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Abstract

A number of active contour models have been proposed which unify the curve evolution

framework with classical energy minimization techniques for segmentation, such as snakes.

The essential idea is to evolve a curve (in 2D) or a surface (in 3D) under constraints from

image forces so that it clings to features of interest in an intensity image. Recently the

evolution equation has been derived from �rst principles as the gradient ow that minimizes

a modi�ed length functional, tailored to features such as edges. However, because the ow

may be slow to converge in practice, a constant (hyperbolic) term is added to keep the

curve/surface moving in the desired direction. In this paper, we derive a modi�cation of

this term based on the gradient ow derived from a weighted area functional, with image

dependent weighting factor. When combined with the earlier modi�ed length gradient ow

we obtain a pde which o�ers a number of advantages, as illustrated by several examples of

shape segmentation on medical images. In many cases the weighted area ow may be used

on its own, with signi�cant computational savings.

Keywords: Curve evolution, snakes, edge capturing, gradient ows.

1 Introduction

In the application of curve evolution theory to visual shape analysis, Kimia, Tannenbaum and

Zucker introduced a reaction-di�usion space for shape representation [16, 18, 17]. Using a reaction-

di�usion model from mathematical physics a planar shape is evolved with a velocity vector in the

direction normal to the moving front, which consists of two terms: a constant (hyperbolic) term,

and a curvature (parabolic) term. The key idea is to play o� one term against the other: the

constant motion term leads to the formation of shocks from which a representation of shape can

be derived, and the di�usive curvature term smoothes the front, which is essential for distinguishing

more signi�cant shape features from less signi�cant ones.

This type of technique was introduced into shape modelling by Casselles et al. [7] and Malladi et

al. [19], via the addition of a multiplicative image gradient stopping term. This has led to powerful

new techniques for edge capturing. These active contour models have the signi�cant advantage over

classical snakes that changes in topology due to the splitting and merging of multiple contours,
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are handled in a natural way. Along these lines, Tek and Kimia [28] have further suggested a

reaction-di�usion space of bubbles, where in place of a single contour, a number of bubbles are

simultaneously placed and grown from homogeneous regions of the image.

Against this background, in several independent works [8, 13, 14, 26] a new active contour model

was proposed which uni�ed the curve evolution approaches with the classical energy minimization

methods [12, 29, 5]. The technique is motivated by the Euclidean curve shortening equation which

de�nes the gradient direction in which the Euclidean perimeter is shrinking as fast as possible.

The key insight is to multiply the Euclidean arc-length by a function tailored to the features of

interest in the intensity image, and then to write down the resulting gradient evolution equations.

Mathematically, this amounts to de�ning a new metric in the plane tailored to the given image, and

then computing the corresponding gradient ow. This leads to new snake models which e�ciently

attract the evolving front to features such as edges. A viscosity analysis of the evolution equation

demonstrates the existence and uniqueness of a solution to the partial di�erential equation and

provides theoretical justi�cation for its use.

Whereas the above method motivates the use of a curvature term in shape modelling, the

ow can be unacceptably slow to converge in practice. Therefore, the authors of [8, 13, 14, 26]

follow [7, 19] by adding a constant ination term to keep the curve moving in the desired direction.

Our main contribution in this paper is the modi�cation of this hyperbolic term with one derived

from minimizing a certain weighted area energy functional. More precisely, in analogy to the

case of Euclidean arc-length we modify the in�nitesimal Euclidean area by a conformal factor

and compute the gradient ow for the modi�ed area functional. The derived ow turns out to

have two components, one which is constant and one which depends on the conformal factor as

well as the evolving curve. When combined with the weighted length minimizing ow derived in

[8, 13, 14, 26], we obtain a partial di�erential equation whose parabolic and hyperbolic components

each have consistent interpretations as gradient ows.

In application to shape segmentation the new ow exhibits a stronger attraction force to

features of interest than the constant ination term previously used, due to the inclusion of a

new doublet term. In fact, in several numerical experiments we found the conformal area ow to

be su�cient to segment the image. Since this ow requires the computation of only �rst-order

derivatives, it o�ers signi�cant computational savings over the weighted length minimizing ow.

