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ABSTRACT

In this paper a new technique for calculation of the
optical flow is presented. When there is motion in the
observed scene, an image taken will be motion blurred
(to a degree depending on the exposure time). Up to
now most of the algorithms for estimating the motion
in a scene ignored motion blur and treated it as noise.
On the contrary, motion blur is structured information
and in certain cases can be used to infer the velocities
locally. This new approach uses the information of the
motion blur in the frequency domain to extract the
orientation and the magnitude of the velocity - optical
flow.1

1. INTRODUCTION

One of the fundamental problems in early Computer
Vision is the measurement of motion in an image, fre-
quently called optical flow. In most biological visual
systems, the analysis of motion is critical. During the
last twenty years many algorithms have been proposed
to calculate the optical flow. An early approach is that
of Horn and Schunck [9], who used a differential ap-
proach. Since then many other algorithms have been
proposed. These can be divided into different cate-
gories according to the way they handle the data used
to calculate the optical flow. The most general cate-
gories are: differential methods, correspondence meth-
ods, and region based matching, in 2D or 3D [1], [15],
[3]. The problem of estimating the optical flow has re-
ceived much attention because of its many different ap-
plications. Tasks such as passive scene interpretation,
image segmentation [10], surface structure reconstruc-
tion, inference of egomotion, and active navigation [8],
[12] all use optical flow as input information.

1Appeared in “IEEE Signal Processing Society, Interna-
tional Conference in Image Processing”, Lausanne, Switzer-
land, Sep. 1996.

2. BACKGROUND

When the exposure time for the image is large enough,
it is inevitable that there will be blur in the image due
to relative motion between the camera and the scene.
Most of the proposed algorithms up to now either ig-
nore motion blur or treat it as another source of noise.
Consequently, most motion estimation algorithms con-
sider optical flow with displacements of only a few pix-
els per frame, and most of them use more than one
frame. This limits the applications to slower motions
and fails to seriously address the issue of motion blur;
moreover, it works on images that are considered to
be taken with infinitely small exposure time, more or
less in a “stop and shoot” approach. This can be a
limitation in real time applications. It is worth noting
that the use of multiple images increases the amount of
data needed, thus demanding more memory and tak-
ing more time. Also, as most of these algorithms work
on a series of images by calculating the displacement
of every pixel from image to image, they ignore any
information about motion that exists within each sin-
gle image. As the blur created by motion extends only
across the orientation of the motion and for as much
as the magnitude, it is clear that information about
the velocity vector could be extracted from it. Motion
blur is of particular interest in the biological research
and many studies about its significance in the percep-
tion of the world have been done [2], [7], [4]. Earlier
work in the estimation of the motion blur parameters
has used different methods such as the bispectrum [5],
or the Discrete Cosine Transform [16]; in both cases
the orientation of the motion was assumed known. In
this work we avoid this rather unrealistic simplifying
assumption.

3. ALGORITHM DESCRIPTION

In this paper we have developed and evaluated a new
approach to the problem of visual motion estimation.
The algorithm we have developed is based on interpret-
ing the cue of motion blur to estimate the optical flow



field in a single image. A key observation is that mo-
tion blur introduces a characteristic structure, a ripple
(figure 1b), in the Fourier transform, that has the same
orientation as the motion and period equivalent to the
magnitude of the blur. This can be detected and quan-
tified using a modified form of cepstral analysis. Unlike
classical approaches to visual motion analysis that rely
upon operators tuned to specific spatial and temporal
frequencies at specific orientations, our new approach
makes use of all the information that can be gathered
from a patch of the image and is thus quite robust.
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Figure 1: A natural image artificially blurred (a), its
Fourier Spectrum (b), the Fourier Spectrum collapsed
(c), and the Optical flow Map (d)

In order to calculate the velocity vector in a posi-
tion we take an image patch around the position, mask
it with a Gaussian filter in order to reduce the ringing
effect, and zero pad it. The first step in our motion
blur analysis is to compute the logarithm of the mag-
nitude of the Fourier Transform of that image patch.
Motion blur leads to a tell-tale ripple, centered at the
origin, stretched across the orientation of the velocity
vector (figure 1b). This orientation can be reliably de-
termined, even in the presence of noise, by using a sec-
ond Gaussian derivative filter aligned to the orientation
of the motion. In order to do this we have to calculate
the response of the Power Spectrum in all orientations
and choose the maximum, this is possible in O(n) as
the second derivative of the Gaussian filter belongs to
a family called “steerable filters” [6], whose response
RGθ2 can be calculate at any angle θ (as in equation 1)

based only on the responses of three basis filters (see
table 1). The angle at which this filter gives the maxi-
mum response is the orientation of the velocity vector.

