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Abstract
This paper considers the explicit use of motion blur
to compute the Optical Flow. In the past, many al-
gorithms have been proposed for estimating the rel-
ative velocity from one or more images. The motion
blur is generally considered an extra source of noise
and is eliminated, or is assumed nonexistent. Unlike
most of these approaches, it is feasible to estimate
the Optical Flow map using only the information
encoded in the motion blur. An algorithm that es-
timates the velocity vector of an image patch using
the motion blur only is presented; all the required
information comes from the frequency domain. The
first step consists of using the response of a family
of steerable filters applied on the log of the Power
Spectrum in order to calculate the orientation of
the velocity vector. The second step uses a tech-
nique called Cepstral Analysis. More precisely, the
log power spectrum is treated as another signal and
we examine the Inverse Fourier Transform of it in
order to estimate the magnitude of the velocity vec-
tor. Experiments have been conducted on artificially
blurred images and with real world data.1

1 Introduction
One of the fundamental problems in early Computer
Vision is the measurement of motion in an image,
frequently called optical flow. In many cases when
a scene is observed by a camera there exists motion
created either by the movement of the camera or by
the independent movement of objects in the scene.
In both cases, the goal is to assign a 3D velocity
vector to each visible point in the scene; such an
assignment is called the velocity map. In general it
is impossible to infer from one view the 3D velocity
map; however, most motion estimation algorithms
calculate the projection of the velocity map onto the

1Appeared in “Vision Interface”, pages 159-166, Toronto,
May 1996.

imaging surface. A large number of different algo-
rithms have been developed in order to solve this
problem.

The problem of estimating the optical flow has re-
ceived much attention because of its many different
applications. Tasks such as passive scene interpre-
tation, image segmentation [14], surface structure
reconstruction, inference of egomotion, and active
navigation [11], [17], all use optical flow as input in-
formation.

Until now, most motion estimation algorithms
considered optical flow with displacements of only
a few pixels per frame. This approach limits the
applications to slower motions and fails to seriously
address the issue of motion blur, moreover, it works
on images that are considered to be taken with in-
finitely small exposure time, more or less in a “stop
and shoot” approach, which limits the real time ap-
plications.

The novel algorithm we have developed is based
on interpreting the cue of motion blur to estimate
the optical flow field in a single image. A key obser-
vation is that motion blur introduces a certain struc-
ture, a ripple, in the Fourier transform that can be
detected and quantified using a modified form of cep-
stral analysis. Unlike classical approaches to visual
motion analysis that rely upon operators tuned to
specific spatial and temporal frequencies at specific
orientations, our new approach makes use of all the
information that can be gathered from a patch of the
image and is thus quite robust [19].

The first step in our motion blur analysis is to
compute the log power spectrum of a local image
patch. Motion blur leads to a tell-tale ripple, cen-
tered at the origin, with orientation perpendicular to
the orientation of the velocity vector. This orienta-
tion can be reliably determined, even in the presence
of noise, using a steerable second Gaussian derivative
filter. The magnitude of the velocity, which is related



to the period of the ripple, can then be determined
by first collapsing the log spectrum data into a 1-D
vector and then performing a second Fourier trans-
form to yield the cepstrum, in which the magnitude
of the velocity is clearly identified by a negative peak.
The computational complexity of this algorithm is
bounded by the Fast Fourier Transform operation,
which is O(n logn), where n is the number of pixels
in the image patch. Applying this analysis through-
out the image provides an estimation of the complete
optical flow field.

In most biological visual systems, the analysis of
motion is critical; interesting experiments have been
made with the visual system of the pigeon, rabbit,
frog, fly, and more. The psychophysical aspects of
motion information has been demonstrated by Ull-
man [20] and Marr [15]. During the last twenty years
many algorithms have been proposed in order to cal-
culate the optical flow. The first attempt comes from
Horn and Schunck [12], [13], who used a differential
approach. Since then many other algorithms have
been proposed, which are generally divided into dif-
ferent categories according to the way they handled
the data used to calculate the optical flow. Similar
studies exist for biological as well as computer visual
systems [20], [15]. The use of a series of linear filters
has occurred in the past in order to solve questions
about stereopsis, texture and optical flow from a set
of images [22]. Also, research has been conducted in
order to ensure the robustness of the results of op-
tical flow calculation [5] and for solving the problem
when partial information is known [2].

