution
of the form

λ1 = Asin(t +α) t ∈ [t0, ts] (46)
λ2 = Acos(t +α) t ∈ [t0, ts] (47)

Then the system state dynamics (6) becomes

ẋ1 =
∂H1

∂λ1
= x2 (48)

ẋ2 =
∂H1

∂λ2
=−x1 +uo =−x1−λ2 =−x1−Acos(t +α)

(49)
which has a general solution of the form

x1 =
−1
2

At sin(t +α)+Bsin(t +β ) (50)

x2 =
−1
2

At cos(t +α)− 1
2

Asin(t +α)+Bcos(t +β ) (51)

that need to satisfy the initial condition x1 (t0) = x10 and
x2 (t0) = x20. At the switching time ts the continuity condition
on x1 and x2 is deduced from (9)

x1 (ts+)≡ x1 (ts) = x1 (ts−) (52)
x2 (ts+)≡ x2 (ts) = x2 (ts−) = 0 (53)

which form the initial conditions required for

ẋ1 =
∂H2

∂λ1
= x2 (54)

ẋ2 =
∂H2

∂λ2
= uo =−λ2 = vre f − x2

(
t f
)

(55)

The solution of these equations is given as

x1 = x1 (ts)+
1
2
(
vre f − x2

(
t f
))

(t− ts)
2 (56)

x2 =
(
vre f − x2

(
t f
))

(t− ts) (57)

The equation (57) is expressed in terms of x2
(
t f
)
. In order to

write an explicit form for x2 we evaluate (57) at t f to write

x2
(
t f
)
=
(
vre f − x2

(
t f
))(

t f − ts
)

(58)
or

x2
(
t f
)(

1+ t f − ts
)
= vre f

(
t f − ts

)
(59)

Thus

x2
(
t f
)
=

vre f
(
t f − ts

)
1+ t f − ts

(60)

Substituting (60) into (56) and (57) we get

x1 = x1 (ts)+
vre f

2
(
1+ t f − ts

) (t− ts)
2 (61)

x2 =
vre f

1+ t f − ts
(t− ts) (62)

for t ∈
[
ts, t f

]
. The Hamiltonian continuty condition at ts gives

λ1 (ts−)x2 (ts−)−λ2 (ts−)(x1 (ts−)+λ2 (ts−))+
1
2

λ2 (ts−)2

= λ1 (ts+)x2 (ts+)−λ2 (ts+)2 +
1
2

λ2 (ts+)2 (63)
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Fig. 1. The optimal trajectory components xo
1 and xo

2, the corre-
sponding adjoint process components λ o

1 and λ o
2 , the op-

timal control input uo and the corresponding Hamiltonian
H (xo,λ o,uo) for t0 = 0, x10 = 1, x20 = −0.5, t f = 5 and
vre f = 1

With a change of signs on both sides of the equation and using
the equations (52) and (53) this equality becomes

λ2 (ts−)x1s +
1
2

λ2 (ts−)2 =
1
2

λ2 (ts+)2 (64)

Hence, by solving simultaneously the following 6 equations for
the given t0 = 0, x(t0)≡ [x10,x20]

T , t f and vre f the values of the
6 unkown parameters A,α,B,β , ts and p are determined.

Bsinβ = x10 (65)

−1
2

Asin(α)+Bcos(β ) = x20 (66)

A
(

1+
ts
2

)
sin(ts +α) = Bsin(ts +β ) (67)

Acos(ts +α) =
vre f

1+ t f − ts
+ p (68)

−1
2

Ats cos(ts +α)− 1
2

Asin(ts +α)+Bcos(ts +β ) = 0 (69)

Acos(ts +α)

(
−1
2

Ats sin(ts +α)+Bsin(ts +β )

)
+

1
2

A2 cos2 (ts +α) =
1
2

(
vre f

1+ t f − ts

)2

(70)

where (65) and (66) are derived from the substitution of the
system initial condition in (50) and (51); equations (67) and
(68) are derived from the adjoint boundary conditions (44) and
(45); the relation (69) is the result of the switching manifold
condition (53), and (70) represents the Hamiltonian continuity
condition (64). For the values of t0 = 0, x10 = 1, x20 = −0.5,
t f = 5 and vre f = 1 the results are demonstrated in Fig. 1.

