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Abstract
This paper describes an approach to combining
range data from both a set of sonar sensors as well
as from a directional laser range finder to efficiently
take advantage of the characteristics of both types
of devices when exploring and mapping unknown
worlds. We call our approach “just in time sensing”
because it uses the more accurate but constrained
laser range sensor only as needed, based upon a pre-
liminary interpretation of sonar data. In this respect,
it resembles “just in time” inventory control which
attempts to judiciously obtain materials for indus-
trial manufacturing only when and as needed. Ex-
periments with a mobile robot equipped with sonar
and a laser rangefinder demonstrate that by judi-
ciously using the more accurate but more complex
laser rangefinder to deal with the well-known ambi-
guity which arises in sonar data, we are able to ob-
tain a much better map of an interior space at little
additional cost (in terms of time and computational
expense). 1

1 Introduction
We are interested in sensor-based environment ex-
ploration with a mobile robot. Most approaches to
sensing involve tradeoffs between speed, time and
accuracy. We propose an approach we call “just in
time sensing” to combine data from both two sensor
modalities: sonar and active stereo (BIRIS) to effi-
ciently take advantage of the characteristics of both
types of devices when exploring and mapping un-
known worlds. We call our approach “just in time

1Appeared in “Vision Interface”, pages 175–82, Toronto,
May 1996.

sensing” because it uses sonar data for a coarse pre-
liminary mapping phase followed by a judicious ap-
plication of laser range sensing only where needed.
In this respect, it resembles “just in time” inventory
control which attempts to judiciously obtain mate-
rials for industrial manufacturing only when and as
needed.

The key to the approach is that one sensor pro-
vide a large-scale but (in some sense) low resolution
depiction of the environment while a second sensor
provides a more costly but higher resolution view. In
principle, the approach is applicable to various com-
binations of sensing methodologies. In distinction to
standard approaches to fusion or multi-scale analy-
sis, the high-resolution data is acquired only where
it is deemed appropriate. As such, this can also be
portrayed as a form of active sensing.

Sonar sensing is ubiquitous on mobile robots due
to its low cost, the simplicity of the required pro-
cessing, and the rapidity with which it can return
results reflecting range measurements over a large
region of space. Despite these advantages however,
it suffers from several shortcomings as a source of
range data. Most importantly, the measurements
tend to have low spatial resolution and the observed
data (with most interpretation strategies) are typi-
cally confounded by the effects of multi-bounce spec-
ular reflections. For this reason, the use of sonar
is often confined to collision avoidance rather than
mapping.

Laser range sensors, on the other hand, are typ-
ically able to obtain comparatively accurate data
with fewer artifacts when compared to simple sonar
sensors. The laser rangefinder we have developed at
McGill University’s Centre for Intelligent Machines



is based on BIRIS [4] technology: a special lens with
two pinholes near the nodal point is used. This pro-
duces a double image of objects in the scene with
a disparity that depends directly on the distance of
the object from the focal plane of the lens. In short,
we obtain a stereo image using only a single CCD
array. By projecting a laser stripe onto the scene, a
target is made available which can be used for unam-
biguous stereo correspondence, allowing true depth
to be readily computed. Two of these BIRIS sensors
mounted on pan tilt units in a specific configuration
comprise the McGill QUADRIS sensor platform.

Like all sensing technologies, the BIRIS sensor
also has disadvantages. Its primary shortcoming is
that although the accuracy of range measurements
is reasonable over short distances (up to one or two
meters), accuracy degrades rapidly with longer dis-
tances (this is one of the design parameters). Fur-
thermore, obtaining either a dense range image or
range data over a wider field of view than the 25 de-
grees or so covered by a typical camera2 lens implies
physically sweeping the camera and laser across the
scene, and hence involves a time delay.

Early work to validate our “just-in-time” sensing
strategy using real sonar data and simulated BIRIS
data was reported earlier [10]. In this paper, we
describe results using real sonar data and real BIRIS
data obtained from the McGill QUADRIS platform.