Section 2 of this paper presents the description of
the problem, and the computational model for the
motion blur. The extraction of the orientation of
the motion from the frequency domain and different
methods to improve the results appear in Section
3. Section 4 deals with Cepstral analysis and the
extraction of the magnitude. Section 5 provides the
results from the simulated and real world images.
The summary and future goals are the subjects of
Section 6.

2 Motion Blur
When a changing scene is observed by a camera,
most of the existing algorithms assume that it is pos-
sible to take pictures every δt instantly, which means
that every picture is taken with a dt ≈ 0 exposure
time. If that is not the case, then the exposure time
(dt = T ) is large enough that different points in the
scene are moving far enough and consequently their
corresponding projections on the image plane travel
several pixels. Therefore, during the capture of an

image, at any single image point, a certain number of
scene points is projected during the exposure time,
each one contributing to the final brightness of the
image point. It is clear that the blurring of the im-
age exists only across the direction of the motion;
this one dimensional blur is called Motion Blur (see
figure 2a). Motion blur is of particular interest in
the biological research also and many studies about
its significance in the perception of the world have
been done [3], [10], [6]. Earlier work in the estima-
tion of the motion blur parameters has used different
methods as the bispectrum [7], or the Discrete Co-
sine Transform [23]; in both cases the orientation
of the motion was assumed known, assumption that
was false in a lot of the applications.

Ideal motion blur can be described mathemati-
cally [8] as the result of a linear filter b(x, y) =
i(x, y)∗h(x, y) where i is the theoretical image taken
with an exposure time Te = 0, b is the real blurred
image, and h the point spread function (PSF). Given
an angle= α and the length d = Vo × Te, which is
the number of scene points that affect a specific pixel,
the point spread function of motion blur is zero ev-
erywhere except at a line segment with length d at
an angle α with the x-axis, where it has the value 1

d
.

3 Optical Flow Calculation
In order to calculate the optical flow for a certain
point we make use of the area around it – this
method needs only one frame taken with an expo-
sure time δt where the motion blur spans for more
than a couple of pixels, as is the situation in a series
of applications. To estimate the Optical Flow map
of the whole image we run the following described al-
gorithm for a series of overlapping image segments.
The algorithm can be divided in two stages: first
there is the extraction of the orientation of the ve-
locity vector from the Fourier Spectrum with the use
of a set of Steerable filters, and second the calcula-
tion of the magnitude of it from the Cepstrum.

3.1 Spectral Analysis

An image blurred due to motion is usually repre-
sented by a linear system of a convolution: g(x, y) =
f(x, y) ∗ h(x, y) with h(x, y) the convolution kernel
that cause the blur. In general, for an arbitrary di-
rection of the motion the FFT of the PSF is a ripple
as shown in figure 1, clear in the case of horizontal or
vertical motion (see figure 1a) or distorted slightly2

2Mainly because of numerical errors and the windowing
effect. We have to take into account also the fact that FT is
a complex transformation and therefore it exist an imaginary



– as is the case for a blur at the 45◦ angle (see figure
1b) where it is more the shape of an ellipse with the
long axis perpendicular to the direction of motion.
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Figure 1: The Power Spectrum of the PSF of hori-
zontal (a) and at 45◦ angle (b) motion blur

The Power Spectra of the blurred image is the
product of the Power Spectra of the PSF multiplied
by the Power Spectra of the unblurred image (see
figure 2b). If the unblurred image is rich in texture
then the main structure of the Power Spectra of the
blurred image is the ripple that appear across the
direction of the motion.

An important source of noise in the frequency do-
main comes from the ringing effect when we take only
a part of the image, the more abrupt the change into
the zero level of the masking window, the more se-
vere the artifacts that are going to appear. Many
masking function have been proposed up to now in
order to minimize the ringing effect and at the same
time to preserve the information existing in the im-
age patch [18]. In this algorithm the Gaussian Mask-
ing function has been used. Also, In order to get a
more (optically) detailed frequency image, we could
add zeros at the end of the signal, in both dimen-
sions, and then take the Fourier Transform (see fig-
ures 2a,b), this technique is called Zero Padding [18],
and it increases the sampling rate of the FT.

