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Abstract

We have been developing a theory for the generic representation of 2-D shape, where

structural descriptions are derived from the shocks (singularities) of a curve evolution

process, acting on bounding contours. We now apply the theory to the problem of

shape matching. The shocks are organized into a directed, acyclic shock graph, and

complexity is managed by attending to the most signi�cant (central) shape components

�rst. The space of all such graphs is highly structured and can be characterized by the

rules of a shock graph grammar. The grammar permits a reduction of a shock graph

to a unique rooted shock tree. We introduce a novel tree matching algorithm which

�nds the best set of corresponding nodes between two shock trees in polynomial time.

Using a diverse database of shapes, we demonstrate our system's performance under

articulation, occlusion, and changes in viewpoint.

Keywords: shape representation; shape matching; shock graph; shock graph grammar;

subgraph isomorphism.

1 Introduction

Upon entering a room, one �rst notices the presence of a particular object, such as a dog,

before realizing it is either a Siberian Husky or that it is \Loki", a particular Siberian. This

example, modi�ed from important studies by Rosch [43], suggests that there is an organi-

zation to our object memory, and that this organization facilitates recognition. Initially,

particular instances are not recognized; rather, objects are �rst categorized generically at a

\basic level of abstraction" [43]. The object is recognized as belonging to the category|

dog|before more detailed, or subordinate levels, are re�ned. This motivating example is at

the heart of this paper: we seek a technique for object recognition based on such entry-level,

generic descriptions.
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1.1 Classical Aspects of Shape Recognition

Rosch's experimental observation that basic-level descriptions precede particulars was made

about the same time that Fu [15] and others were introducing syntactic pattern recognition.

Fu's goal was to de�ne a grammar for patterns, and then to specify automata that could

recognize this grammar. However, this program lost favor because there was no clear in-

dication of those pattern features on which the grammar should be based. Bounding and

interior image curves were typical, but the graph matching rapidly became intractable. Miss-

ing and bogus edges were a problem, and the complexity of curve possibilities exceeded the

grammars. With the exception of array grammars [44], little progress was made. Research

continues on graph isomorphism algorithms for vision applications, but examples are still

typically based on graphs derived from feature points and image curves [19]. Probability

measures have also been placed on images and image curves in an attempt to provide a

priori information suitable to guide matching [20].

Image curves are also at the heart of boundary-based descriptions, such as those of Ho�-

man and Richards [41], and alignment techniques, such as the one proposed by Ullman [5].

However, the Ho�man and Richards \codon" vocabulary is only an intermediate step toward

more abstract part descriptions, and remains to be completed. It is an attempt to restrict

the graph representation to the boundary, which eliminates contours that span several ob-

jects. In alignment schemes, the emphasis is not on boundary encoding, but on accounting

for the di�erences between an observed and a stored shape. A clever algorithm by Ullman

and Basri [56] interpolates from a linear combination of 2-D views, and impressive results

on a Volkswagen image were reported. However, to achieve these results, the edge maps

were manually edited so that only those appearing in all views were included [55]. In e�ect,

this implies that edges are signi�cant if and only if they appear in all views of an object

which, of course, is impossible to achieve in general. Furthermore, no acceptable solution for

automatically �nding edge correspondences has been o�ered.

Considering the boundaries of objects implies a viewpoint dependency to shape recog-

nition [8], but does not specify which features to use for each view. Aspect graphs were

introduced by Koenderink and van Doorn [25] to enumerate topologically-distinct views [26]
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via singular or catastrophic events. For example, when a cup is rotated, there is a par-

ticular viewpoint from which the handle just becomes visible; thereafter, only geometric

variations take place until, at another singular viewpoint, the handle disappears. However,

aspect graphs and other methods based on algebraic and di�erential invariants [13] were suc-

cessfully de�ned only for speci�c classes of algebraic surfaces that �t only few (man-made)

objects. The techniques are typically di�cult to extend to natural objects.