As an aside we should add that our original interest in deriving the weighted area ow was in
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application to shape analysis following [16, 18, 17]. The di�culty with employing that reaction-

di�usion model directly is that the slightest bit of di�usion tends to dominate, preventing the

formation of generic �rst-order shocks which are key to shape representation. In a separate pa-

per [27], we will show how to design the conformal factor in the weighted area ow such that the

pde initially mimics parabolic behavior (allowing for degrees of smoothing) but later becomes a

pure constant motion ow leading to the formation of the generic shocks of the pure reaction axis,

which are equivalent to Blum's skeleton.

The paper is organized as follows. In Section 2 we review the relationship between the two

components of the reaction-di�usion model and gradient ows, present the evolution equation of

the weighted length minimizing ow derived in [8, 13, 14, 26], and then introduce and derive the

weighted area minimizing gradient ow. In Section 3 we review the level set representation for

curves owing according to functions of curvature due to Osher and Sethian [21, 23, 24, 25], which

is the basis of their numerical algorithm for simulation which we utilize. In Section 4 we review

the past work on shape modelling and propose our new evolution equation, the linear combination

of the weighted length and weighted area gradient ows. We further show how our models may be

easily extended to the 3D case in Section 5. In Section 6 we present several numerical simulations

that illustrate the advantages of the new ow for edge capturing. Finally in Section 7, we briey

summarize our results, and discuss some future work.

2 Weighted Gradient Flows

The foundation of our approach is the mathematical theory of curves owing in the plane with

speed a function of curvature. In [16, 18, 17], the two key components of this motion were

combined into a reaction-di�usion space for shape analysis. More precisely with � the curvature,

N the inward unit normal, and C the curve coordinates, consider families of plane curves owing

according the equation
@C

@t
= (�+ ��)N (1)

where �; � 2 R; � � 0. In this section we shall examine the weighted generalizations of the two

parts of this evolution.
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2.1 Curvature Motion

Referring to Eq. 1, we take � = 0; � = 1, and so we get the family of plane curves owing according

to the geometric heat equation
@C

@t
= �N : (2)

This equation has a number of properties which make it very useful in image processing. In

particular, (2) is the Euclidean curve shortening ow, in the sense that the Euclidean perimeter

shrinks as quickly as possible when the curve evolves according to (2) [10, 11]. Since we will need

a similar argument for subsequent models, let us work out the details.

Let C = C(p; t) be a smooth family of closed curves where t parametrizes the family and p

the given curve, say 0 � p � 1. (Note we assume that C(0; t) = C(1; t) and similarly for the �rst

derivatives.) De�ne the length functional

L(t) =
Z 1

0
k
@C

@p
k dp:

Di�erentiating (taking the \�rst variation" with respect to t), and using integration by parts, one

can show that

L0(t) = �
Z L(t)

0
h
@C

@t
; �Ni ds ;

where ds =k@C
@p
k dp denotes arc-length. Thus the direction in which L(t) is decreasing most rapidly

is when @C
@t

= �N : Thus (2) de�nes a gradient ow.

A much deeper fact is that simple closed curves converge to \round" points when evolving

according to (2) without developing singularities. This means that if we consider an associated

family of dilated curves of constant area (look at the evolving family of shrinking curves under a

\magnifying glass"), the curves of the family approach a circle; see [10, 11]. This fact is the basis

for the nonlinear geometric scale-spaces studied recently in [2, 1, 16, 18].

2.2 Weighted Length Gradient Flows

In the recent papers [8, 13, 14, 26], the standard Euclidean metric ds2 = dx2+dy2 of the underlying

space over which the evolution takes place is modi�ed to a conformal metric ds2� = �2(dx2+ dy2).

Using this metric, the \�-length" of the curve is de�ned as

L�(t) =
Z 1

0
k
@C

@p
k �dp: (3)
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Here � : R2 ! R is a positive di�erentiable function de�ned on the image plane. By requiring

the �-length to shrink as quickly as possible, the following ow is obtained

Ct = f���r� � NgN : (4)

Note that this last equation consists of two terms. The �rst is the curvature term of equation (2)

multiplied by �, and the second depends on the gradient of the conformal factor. In application

to shape modelling the latter term acts like a doublet which attracts the active contour to the

feature of interest. We will now treat the constant speed term of the reaction-di�usion model in

the same way.