3.2 Orientation Extraction: Steer-
able Filters

As we saw earlier, the Power Spectrum of the blurred
image is characterised by a central ripple that goes
across the direction of the motion. In order to ex-
tract this orientation we treat the Power Spectra as
an image and a linear filter is applied so it could iden-
tify the orientation of the ripple. More specifically
the second derivative of a two dimensional Gaussian

part that is not displayed here.
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Figure 2: A zero padded image patch (a), its Fourier
Spectrum (b), the Fourier Spectrum collapsed (c),
and the Cepstrum (d).

is used. The second derivative of the Gaussian along

the x-axis is G0
2 = ∂2G

∂x2 . If we filter the Power Spec-
trum of a blurred image with G0

2 we are going to get
maximum response when the ripple is across the x-
axis. In order to extract the orientation of the ripple,
we have to find the angle θ in which the filter of the
second derivative of a Gaussian – oriented at that
angle (Gθ2) – is going to give the highest response.
Fortunately, the second derivative of the Gaussian
Gθ2 belongs to a family of filters called “steerable
filters” [9], whose response can be calculate at any
angle θ based only on the responses of three basis
filters.

RGθ2 = ka(θ)RG2a + kb(θ)RG2b + kc(θ)RG2c (1)

The response of the second derivative of the Gaus-
sian at an angle θ (RGθ2) is given in equation 1. The
set of the three basis filters is shown in the left col-
umn of the table 1 and in the right column we could
see the three interpolation functions that are used.

3.3 Cepstral Analysis

To improve robustness, the magnitude of the veloc-
ity is calculated using a 1D projection of the Power



G2a = 0.921(2x2 − 1)eµ ka(θ) = cos2(θ)

G2b = 1.843xyeµ kb(θ) = −2 cos(θ) sin(θ)

G2c = 0.921(2y2 − 1)eµ kc(θ) = sin2(θ)

µ = −(x2 + y2)

Table 1: The three basis filters and their interpola-
tion functions

Spectra onto the line across the velocity vector ori-
entation that passes through the origin.

If only one line of the blurred image is taken
(across the direction of the motion) then the blurred
signal is equivalent to the convolution of the un-
blurred signal by the step function which in the fre-
quency domain is transformed into the sinc function
(sinc(x) = sinx

x
). The period of the sinc pulse is

equivalent to the length of the step function, which
is in turn equivalent to the velocity magnitude. If
we take the Fourier Transform of the sinc function,
its period appears as a negative peak.

In order to approximate the 1D signal we collapse
the Power Spectra from 2D into 1D. The resulting
signal has also the shape of the sinc function, be-
cause the ripple caused by the motion blur is the
dominant feature (see figures 3a and 2c). Every pixel
P(x,y) in the Power Spectra is mapped into the line
that passes through the origin O at an angle θ with
the x-axis equal to the orientation of the motion,
and at distance d = x cos(θ) + y sin(θ). If we take
the Fourier Transform of the sinc function we have
an almost identical shape with the one that appears
when we take the Fourier Transform of the collapsed
spectrum (compare 3b and 2d).

3.3.1 Definitions

The 1D signal with the approximate shape of the sinc
function is treated as a new signal and its Fourier
Transform is calculated, this technique is called cep-
stral analysis.

The most common definition of the Cep-
strum 3 of a function f(x, y) is Cep{f(x, y)} =
F−1{log (F (ω, v))}, where F (ω, v) is the Fourier
Transform of a function f(x, y) [18],[16]. In other
words, it is the Inverse Fourier Transform of the log-

3Cepstrum is a juxtaposition of letters for the word
Spectrum
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Figure 3: The Graphical representation of the sinc
function (a), the Fourier Transform of the sinc func-
tion (b).

arithm of the Fourier Transform of the signal. The
Cepstrum is a complex function; if we want to have
only the real part then instead of the F (ω, v) we take
its magnitude (|F (ω, v)|+1) (which is the case in this
algorithm) as in equation 2.

Cep{f(x, y)} = F−1{log (1 + |F (ω, v)|)} (2)

3.3.2 Magnitude extraction

As we see in the previous sections we have trans-
formed the logarithm of the Power Spectrum of the
blurred image into an 1D signal. This new signal has
approximately the shape of a sinc ripple – distortions
exist due to noise, windowing effect, and the process
of collapsing the signal itself. The real part of the
Cepstrum is used in order to estimate the length of
the ripple, which is in fact the magnitude of the ve-
locity vector. The signal we have is an artificial aver-
age signal of the logarithm of the Power Spectrum of
the image. This has the advantage that the features
in the Power Spectrum that were there due to the
unblurred image have been cancelled out, leaving as
a prominent characteristic the effect of the motion
blur. As the 2D signal is collapsed across the direc-
tion of the motion it simulates a motion blur created
by uniform movement across the x-axis and has the
appearance of the sinc(x) = sinx

x
,

4 Results
A series of experiments have been conducted using
the above mentioned algorithm. An implementation
in Matlab and C was used with two categories of in-
put data. The first category consists of stationary
images, natural or artificially created, that we artifi-
cially blur by simulating the results of motion blur;



the second category consists of real images taken by
a camera with the existence of relative motion be-
tween the camera and the scene. The data from the
first category give us the ability to check the valid-
ity of our results and perform error measurements,
while the images from the second category are en-
suring that the algorithm is working on real world
data.