1.1 Background
Various approaches have been considered for the ex-
ploration of unknown or partially-known environ-
ments. Most work dealing with real noisy sensor
data must cope with the management of sensor un-
certainty and exploration strategies, i.e. selecting
successive unknown locations or objects to visit (in-
vestigate) e.g. [22, 20, 23, 2, 1, 7, 3]. The best way to
manage exploration in the face of real sensor noise
remains an open problem. The question is further
complicated by the fact that the choice of an opti-
mal mapping strategy is sensitive to the specific task
at hand. A somewhat distinct research stream deals
with the complexity issues in autonomous robot ex-
ploration of an unknown environment [5, 16, 21, 17].

In general, work on sensor fusion has tended to fo-
cus on issues of how best to combine measurements
from different sensors e.g. [24, 6], or how best to ex-
tract data with a single sensor and fuse the measure-
ments over time e.g. [11, 12, 25], rather than how to
selectively extract measurements from different types
of sensor. This later problem of combining measure-
ments over time has, in fact, two variants: that prob-

2Using cameras with a very wide field of view leads to dis-
tortions and a loss of resolution and thus is not an acceptable
solution.

lem of fusing a set of measurements obtained some-
how over some time period e.g. [19, 9], and the prob-
lem of efficiently selecting where or when to obtain
additional measurements e.g. [27].

The approach described here is based on the con-
struction of a geometric map using sonar data and
BIRIS data. Several approaches to the construction
of maps from such range data collected by a mo-
bile robot [8, 13, 14, 18, 15]. Most methods are
plagued by the noisy or otherwise limited natures
of sonar range sensing, or involve very costly or time
consuming data acquisition. Our approach uses a
combination of robust fitting and a split-and-merge
segmentation of accomplish line segment generation
and is documented in detail elsewhere [18].

An apparently general finding is that the difficulty
of the exploration task is rather sensitive to the level
of sensor noise and the fidelity of the geometric in-
ferences made about the objects in the environment.
Thus, it seems appropriate to focus some effort on
efficiently obtaining good geometric models since us-
ing all of the sensors on the robot all of the time can
lead to serious inefficiencies in exploration/mapping
time and in using the on-board computational re-
sources.

2 Just in time sensing
2.1 The Exploration Context: An

Art Gallery
As an experimental testbed for our sensing method-
ology, we are examining the performance of our ap-
proach in an indoor environment resembling an art
gallery or museum; such an environment has cer-
tain practical advantages as specified below. The
environment consists of a large enclosed room con-
taining several stationary objects. We make the as-
sumption that a collision-free paths exists between
any two points within the free space of the room.
Although, the objects inside a room are assumed to
be static, the configuration of the room is subject
to change between successive visits by the robot and
must therefore be mapped again every time it is vis-
ited. The floors are flat (except for some well defined
places where stairs exist) and smooth without any
anomalies.

Our robot, an RWI B-12, is equipped with a ring
of sonar sensors which provide coarse range measure-
ments of distances up to 8 meters omnidirectionally,
and a BIRIS sensor system that can give accurate es-
timates over at short range and only in one direction;
see Figure 1.

2.2 Processing sonar data
As previously mentioned, the main robot sensor is
the sonar range finder. Our RWI robot is equipped



Figure 1: RWI mobile robot equipped with McGill
QUADRIS sensor platform.

with a ring of 12 sonars positioned equidistantly
around it, returning 12 measurements at the same
time. In order to obtain a denser range map which is
less susceptible to artifacts, the robot is commanded
to rotate in place and more measurements are made.
More precisely, we collect a total of 180 sonar mea-
surements at each robot (x,y) position but not all of
them are used.

But as described above, multiple bounces or echos
associated with sonar data may give rise to the fol-
lowing errors. Firstly, a phantom “third” wall may
appear where two walls meet at a corner. Secondly,
false measurements may be obtained suggesting the
presence of objects far away.

In order to deal with such errors in the sonar data,
certain measurements are suppressed from further
processing. Firstly, measurements (range estimates)
beyond a certain “logical” distance are discarded,
under the assumption that they represent multiple
bounces. Although this could result in the loss of
legitimate information, we assume that such infor-
mation is sufficiently distant from the robot as to
be of little importance in mapping that part of the
environment which is nearby.