Computer vision approaches to view-based modeling fall broadly into two classes. First,

there are feature-based methods which represent each view as a collection of line segments,

curves, corners, regions, etc. [22, 10, 11, 39]. The success of such methods depends largely on

the extent to which the features are present and can be reliably extracted; once again they

are not easily applied to natural objects. Second, a number of appearance-based methods

have emerged which essentially treat the raw image as a single feature in a high-dimensional

space [54, 34]. Whereas such techniques might succeed at recognizing particulars of a speci�c

class, e.g., faces, they cannot predict entry-level categories because there is no abstraction

from image data to a model. Returning to the problem of database organization, such

techniques would succeed at �nding speci�c instances of Loki's body in a database of pho-

tographs of animals, but would fail at separating, for example, photographs of horses from

photographs of hands.

In important contrast to the boundary based techniques discussed earlier was Blum's [6]

medial axis transform|or skeleton|which preceded Rosch by about a decade. Blum's

skeleton is area-based, and provides a description of shapes via the loci of centers of covering

balls. The skeleton has the advantage of providing a di�erent (from Fu et al.) type of graph

on which to base matching, but again sensitivity causes problems. Proper skeletons can be

found interactively, but not automatically, and as with the Fu and the Ullman approaches,

the features have to be edited to provide a basis for matching. One option that is worth

stressing is the use of hierarchical skeletons [35], because it attempts to capture a notion of

\scale" for objects. This is important because, should such scales be available, coarse-to-�ne

matching strategies could be employed; see also Burbeck and Pizer [9].

In recent work, Sclaro� and Pentland have addressed the problem of 2-D shape matching
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using a modal representation corresponding to a shape's generalized axes of symmetry [47].

This compact representation has been used for indexing [46], and o�ers a frequency-like

(coarse to �ne) decomposition of a shape. However, its global nature makes it sensitive to

large occlusion. Zhu and Yuille have decomposed 2-D shapes into connected mid-grained

skeletal parts, and have designed a matching system where similarity between parts is com-

puted as a joint probability [57]. Whereas preliminary results are encouraging, several pa-

rameters have to be set, and there appears to be no hierarchy among the parts used for

matching. Furthermore, the model \... was created to deal with animate objects and would

have to be completely modi�ed to deal with man-made objects like houses and industrial

parts [57, p. 209]". Pauwels et al. have proposed the use of semi-di�erential invariants for

planar shape recognition under a�ne distortions, with some robustness to occlusion [33, 38].

Basri et al. have proposed various models for measuring the cost of deforming one con-

tour into another, while taking into account its part structure [4]. Gdalyahu and Weinshall

have also proposed metric functions for measuring the similarity between two closed planar

curves [18]. However, the previous three methods do not explicitly account for a shape's inte-

rior, which is key for determining more global properties such as symmetry. Finally, Fran�cois

and Medioni have proposed a connection hierarchy of parts for planar shape recognition [14],

obtained from an axial decomposition introduced in [42].

Among the many applications of curve evolution to problems in computer vision and

image processing, e.g., see [2, 45, 30], only a handful have addressed the problem of shape

representation. Tari et. al have proposed a linear di�usion equation which can be used to

build skeletal descriptions directly from greyscale images [52], and is computationally more

e�cient than those based on standard level set methods [36]. It leads to an approximation

of the reaction di�usion space introduced in [23]. Tek et al. have used an orientation

propagating distance function to extract symmetries from fragmented contours, labeling the

resulting singularities according to whether or not the colliding waves carry \true" orientation

information [53]. However, neither of the above e�orts have explicitly addressed the problem

of shape recognition, which is a key focus of this paper.

In summary, a substantial body of work on 2-D shape has contributed a positive set
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Figure 1: A coloring of shocks into four types. A 1-shock derives from a protrusion, and traces

out a curve segment of 1-shocks. A 2-shock arises at a neck, and is immediately followed by two

1-shocks owing away from it in opposite directions. 3-shocks correspond to an annihilation into

curve segment due to a bend, and a 4-shock an annihilation into a point or a seed. The loci of these

shocks gives Blum's medial axis.

of desiderata, although no technique exists that satis�es all of them. Thus, we seek a

representation that is viewpoint dependent to start; that is generic in the sense that a

notion of equivalence classes of (qualitatively similar) shapes emerges; that is applicable to

natural as well as man-made objects; that is reliably and stably computable; that is capable

of supporting e�cient (e.g., polynomial-time) recognition in the presence of occlusion and

noise, and that places special importance on certain boundary segments. We build our

representation on the singularities of a curve evolution process, described next. We shall

later abstract this representation into a graph that is particularly suited to e�cient and

generic shape matching.