6.2 HDP results from their relationship to the HMP results

Employing Theorem 3 we want to construct the value function
satisfying the results of Theorem 2. To this end we rewrite the
system dynamics equations (28) and (29) and the ∇V dynamics
equation (21) in the matrix form, i.e. for q1 the first dynamics
equations become

d
dt

 x1
x2

∇x1V
∇x2V

=

 0 1 0 0
−1 0 0 −1
0 0 0 1
0 0 −1 0


 x1

x2
∇x1V
∇x2V

 (71)

and for q2 the second dynamics equations are presented as

d
dt

 x1
x2

∇x1V
∇x2V

=

 0 1 0 0
0 0 0 −1
0 0 0 0
0 0 −1 0


 x1

x2
∇x1V
∇x2V

 (72)

The state transition matrix for these equations are denoted by
φi, where

φ1 (t, t0)=


cosδ sinδ

−δ sinδ

2
−δ cosδ

2
−sinδ cosδ

−sinδ −δ cosδ

2
−cosδ +δ sinδ

2
0 0 cosδ sinδ

0 0 −sinδ cosδ


(73)

with δ := t− t0, and

φ2 (t, ts) =


1 (t− ts)

(t− ts)
3

6
−(t− ts)

2

2

0 1
(t− ts)

2

2
−(t− ts)

0 0 1 0
0 0 −(t− ts) 1

 (74)

Partitioning φ2, the solution of (72) for t ∈
(
ts, t f

]
can be written

as

x
(
t f
)
= φ2,11

(
t f , t
)

x(t)+φ2,12
(
t f , t
)

∇V (t) (75)
∇V
(
t f
)
= φ2,21

(
t f , t
)

x(t)+φ2,22
(
t f , t
)

λ (t) (76)

which gives[
x1
(
t f
)

x2
(
t f
) ]= [ 1

(
t f − t

)
0 1

][
x1 (t)
x2 (t)

]

+


(
t f − t

)3

6
−
(
t f − t

)2

2(
t f − t

)2

2
−
(
t f − t

)
[∇x1V (t)

∇x2V (t)

]
(77)

and[
∇x1V

(
t f
)

∇x2V
(
t f
) ]= [ 0 0

0 0

][
x1 (t)
x2 (t)

]
+

[
1 0

−
(
t f − t

)
1

][
∇x1V (t)
∇x2V (t)

]
(78)

Substituting the above expressions for x
(
t f
)

and ∇V
(
t f
)

into
(23) results in∇

x1
V
(
t f
)

∇
x2

V
(
t f
)=[ 0 0

0 1

]([
x1
(
t f
)

x2
(
t f
) ]−[ 0

vre f

])
=

[
0

x2
(
t f
)
− vre f

]
(79)

which from (78) gives[
∇x1V (t)
∇x2V (t)

]
=

[
0

xo
2
(
t f
)
− vre f

]
t ∈
(
ts, t f

]
(80)

Substitution of x2
(
t f
)

from (77) gives

∇V (t) =

 0 0

0
1

t f − t +1

(x(t)−
[

0
vre f

])
(81)

Thus the value function in the second dynamics with no switch-
ing ahead (i.e. after the switching time ts) should be of the form
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V (t,q2,x,0) =
1
2

xT

 0 0

0
1

t f − t +1

x+
[

0
−vre f

t f − t +1

]
x+α2 (t)

(82)

Since V in (82) satisfies the HJB equation (16), the time
dependant constant term α2 (t) is determined to be

α2 (t) =
v2

re f

2
(
t f − t +1

) (83)

giving the value function in the second dynamics with no
remaining switching as

V (t,q2,x,0) =
1
2

xT

 0 0

0
1

t f − t +1

x

+

[
0
−vre f

t f − t +1

]
x+

v2
re f

2
(
t f − t +1

) = (
vre f − x2

)2

2
(
t f − t +1

) (84)

Simalrly, partitioning φ1 in (73) which is the solution of (71) in
t ∈ [t0, ts) gives

x(ts−) = φ1,11 (ts, t)x(t)+φ1,12 (ts, t)∇V (t) (85)
∇V (ts) = φ1,21 (ts, t)x(t)+φ1,22 (ts, t)∇V (t) (86)

which is equivalent to[
x1 (ts)
x2 (ts)

]
=

[
cos(ts− t) sin(ts− t)
−sin(ts− t) cos(ts− t)

][
x1 (t)
x2 (t)

]

+

 −(ts−t)sin(ts−t)
2

−(ts−t)cos(ts−t)
2

−sin(ts−t)−(ts−t)cos(ts−t)
2

−cos(ts−t)+(ts−t)sin(ts−t)
2

[∇
x1

V(t)

∇
x2

V(t)

]
,

(87)[
∇
x1

V (ts)

∇
x2

V (ts)

]
=

[
0 0
0 0

][
x1 (t)
x2 (t)

]
+

[
cos(ts− t) sin(ts− t)
−sin(ts− t) cos(ts− t)

][∇
x1

V (t)

∇
x2

V (t)

]
(88)

From (24) ∇V (ts) is given as[
∇x1V (ts)
∇x2V (ts)

]
=

[
∇x1V (ts+)
∇x2V (ts+)

]
+

[
1 0
0 0

][
x1 (ts)
x2 (ts)

]
+ p

[
0
1

]
(89)

where ∇V (ts+) is determined from (81). Hence,[
∇x1V (ts)
∇x1V (ts)