In practice, the “discard” threshold must be es-
tablished so as to maintain measurements which are
close enough to the robot and therefore sufficiently
accurate (almost no data from multiple bounces)
since otherwise, the range of the sensor is wasted and
in larger environments, this could result into some
exploration/mapping inefficiency.

A second criterion for discarding erroneous sonar
data is related to knowledge about the immediate
surroundings of the robot. Our robot is approxi-
mately 30cm in diameter and we shall therefore as-
sume that after a complete sonar scan, if no object
“appears” in a distance less than half a meter from

the robot, then the circle around the robot with a di-
ameter of about one meter is empty. Consequently,
any range measurement within this circle can be as-
sumed to be in error, due to multiple bounces, and
therefore is discarded.

Once those measurements deemed to be in er-
ror are discarded, the sonar data measurements are
then clustered together using the “Sphere of Influ-
ence Graph” [26]. assuming a minimum distance in
order to avoid clustering points at the same position
as separate small clusters. Line segments are then
fitted to the data clusters by splitting and merging
them using a certain confidence measure to obtain
new line segments with a certain confidence [MD94].
From that point on, the construction of the environ-
mental map is performed in terms of lines with a
confidence measure attached to them.

2.3 Processing laser range data
In order to improve the results we obtain from just
sonar data, the BIRIS laser range finder is judi-
ciously called into play, according to our “just-in-
time” sensing strategy. As previously described, the
useful range of BIRIS is about three to four meters
but in order to have very good accuracy, most of the
scans are performed at one and a half meters range.
Another limitation is its field of view of 25 degrees,
which is, in practice, even smaller due to artifacts
appearing at the edges of the scan lines. The BIRIS
sensor may be used to obtain up to 512 range mea-
surements per scan whenever something is present
(an object or a series of objects) in the whole field
of view.

Once again, the “Sphere of Influence Graph” is
used to cluster measurement data into clusters but
this time, no minimum distance threshold is used,
since the data points are already closer together.
When line segments are fitted to the clusters, we
have observed almost ideal confidence levels.

Note too that when BIRIS is used in addition to
sonar, a third criterion for discarding sonar data in
error may be defined as follows. Whenever a line
segment is observed by BIRIS, we assume that no
object is present inside the triangle formed by the
BIRIS line segment and the position of the robot at
the apex. Moreover, as we shall see, BIRIS is only
used in places where sonar is ambiguous, i.e. where
much sonar data is error.

2.4 Just-in-time BIRIS sensing
We now describe the way in which the mobile robot
explores and maps its unknown environment with
just-in-time BIRIS sensing to complement sonar
sensing. Simply, BIRIS data is only acquired to ac-



curately pinpoint the corners and the borders of ob-
jects, where the sonar data is ambiguous.

The exploration strategy developed as a testbed
for the fusion of sonar and laser data is a kind of wall
following, or more accurately, “closest object follow-
ing”. The world is modelled in terms of line segments
with marked endpoints; an endpoint is marked as ei-
ther “terminal” (confirmed) or “non terminal” (to be
confirmed). The algorithm of the exploration strat-
egy is outlined next.

The robot explores its unknown environment by
proceeding to the nearest object (or wall). (When
multiple objects are present in the same sonar scan,
the robot applies a modified breadth first search al-
gorithm in order to structure the way in which it
will explore one object after another.) The robot
then navigates around the object while increasing
the length of the current line segment until reaching
a non-terminal endpoint of the current line segment
in a trajectory parallel to it at a distance of approx-
imately one meter from it (making, if necessary, the
proper adjustments). It is at this stage that BIRIS
is used.

Non-terminal endpoints will arise when the robot
is approaching the corner of two walls whereby the
current object (the wall that the robot was following)
comes to an end. The robot calculates the potential
corner using sonar data, aims BIRIS at the corner,
and then maps the corner accurately, marking the
endpoints of the two lines as terminals, i.e. the end
of the wall that the robot was following, and the
beginning of the other wall.