2.3 Constant Motion

Again, referring to equation (1), we take � = 1; � = 0; which gives the constant motion ow

Ct = N : (5)

In analogy to the geometric heat equation which minimizes Euclidean length, this evolution may

be derived as the gradient ow which locally minimizes area. Indeed, for the family of closed

curves de�ned above, the area functional is given by

A(t) = �
1

2

Z L

0
hC;Ni ds = �

1

2

Z 1

0
hC;

0
B@ �yp

xp

1
CAi dp:

Again, taking the �rst variation

A0(t) = �
1

2

Z 1

0
hCt;

0
B@ �yp

xp

1
CAi dp � 1

2

Z 1

0
hC;

0
B@ �ypt

xpt

1
CAi dp:

Using integration by parts for the second integral and changing to arc-length parametrization

A0(t) = �
Z L

0
hCt;Nids:

Thus the direction in which A(t) is decreasing most rapidly (locally) is when Ct = N and (5) also

de�nes a gradient ow.

Remark.

It is important to note that equations (2) and (5) are guaranteed to give the direction of maximal
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decrease of their respective functional only locally. Global existence results are much deeper. In

fact, we have already stated that a smooth embedded curve shrinking under (2) remains regular,

that is this ow is indeed smoothing. The constant motion ow (5) on the other hand can cause

a smooth curve to evolve to a singular one. In fact, this is one of its desirable characteristics since

the resulting shocks are important features for the computational theory of shape in [16, 18, 17].

2.4 Weighted Area Gradient Flows

Our strategy, in analogy to what has been done for length, is to consider area in the conformal

metric. Hence our starting point is the modi�ed area functional

A�(t) = �
1

2

Z L(t)

0
�hC;Ni ds = �

1

2

Z 1

0
� hC;

0
B@ �yp

xp

1
CAi dp:

Here � : R2 ! R is a positive di�erentiable function de�ned on the image plane. We now derive

the ow associated with the �-area, A�: As above, di�erentiating the functional with respect to t

will give us the evolution equation for the curve:

�2A0�(t) = I1 + I2 + I3

with

I1 =
Z L

0
hr�; Cti hC;Ni ds;

I2 =
Z L

0
� hCt;Ni ds;

I3 =
Z 1

0
h� C;

0
B@ �ypt

xpt

1
CAi dp:

For I3 using integration by parts, we get

I3 = �
Z 1

0
h(� C)p;

0
B@ �yt

xt

1
CAi dp:

We will use the following notation: let V = (a; b) be a vector, its \perp" is de�ned by

V ? = (�b; a):
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With respect to the scalar product we have the following properties

hV1; V
?
2 i = �hV ?

1 ; V2i

hV ?
1 ; V

?
2 i = hV1; V2i: (6)

Using this, we rewrite I3 as follows

I3 = �
Z 1

0
h(� C)p; (Ct)

?i dp

=
Z 1

0
hCt; (� C)

?
p i dp:

But

(� C)p = hr�; CpiC + � Cp

) (� C)?p = hr�; CpiC
? + � C?p ;

hence

I3 =
Z 1

0
hCt; hr�; CpiC

? + � C?p i dp

=
Z 1

0
hr�; CpihCt; C

?i dp +
Z 1

0
�hCt; C

?
p i dp:

Using equation (6) this can be rewritten as

I3 =
Z 1

0
hCt; C

?ihr�?; C?p i dp +
Z 1

0
�hCt; C

?
p i dp;

and �nally changing to arc length parametrization

I3 =
Z L

0
hCt; C

?ihr�?;Ni ds +
Z L

0
hCt; �Ni ds:

Grouping everything together, we get

�2A0�(t) =
Z L

0
hCt; hC;Nir�+ 2�N + hr�?;NiC?i ds:

Therefore for A� to decrease as fast as possible, take

Ct = �N +
1

2

h
hC;Nir� + hr�?;NiC?

i
:

Now decomposing r� and C? in the Frenet frame fT;Ng; and dropping the tangential terms,

which can always be done by reparametrizing the curve, we end up with

Ct =
�
�+

1

2

h
hr�;NihC;Ni + hr�?;NihC?;Ni

i�
N :
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The last result can be simpli�ed further. Writing r� = (�x; �y), C(p; t) = (x(p; t); y(p; t)) and

expanding the scalar products we obtain

hr�;NihC;Ni + hr�?;NihC?;Ni = hC;r�i:

Hence the �-area minimizing evolution equation takes on the following simple form

Ct =
n
�+ 1

2
hC;r�i

o
N : (7)

Note that since � is a globally de�ned function on the image plane, (7) de�nes a hyperbolic

equation.