4.1 Simulation Data

Two images have been used in this section, each one
of them having different properties. The first one
(figure 4a) is a real image taken by a stationary cam-
era, with many different features such as smooth sur-
faces, edges, and highly textured areas. The second
one (figure 4b) is a random noise picture, rich in tex-
ture, having the same size as the previous one. As
we discussed earlier the algorithm is more effective
with images rich in texture and this is quite obvious
in the results we get, where erroneous results appear
mainly over smooth surfaces.

Both images have been blurred by convolving the
unblurred image with the same kernel. The motion is
assumed to be at a direction of +125◦ angle with the
x-axis and with a length of 13 pixels. In real world
the blur is created before the digitisation, therefore
the points that contribute to the final value of the
pixel appear in a straight line. When we try to re-
produce the same results in the discrete space at an
arbitrary angle, we have similar results to that of
aliasing in graphics. In order to avoid that, the con-
volution matrix is created by using the technique of
antialiasing lines, where the pixels are weighted ac-
cording to their distance to an “abstract” line.

In order to get better results and to eliminate the
ringing effect, a Gaussian window is used for masking
before we proceed into the velocity vector estimation.
Also in all cases zero padding has been used. The
middle needle map in both figures (4c, 4d) is created
using a 64 × 64 window, and the last one (4e, 4f)
using a 128× 128.

In the first image (figure 4a) the optical flow is
calculated with worse precision at the more uniform
areas. The error measures for the middle map (4c)
are 3.6◦ for the average absolute error in angle and
5.2 pixels in distance. For the third map (4e) where
a large window was used the results are much more
improved with the average absolute error for the ori-
entation at 2.2◦ and the magnitude at 5.7 pixels.
The second image is pure texture and the results are
even better. The middle needle diagram (figure 4d)
presents decreased error measures with the average
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Figure 4: A natural image artificially blurred (a),
a random noise image artificially blurred (b), the
Optical flow Map of (a) and (b) respectivelly with a
64× 64 window (c), (d) the Optical flow Map of (a)
and (b) with an 128× 128 window (e), (f).

absolute error in orientation 3.0◦ and the magnitude
4.1 pixels. Part of the error comes from the way
the artificial blurring was implemented through an-
tialiasing lines. For the last velocity map (figure 4f)
where a larger window (128×128) has been used the
average absolute error is really small, 3.0◦ for the
orientation and 4.1 pixels in distance.

An estimation on the distribution of the error can
come from the error histograms presented in figure 5.
The data come from the velocity maps of figures 4a
and 4b. It is clear the importance of texture in the
algorithm as the random noise image is better than
the natural one. Another issue worth mentioning
is the accuracy of the orientation estimation, where
most of the results are accurate to two or three de-
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Figure 5: Error distribution of the velocity maps of
figures 3b and 3b. Orientation absolute error (a),
Magnitude absolute error (b).

grees.

4.2 Real Data

The images in this case have been taken by a cam-
era and immediately digitised into the computer. To
achieve controlled motion between the camera and
the scene the following setup was used in all except
one cases: a camera was mounted on a base pointing
downwards, and a plane (created by cardboard) with
random dots on top of it was used as the main object
in the scene. We moved the plane in different direc-
tions, with a speed high enough to produce motion
blur with the preset exposure time of the camera.
The format, for economy of space, consists of three
different blurred images, labelled (A), (B), (C) in one
figure, and their respectively Optical Flow maps in
a second figure, following the same labelling. In all
the experiments the same configurations have been
used: we calculate the Optical Flow on a grid which
is dense 10× 10, using a 64× 64 window. The patch
of the blurred image was masked first with a Gaus-
sian window (to avoid the ringing effect) and then
zero padded up to 128× 128.