The other situation arises when the robot reaches
the physical extremity of a line/wall. Here BIRIS
is needed to accurately map the endpoint position
since the sonar cone identifies any object inside it
as a point without precision. Once again, the robot
aims BIRIS at the endpoint of the object currently
marked as “non-terminal”, obtains data, transforms
the data into line segments, and then calculates the
exact position of the endpoint while marking it as
“terminal”. When both endpoints of the closest ob-
ject line segment are marked as terminal, then the
robot moves away from until a new object, not fully
explored (with at least one non-terminal endpoint)
becomes the new closest object.

2.5 Constructing the map from sonar
and BIRIS data

The incremental construction of the map of the un-
known world takes into account the position and
orientation of the line segments, their data source
(sonar, BIRIS), and the confidence measure attached
to them.

In particular, the map consists of three types of
lines: Sonar, for the line segments created using only
sonar points; BIRIS, for the ones that use only BIRIS
measurements; Complex, for the ones that appear
after merging Sonar and BIRIS line segments.

If two lines are almost parallel and their separa-
tion is less than a critical threshold d (in our exper-
iments, d = 5cm), then they are merged. There are
two different cases for merging.

The first case is when there is one Sonar line seg-
ment and one BIRIS or Complex line segment. Since
BIRIS is much more accurate than sonar, we project
the Sonar line segment onto the BIRIS/Complex line
segment. In all other cases, we merge two line seg-
ments by taking into account the confidence mea-
sure (fi) associated with each one, and its length
(li). If the two line segments intersect, then a new
line segment passing through the point of intersec-
tion is created with slope m as given by the equa-
tion 1 where mi is the slope of the line segment with
the largest confidence measure (length multiplied by
confidence). If the two line segments don’t intersect,
then we identify their two nearest endpoints and cal-
culate a weighted midpoint using the same weights
used for the slope, thereby creating a new line seg-
ment passing through the weighted midpoint with a
slope m as described above.

m = α ∗mi + (1− α)mj

α = max( l1
l1+l2

∗ f1,
l2

l1+l2
∗ f2)

(1)

One difficulty arises when merging changes the
position of line segment endpoints. Consider the case
of merging two line segments with one having an
endpoint marked terminal, It is possible that when
we map a BIRIS or Complex line having a terminal
endpoint onto a sonar line segment, the length of the
sonar line segment will change, in order to preserve
the position of the terminal endpoint. In this way,
BIRIS data helps “clean up” the sonar line segments
by discarding erroneous points and by adjusting the
lengths of the sonar line segments.

Each time the robot uses its sonar sensors or
BIRIS rangefinder, it updates its map with new
sonar or BIRIS line segments and re-evaluates its
agenda regarding how to continue the exploration of
the environment. As the partial map evolves it can,
of course, be used to navigate more efficiently or to
refine the robots position estimate. The entire just-
in-time exploration algorithm is summarized below:

-Obtain a sonar scan

-Transform Sonar Points into Lines

-Cluster with Sphere of Influence Graph



-Fit Lines

-Measure confidence

-Update Map with New Lines

-Merge Parallel Lines

-Find Closest Line

-If Closest_Line == Line_Followed AND

Not after the EndPoint Then

-Check EndPoints

-If Both terminals then

-Move away from Closest_Line;