Remarks.

(1) It is very interesting to note that minimizing the area functional in an a�ne sense leads to the

a�ne curve shortening ow introduced in [1, 22]; see [20] for the details. If the area functional is

modi�ed by a stopping term, and the minimizing ow is computed again in this a�ne invariant

sense, one gets an a�ne invariant snake model based on �1=3; [20]. This is the a�ne analogue of

the work in [8, 13, 14, 26].

In the present work, we are modifying the area functional in the usual Euclidean L2 sense

which leads to the hyperbolic equation (7).

(2) As pointed out by the referee, an equation of the form

Ct =  N ; (8)

may be derived by minimizing a weighted area functional of the formZ
 dxdy:

Via Green's theorem, this is equivalent to minimizing the modi�ed area function A�(t) proposed

above. In fact using Green's theorem, we have that

A�(t) = �
1

2

Z L(t)

0
�hC;Nids =

1

2

Z Z
div

0
B@
0
B@ x

y

1
CA�

1
CA dxdy:

Thus for given  , we may �nd �, by solving

 =
1

2
div

0
B@
0
B@ x

y

1
CA�

1
CA ;
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and conversely.

We believe however that writing the weighted ow in the form (7) and using the functional

A� o�ers a number of important advantages, most important of which is the explicit doublet term

hC;r�i which has the e�ect of stopping the evolving contour at an edge, as we will subsequently

see.

3 Level Set Representations

In this section we review the level set representation for curves owing according to functions of

curvature, due to Osher and Sethian [21, 24, 25], which is the basis for their numerical algorithm

for curve (and hypersurface) evolution which we utilize. Let C(p; t) : S1� [0; � )! R2 be a family

of curves satisfying the following evolution equation:

@C

@t
= SN : (9)

The curve C(p; t) is represented by the zero level set of a smooth and Lipschitz continuous function

	 : R2 � [0; � ) ! R, given by fX 2 R2 : 	(X; t) = 0g: Since C(p; t) is on the zero level set, it

satis�es

	(C; t) = 0 : (10)

By di�erentiating (10) with respect to t, and then with respect to the curve parameter p, it can

be shown that

	t = S kr	k : (11)

Equation (11) is solved using a combination of straightforward discretization and numerical tech-

niques derived from hyperbolic conservation laws. The curve C, evolving according to (9), is then

obtained as the zero level set of 	. As an example, noting that

�+
1

2
(x�x + y�y) =

1

2
div

0
B@
0
B@ x

y

1
CA�

1
CA ; (12)

the level set representation of the �-area minimizing ow (7) is given by

	t =
1
2div

0
B@
0
B@ x

y

1
CA�

1
CA kr	k : (13)
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Similarly, the �-length minimizing ow (4) in level set form is

	t =
�
��+ hr�; r	

kr	ki
�
kr	k : (14)

4 Shape Modelling

In this section we propose the application of a combined length and area minimizing ow to the

problem of shape segmentation. We begin with a brief review of earlier work in the area. Caselles

et al. [7] and Malladi et al. [19] proposed an active contour model based on the following level

set formulation:

	t = �(x; y)

 
div

 
r	

kr	k

!
+ �

!
kr	k : (15)

Here the potential �(x; y) is constructed to have local minima at edges so that the evolving curve

stops at them. For example, in [7, 19] �(x; y) takes the form:

� =
1

1+ krG� � Ikn
(16)

where I is the grey-scale image and G� is a Gaussian smoothing �lter. Building upon this work, Tek

and Kimia suggested a reaction-di�usion space of bubbles [28] where the key idea is to randomly

initialize a number of \seeds," instead of a single contour. This allows for multiple structures to

be captured, such as objects with holes.

It is important to note that in the above methods, the Euclidean curve shortening part of the

evolution equation is the gradient ow for shrinking the perimeter of the curve as fast possible; Sec-

tion 2. As explained earlier, in [8, 26, 13, 14] this model is revised and given theoretical justi�cation

by replacing the Euclidean metric ds2 = dx2+ dy2 with the conformal metric ds2� = �2(dx2+ dy2)

and deriving the associated �-length gradient ow. In the resulting evolution equation (14) the

second term hr�;r	i acts as a doublet, attracting the curve when it is in the vicinity of an edge