The first set of images is shown in figure 6a. The
first image 6a(A) has been created by moving the
plane in parallel with the y-axis with a steady and
relatively small velocity; the algorithm has correctly
estimated the orientation of the velocity almost ev-
erywhere, as can be seen in the Optical Flow map in
figure 6b(A). The accuracy of the magnitude estima-
tion is not clear, although if we compare it with the

next image some qualitative results can be drawn.
The second image, 6a(B), is created again with a
steady velocity parallel to the y-axis, this time at
a higher speed, fact that is easily noticeable by the
length of the blur. Again the Optical Flow map, in
figure 6b(B), has an accurate estimation of the ori-
entation and also gives an average bigger magnitude
for the velocity vectors. By comparing these two
cases it is obvious that the orientation estimation
is correct and also the magnitude estimation shows
the difference between different speeds. The third
image 6a(C) is created completely differently; the
random-dot decorated plane is left to fall free under
the camera and during that fall we take a snapshot.
As can be seen from the blur lines, the focus of ex-
pansion is at the middle of the left side, and indeed
the algorithm gives the same results. In the Optical
Flow map (figure 6b(C)) we could see the velocity
vectors pointing to the point of expansion and hav-
ing a gradually decreasing magnitude as they reach
that point.

In the next set of images two images were cre-
ated by rotational motion, and one image was cre-
ated with a completely different setup. The first im-
age (figure 6c(A)) was created by moving the cam-
era by hand horizontally across a self full of books
and binders.4 The lighting of the scene was low and
therefore some of the features didn’t appear; in ad-
dition it is quite notable the lack of texture in a lot
of the areas. In spite of these problems the velocity
vectors in majority have the correct orientation and
approximately the same magnitude, (figure 6d(A))
results that agree with the blurred image. The last
two images are created by rotating the random-dot
plane under the camera, with different speeds. In
the middle image (figure 6c(B)) the centre of ro-
tation is in the upper right part and the speed is
high. In figure 6d(B) we could see the velocity vec-
tors having the proper orientation, and a rather big
magnitude. The last instance, 6c(C), is taken with
the plane considerably close to the camera and with
a smaller rotation speed; the centre of rotation is
in the upper left corner, where the pixels are rather
discrete. A smooth Optical Flow map is presented
in figure 6d(C) with the vectors having the correct
orientation, circular around the upper left corner in
the location of the centre of rotation, and having an
almost constant magnitude.

4The image is rotated by 90◦ due to the way Matlab is han-
dling the images; taking that into account, the spiral binding
of some of the books is quite obvious.
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Figure 6: (a),(c)Three Images with motion blur ,The Optical Flow map of (a) and (c) using a 64×64 window
with a step of 20 pixels, with zero padding and Gaussian masking is presented at (b) and (d)

5 Conclusions

In this paper a new approach calculating the opti-
cal flow map using motion blur is formulated and
evaluated experimentally. An algorithm is presented
for computing the optical flow from a single motion-
blurred image, using only the information present in
the structure imposed on the image by the motion
blur.

The algorithm can be considered as operating in
two steps. For each patch of the image the direction
of motion is first determined and then the speed in
that direction is recovered. The algorithm operates
in the frequency domain, where it exploits the fact
that motion blur introduces a characteristic ripple
in the power spectrum. The orientation of these rip-

ples in the 2D power spectrum is perpendicular to
the direction of the motion blur. A key element of
the algorithm developed in this thesis is the robust
and efficient identification of the orientation of these
ripples by making use of steerable filters . In the ex-
perimental results, the orientation of motion blur is
often recovered to within just a few degrees.

Once an accurate estimate of the orientation of
the motion blur is known, the speed of motion, or
the spatial extent of the blur, can be computed using
a modified form of cepstral analysis . The first step
in this procedure is to collapse the 2D log power
spectrum into a 1D signal along the line indicating
the direction of motion. The frequency of the ripple
in the resulting 1D signal can be identified by taking



a further Fourier Transform and locating a negative
peak.

There are some limitations for the applicability
of this algorithm that are worth noting. Most im-
portantly the algorithm depends on the presence of
texture in the image, since the blur in a region with
homogeneous brightness is undetectable. The mag-
nitude of motion blur that can be detected is limited
by the size of the image patch being analyzed. Also,
if the motion blur is too small, on the order of just
a few pixels, it becomes indistinguishable from other
small-scale features, such as texture, noise, or out-
of-focus blur.

This algorithm has been implemented and evalu-
ated experimentally using artificial and natural im-
ages. The results acquired are very promising: the
orientation of the velocity vector is accurately esti-
mated (1◦ to 3◦ average error), and the magnitude
calculations are satisfied for qualitative estimations.
Our algorithm has the advantage of exploiting infor-
mation in a motion-blurred image that traditional
motion analysis methods have tended to ignore. It
has also the added advantage of providing an optical
flow map from a single image, instead of a sequence
of images. The algorithm also lends itself easily to
efficient parallel implementation.
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