-Else

-Find Closest Non-Terminal EndPoint

-Move towards it, in a trajectory

parallel to the Line keeping one

meter distance

-Else If Closest_Line == Line_Followed

AND After the EndPoint Then

-Point BIRIS at the EndPoint

-Obtain BIRIS data,

Transform them into Lines

-Decide if EdnPoint is Terminal

-Mark the EndPoint as Terminal

-Else /*Potential Intersection */

-Calculate if Closest_Line and

Line_Followed could intersect

-Point BIRIS at the Intersection

-Obtain BIRIS data,

Transform them into Lines

-If an intersection exist

-Mark the EndPoints as Terminals

-Update Map for BIRIS

-Follow the New Closest Line

-Goto to the beginning

3 Experimental results
A series of experiments were carried out to evaluate
the performance of the algorithm both in simulation
and using real data. The simulation results use an
accurate sonar simulator that replicates multi-path
echos, diffraction and other characteristics of sonar
sensing. The results, depicted in Figure 2. The path
of the robot is shown in green, the walls are shown in
red, and BIRIS scans are illustrated by dark-red lines
(which emanate from points on the green path). The
results illustrate the effectiveness of the algorithm in
generating a map free from traditional anomalies as-
sociated with sonar mapping. The BIRIS scanner is
used only at a few positions, leading to a compara-
tively rapid traversal.

To verify these results in practice, a series of ex-
periments were conducted in the Mobile Robotics
Lab of McGill’s Centre for Intelligent Machines us-
ing an RWI B-12 robot equipped with the QUADRIS

sensing platform (which contains a BIRIS sensor).
Computations were carried out on a a Silicon Graph-
ics INDY workstation. Mapping was carried out us-
ing sonar data alone to establish a baseline for com-
parison; see Figure 3. Note that the robot does not
complete a full tour of the indoor space; just three
walls are followed. Note the substantial number of
artifacts, spurious “walls” and incorrect corner ge-
ometries.

Figure 3: Map of our interior space generated just
using sonar sensors.

The same environment, when mapped using sonar
and BIRIS in the context of our “just-in-time” algo-
rithm is mapped much more effectively. The follow-
ing four figures are a sequence of “snapshots” during
different stages of the map construction of the same
world, using “just-in-time sensing” with BIRIS (Fig-
ures 3 through fig:comp8). In Figure 3, we observe
that the robot started its exploration at a slightly
different position and has now followed two walls;
the portions in the figure shaded in grey indicate
where BIRIS data was used to more accurately map
corners.

In Figure 3, partial information about the interior
object and about a third wall has been added to the
map. Note too that the artifact present in the lower
left of the previous figure has been “cleaned-up” as
part of the accurate mapping of the third wall.

In Figure 3, we observe that BIRIS is used once
again to more accurately map the corner associated
with the end of the third wall and the beginning of
the fourth wall.

Finally, in Figure 3, the robot has completed the
same partial tour as before (using just sonar), by
following three walls. When compared to the map
shown in Figure 3, we observe that the modelling is



(a) (b)

(c) (d)

(e) (f)

Figure 2: A series of six snap shots of the map constructed by the Robot.



Figure 4: Progressive map construction using just-
in-time sensing; Step A

Figure 5: Progressive map construction using just-
in-time sensing; Step B

much cleaner, especially with respect to the interior
(navigable) space, i.e. artifacts still remain “behind”
the walls of the interior space but they have no bear-
ing on the way in which the robot would use its map
in the future to navigate within the world now ex-
plored. In principle, these spurious walls located n
invisible locations could be readily deleted, but such
a inference would constitute be a step beyond the
simple “just-in-time” method we are examining.

4 Conclusions

This paper describes an approach to combining
range data from both a set of sonar sensors as well
as from a directional laser range finder to efficiently

Figure 6: Progressive map construction using just-
in-time sensing; Step C

Figure 7: Progressive map construction using just-
in-time sensing; Step D

take advantage of the characteristics of both types
of devices when exploring and mapping unknown
worlds. We call our approach “just in time sensing”
because it uses the more accurate but constrained
laser range sensor only as needed, based upon a pre-
liminary interpretation of sonar data. Is has the ad-
vantage of allowing rapid sensing of the environment
with comparatively high accuracy.

Simulations and experiments demonstrate that by
judiciously using the more accurate but more com-
plex laser rangefinder to deal with the well-known
ambiguity which arises in sonar data, we are able
to obtain a much better map of an interior space at
little additional cost (in terms of time and computa-
tional expense). The algorithm is based knowledge
of how sensors errors manifest themselves as well as
how the environment is typically structured. It is



this knowledge that allows the informed selection of
locations to probe with the more accurate sensor. In
interesting question is how to relate even more ab-
stract domain knowledge to active data acquisition.
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