1. Nevertheless, the ow su�ers from the practical limitation that the simulation can be extremely

slow to converge. As a remedy, the authors of [8, 26, 13, 14] follow [7, 19] by adding a constant

(hyperbolic) term to keep the curve moving in the desired direction. The calculation of Section 2

1In fact due to the doublet the front will pass back and forth across the edge, but will not stray from it. In

contrast in the earlier methods which rely on Eq. 15 the front will eventually pass through and move away from

the edge.
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suggests the modi�cation of replacing the hyperbolic term with the �-area minimizing ow. The

combined equation in level set form is given by:

	t =

"
�

 
��+ hr�;

r	

kr	k
i

!
kr	k

#
| {z }

��length

+

2
641
2
div

0
B@
0
B@ x

y

1
CA �

1
CA kr	k

3
75

| {z }
��area

: (17)

Note that we have put in a \fudge" factor � in order to make the units compatible (area and

length cannot be added) in (17). Since � is a globally de�ned function which depends on the given

image, the �-area part indeed de�nes a Hamilton-Jacobi equation. Notice by equation (12) that

this �-area minimizing component provides the constant inationary term (with � = 1) used in

the earlier approaches to shape modelling [7, 19, 28, 8, 13, 14, 26], as well as a second doublet

term which provides an additional attraction force when the front is in the vicinity of an edge. We

will illustrate the application of (17) with several numerical simulations of shape segmentation in

Section 6.

5 Volumetric Extensions

In this section we develop the 3-D extension of our model, by modifying the Euclidean volume in

this case by a function which depends on the salient features which we wish to capture. In order

to do this, we will need to set up some notation. (For all the relevant concepts on the di�erential

geometry of surfaces, we refer the reader to [6].)

Let S : [0; 1]� [0; 1]! R3 denote a compact embedded surface with (local) coordinates (u; v).

Let H denote the mean curvature and N the inward unit normal. We set

Su :=
@S

@u
; Sv :=

@S

@v
:

Then the in�nitesimal area on S is given by

dS = (kSuk
2kSvk

2 � hSu;Svi
2)1=2dudv:

Let � : 
 ! R be a positive di�erentiable function de�ned on some open subset of R3. The

function �(x; y; z) will play the role of the \stopping" function � given above in the 2D case. By

considering the volume functional

V (t) := �1=3
Z
hS;NidS;
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and using integration by parts and standard properties of the cross product from vector calculus,

it is easy to show that

V 0(t) := �
Z
hSt;NidS:

Hence the direction in which volume is shrinking most rapidly (using only local information) is

given by

St = N :

As above, we modify dS in the following manner:

dS� := �dS:

Then, if we consider the modi�ed volume functional

V�(t) := �1=3
Z
�hS;NidS;

and perform a similar computation, we get that

St = f�+ 1
3
hS;r�igN : (18)

The level set version of this may be computed to be

	t =
1
3
div

0
BBBB@

0
BBBB@
x

y

z

1
CCCCA �

1
CCCCA kr	k: (19)

Now the 3D extension of (4) was derived in [13, 14, 30, 9] as

@S

@t
= �HN �r�: (20)

The level set version of (20) is given in terms of 	(x; y; z; t) by

	t =

 
� div

 
r	

kr	k

!
+ hr�;

r	

kr	k
i

!
kr	k : (21)

Therefore, putting the two ows together we get the three dimensional extension of (17):

	t =

"
�

(
� div

 
r	

kr	k

!
+ hr�;

r	

kr	k
i

)
kr	k

#
| {z }

��surface�area

+

2
66664
1

3
div

0
BBBB@

0
BBBB@
x

y

z

1
CCCCA �

1
CCCCA kr	k

3
77775

| {z }
��volume

: (22)
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Figure 1: The original images: a 256x256 MRI slice of a brain (left), a 256x256 MRI short axis view

of a heart (middle), and a 276x268 CT bone image (right).

Note that we have again put in a \fudge" factor � in order to get compatible units in the sum on

the right side of (22). Obviously the argument extends to hypersurfaces in Rn.

Remark.

The equations considered in the text are special cases of a nonlinear di�usion equation of the form:

	t = �(x)aij(r	)@ij	+H(x;r	); x = (x1; : : : ; xn): (23)

As in [3, 7, 13], under mild hypotheses obeyed by our contour models, one may show that

Theorem 1 There is a unique viscosity solution of (23) in L1(0; T ;W 1;1(Rn)).