RGθ2 = ka(θ)RG2a + kb(θ)RG2b + kc(θ)RG2c (1)

G2a = 0.921(2x2 − 1)eµ ka(θ) = cos2(θ)

G2b = 1.843xyeµ kb(θ) = −2 cos(θ) sin(θ)

G2c = 0.921(2y2 − 1)eµ kc(θ) = sin2(θ)

µ = −(x2 + y2)

Table 1: The three basis filters and their interpolation
functions

The two dimensional signal is too noisy to provide
robust results for the magnitude of the motion. There-
fore, the magnitude of the velocity vector, which is re-
lated to the period of the ripple, can then be deter-
mined by first collapsing the log spectrum data into
an one dimensional signal (see figure 1c). As can be
seen by comparing the figures 1c and 2a the shape of
the one dimensional signal is almost identical to that

of the sinc function (sinc(x) = sin(x)
x

). This comes
as no surprise as the sinc function is the result of the
Fourier Transform on the one dimensional blur. Con-
sequently, in order to extract the period of the ripple a
second Fourier transform is performed, thus providing
the Cepstrum of the signal [11], in which the magnitude
of the velocity is clearly identified by a negative peak
(see figure 2b) [13] [14].
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Figure 2: The sinc function (a), the Cepstrum of the
collapsed signal (b)

The computational complexity of this algorithm
is bounded by the Fast Fourier Transform operation,
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Figure 3: Real World experiments.

which is O(n log n), where n is the number of pixels
in the image patch. Applying this analysis throughout
the image provides an estimation of the complete op-
tical flow field. In figure 1d we could see the Optical
Flow map of the image in figure 1a, when a window
64 × 64 was used over a grid of 10 pixels. A hard-
ware implementation of the FFT could accelerate the
process.

4. RESULTS

Several experiments have been conducted using sta-
tionary images artificially blurred (see fig. 1a, veloc-
ity map fig. 1d), and real images taken by a camera
with the existence of relative motion between the cam-

era and the scene. In the case of synthetic images a
digital image was convolved with a kernel simulating
the effects of motion blur (for better results the ker-
nel was created by using anti-aliasing line techniques).
The orientation was recovered with an average error of
1◦ − 3◦, and the magnitude to 4-6 pixels.

In the experiments with real world pictures a differ-
ent setup was used. The camera was held steady and a
board painted with random dots was moved relative to
it. In the figure 3a three instances have been recorded,
in (A) and (B) the board is moving away from the
camera (dilation) and in (C) it is moving parallel to
the imaging plane (translation). The orientation and
the magnitude have been calculated quite accurately
in the velocity maps in figure 3b. More precisely, in



(A) the center of expansion is accurately positioned at
the center of the image, while in (B) it can be seen at
the left side just bellow the center of the image. In
figure 3c the first picture (A) is taken by translating
the camera across a bookshelf, motion that is clearly
visible in the velocity map. The second two pictures
(B) and (C) have been taken with the board spinning
under the camera, motion that is accurately displayed
in their velocity maps accordingly (Fig. 3d), while the
centers of rotation could be located in both cases. Al-
though, no quantitative error measures could be ob-
tained, as the motion were not controlled, an examina-
tion of the the velocity maps proves them qualitatively
correct. Moreover, the qualitative observation in con-
junction with the numerical results from the synthetic
images, shows that the algorithm accurately describes
the Optical Flow.

5. SUMMARY

In this paper a new approach calculating the optical
flow map using motion blur is formulated and evaluated
experimentally. An algorithm is presented for comput-
ing the optical flow from a single motion-blurred image,
using only the information present in the structure im-
posed on the image by the motion blur. The results
acquired are very promising: the orientation of the ve-
locity vector is accurately estimated (1◦ to 3◦ average
error), and the magnitude calculations are satisfied for
qualitative estimations. Our algorithm has the advan-
tage of exploiting information in a motion-blurred im-
age that traditional motion analysis methods tended
to ignore. It has also the added advantage of providing
an optical flow map from a single image, instead of a
sequence of images.
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