]
=

 1 0

0
1

t f − ts +1

[ x1 (ts)
x2 (ts)

]
+

[
0

p−
vre f

t f − ts +1

]
(90)

Substituting xo (ts) and λ o (ts) from (87) and (88) respectively
results in[

cos(ts− t) sin(ts− t)
−sin(ts− t) cos(ts− t)

][
∇x1V (t)
∇x2V (t)

]

=

 cos(ts− t) sin(ts− t)
−sin(ts− t)
t f − ts +1

cos(ts− t)
t f − ts +1

[ x1 (t)
x2 (t)

]
+

[
0

p−
vre f

t f − ts +1

]

+


−(ts−t)sin(ts−t)

2
−(ts−t)cos(ts−t)

2
−sin(ts−t)−(ts−t)cos(ts−t)

2
(
t f − ts +1

) −cos(ts−t)+(ts−t)sin(ts−t)
2
(
t f − ts +1

)
[∇

x1
V(t)

∇
x1

V(t)

]
(91)

which can be expressed as

[
∇x1V (t)
∇x2V (t)

]
= cosδs +
δs sinδs

2
sinδs +

δs cosδs

2
δs cosδs−

(
2δ f s +1

)
sinδs

2
(
δ f s +1

) (
2δ f s +3

)
cosδs−δs sinδs

2
(
δ f s +1

)

−1

 cosδs sinδs
−sinδs

δ f s +1
cosδs

δ f s +1

[ x1 (t)
x2 (t)

]
+

[
0

p−
vre f

δ f s +1

] (92)

with
δs := ts− t, δ f s := t f − ts (93)

Hence,

∇V (t,q1,x,1) =
[

K1,11 (t) K1,12 (t)
K1,21 (t) K1,22 (t)

]
x+
[

s1,1 (t)
s1,2 (t)

]
(94)

where

K1,11 (t) =
2+
(
δ f s +

1
2

)
(1+ cos2δs)

2
(
δ f s +1

)
− δ 2

s
2 + cos2δs +δ f sδs sin2δs

K1,12 (t) =

(
δ f s +

1
2

)
sin2δs−δs

2
(
δ f s +1

)
− δ 2

s
2 + cos2δs +δ f sδs sin2δs

K1,21 (t) =

(
δ f s− 1

2

)
sin2δs−δs

2
(
δ f s +1

)
− δ 2

s
2 + cos2δs +δ f sδs sin2δs

K1,22 (t) =
2+
(
δ f s− 1

2

)
(1− cos2δs)

2
(
δ f s +1

)
− δ 2

s
2 + cos2δs +δ f sδs sin2δs

(95)

and

s1,1 (t) =

(
δ f s +1

)(
p− vre f

δ f s+1

)
(−2sinδs−δs cosδs)

2
(
δ f s +1

)
− δ 2

s
2 + cos2δs +δ f sδs sin2δs

s1,2 (t) =

(
δ f s +1

)(
p− vre f

δ f s+1

)
(2cosδs +δs sinδs)

2
(
δ f s +1

)
− δ 2

s
2 + cos2δs +δ f sδs sin2δs

(96)

with δs and δ f s defined in (93). The values of ts and p are
determined from the switching manifold condition (30), i.e.

x2 (ts)=[x1 (t) x2 (t)]
[

K1,21 (t)−sin(ts−t)
K1,22 (t)+cos(ts−t)

]
+s1,2 (t)=0 (97)

as well as the Hamiltonian boundary condition (19) which gives

p−
vre f

t f − ts +1
=−

xo
1 (ts)
2
± 1

2

√(
2vre f

t f − ts +2

)2

+
(
xo

1 (ts)
)2

(98)
i.e. at any instant t and for any given continuous state x(t) the
value function for the first dynamics with one switching left is
locally described by

V (t,q1,x,1) =
1
2

xT K1 (t)x+ s1 (t)
T x+α1 (t) (99)

with

K1 (t) =
[

K1,11 (t) K1,12 (t)
K1,21 (t) K1,22 (t)

]
, (100)

s1 (t) =
[

s1,1 (t)
s1,2 (t)

]
(101)

and α1 (t) determined from the substitution of (99) in the HJB
equation (16) which gives its dynamics as
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α̇1 =
1
2
(s1,2 (t))

2 (102)

and its value at ts determined from the value function boundary
condition (20) as

α1 (ts) = α2 (ts) =
v2

re f

2
(
t f − ts +1

) (103)

In summary, the solution to the HJB partial differential equation
of Hybrid Dynamic Programming (16) is determined indirectly
from its gradient process ∇V which is uniquely identified by
the HMP - HDP relationship equations presented in Theorem
3. The HJB equation is employed only for the determination of
the time-varying constant terms αi (t) which do not appear in
∇V the gradient of the value function. �
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