6 Examples

An important consideration for the numerical simulation of shape modelling ows is that for any t

the image-based stopping term � has proper meaning only on the zero level set of the embedding

surface 	. In order to extend this inuence to other level sets we use the narrow band technique

of [19]. We compute the di�usive �-length minimizing component using central di�erences and

the hyperbolic �-area minimizing one using upwind schemes.

As observed in [13] a di�culty with using a large constant motion force � (which is desirable

for fast convergence) in equation (15) is that it may cause overshooting of the edge since � may

not be rigorously zero on the contour to be captured. The stopping behavior of the hr�;r	i
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term introduced in [8, 13, 14, 26] can help by arresting the evolution of the front in the vicinity

of edges. However, in our experience with comparative simulations between this last technique

and our combined �-length and �-area minimizing ow, we have found that the latter o�ers at

least two advantages. First, the hyperbolic component of the ow is now adaptive, adjusting itself

according to the local gradient of the scalar potential � in the vicinity of the evolving curve C.

Second, the doublet term hr�; Ci in (17) provides an additional attraction force in the vicinity of

edges, allowing for a larger weight to be assigned to the �-area component of the ow.

We consider several examples of shape segmentation using the 2D medical images shown in

Figure 1: a 256x256 MRI section of a brain, a 256x256 MRI image showing the short axis view

of a heart, and a 276x268 CT image of a bone2. For all simulations � was constructed as in (16),

but with curvature based smoothing of the original image [4, 15], with n = 2 for the MRI images

and n = 4 for the CT image.

Figures 2 and 3 depict the segmentation of the brain and heart ventricles, respectively, with

the evolving curve overlayed in white on the curvature smoothed original. Observe that for each

image the front converges on the desired boundary. We should note that when run with the

same parameters (�t, and the weights for the parabolic and hyperbolic components), the ow

of [8, 13, 14, 26] produces comparable results.

The advantages of using the �-area component emerge when the above ows are applied to

the more di�cult CT bone image, again using identical parameters3. Observe that whereas our

new ow converges on the desired boundary, Figure 4 (left), the ow of [8, 13, 14, 26] eventually

\leaks" through, Figure 4 (right).

Next, using the same parameters as in Figure 2, we examine the e�cacy of using only the �-

area component for segmentation in Figure 5, under three di�erent initial conditions. This o�ers

signi�cant computational savings because only �rst-order derivatives have to be computed. Also,

in most cases the front converges in fewer iterations since it is no longer constrained to remain

smooth. We note that although the evolution is not translation invariant due to the doublet term

hr�; Ci, the �nal segmentations in Figures 5 a) and 5 b) are basically identical except for the

piece of noise captured in the latter. This is due to the simple fact that in case (a) the structure

2The CT bone image is contrast normalized for display purposes since the original has pixel values ranging only

from 0 to 38.
3Note that here the direction of the hyperbolic component has been reversed, so it is actually a �-area maximizing

ow.
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was not enclosed, while in case (b) it was enclosed by the initial contour. The length minimizing

component has some advantage for such \pieces of noise" since typically they are small structures

of high curvature, through which the additional length minimizing component would push through.

Finally, in Figure 6 we compare segmentation using the �-area component against segmentation

with pure constant motion (i.e. without the doublet term) in the presence of gaps, such as those

caused by blurred edges. The simulations illustrate that whereas the doublet term does add a

degree of robustness when the gaps are small, in the presence of larger gaps the �-area ow will

eventually leak through. In such situations, the contribution of the �-length component is critical.

7 Conclusions

Curvature ows have proven to be a powerful tool for a variety of problems in image processing

and computer vision. In this paper we have proposed a conformal area based gradient ow for

image segmentation and edge �nding. This is to be used in conjunction with the conformal length

based gradient ows already proposed in the literature [8, 13, 14, 26]. As such, we believe that we

now have a rather complete picture for the use of such curvature-driven evolution equations for

segmentation. Experiments must still be run to study the e�cacy of the new ow for volumetric

imagery.

On the level of shape representation, our ow can be regarded as de�ning a \conformal skele-

ton." Indeed, we have been recently employing this ow for a theory of hyperbolic smoothing of

shapes, and to de�ne a new \reaction-di�usion" space for planar shape representation. The idea is

to use the stopping term to hierarchically remove noise before letting the hyperbolic morphological

component take over. This work will be described in our paper [27].
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