1.2 Shapes and Shocks

Particular shapes can vary in detail from one another; variations between shapes derive from

an organization of these particular shapes into equivalence classes. Thus certain discrete

events are required to separate equivalence classes of continuous ones, and in mathematics

such discrete events derive from singularity theory [3]. Kimia, Tannenbaum, and Zucker [23]
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applied singularity theory to shape by exploring the consequences of slight boundary defor-

mations. Speci�cally, for simple closed curves in the plane the following evolution equation

was studied:

Ct = (1 + ��)N
C(s; 0) = C0(s):

(1)

Here C(s; t) is the vector of curve coordinates, N (s; t) is the inward normal, s is the path

parameter, and t is the evolutionary time of the deformation. The constant � � 0 controls the

regularizing e�ects of curvature �. When � is large, the equation becomes a geometric heat

equation; when � = 0, the equation is equivalent to Blum's grass�re transformation [7, 23].

In this paper, we shall only be interested in the latter case, under which the evolution

equation is hyperbolic and shocks [27], or entropy-satisfying singularities can form. Here we

shall ignore the dynamics of the shock formation process, and will consider only the static

picture obtained in the limit: the locus of shock positions gives Blum's medial axis. However,

even in this static limit, the shocks provide additional information beyond that available from

their loci: consider a \coloring" of the shocks according to the local variation of the radius

function along the medial axis (see Figure 1). The colored description provides a much richer

foundation for recognition than that obtained from an unlabeled (Blum) skeleton.

To illustrate the coloring, imagine traversing a path along the medial axis. At a 1-shock

the radius function varies monotonically, as is the case for a protrusion. At a 2-shock the

radius function achieves a strict local minimum such that the medial axis is disconnected

when the shock is removed, e.g., at a neck. At a 3-shock the radius function is constant along

an interval, e.g., for a bend with parallel sides.1 Finally, at a 4-shock the radius function

achieves a strict local maximum, as is the case when the evolving curve annihilates into a

single point or a seed.

With the above picture in mind, the coloring can be formalized as follows. Let X be

the open interior of a simple closed curve, and Me(X) its medial axis (the set of points

reached simultaneously by two or more �re fronts). Let B(x; �) be an open disk of radius

1This \parallel" condition reects the non-genericity of 3-shocks. Nevertheless, \bend"-like structures are

abundant in the world; consider the legs of a chair, the �ngers of a hand, or the tail of a dog. Numerical

techniques have been developed to regularize such con�gurations into 3-shocks [51].
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� centered at x 2 X, and let R(x) denote the radius of the largest such disk contained in

X. Let N(x; �) =Me(X) \B(x; �)nfxg de�ne a \punctured" �-neighborhood of x, one that

does not contain x itself. A medial axis point x 2Me(X) is

1. type 4 if 9� > 0 s:t: R(x) > R(y) 8y 2 N(x; �);

2. type 3 if 9� > 0 s:t: R(x) = R(y) 8y 2 N(x; �) and N(x; �) 6= ;;

3. type 2 if 9� > 0 s:t: R(x) < R(y) 8y 2 N(x; �) and N(x; �) 6= ; and N(x; �) is not

connected; and

4. type 1 otherwise.

It should be clear that there is a relationship between the above coloring and the velocity

function dR

dx
along the medial axis [48]. In separate work, we are investigating the Morse

function properties of the signed distance function, and the Arnold classi�cation of singular-

ities [3]. In Figure 7 we provide numerical examples of colored medial axis descriptions. As

we shall now show, the coloring coupled with a measure of signi�cance derived from the time

of shock formation, is the key to abstracting a representation that supports generic shape

matching.

2 The Shock Graph

We shall now abstract the system of shocks derived from the curve evolution process into a

graph, which we call the shock graph, or SG. This construction is inspired by Blum's classic

work on axis-morphologies, in which he explored the use of directed graphs based on the

medial axis for de�ning equivalence classes of objects [6]. The shock types will label each

vertex in the graph and the shock formation times will direct edges to provide an ordering

for matching, and a basis for subgraph approximation.

By the Jordan Curve Theorem, any simple closed curve divides the plane R2 into exactly

two components, one bounded and the other unbounded. We are interested in the bounded

interiors of Jordan curves.
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De�nition 1 A 2-D shape O is the bounded interior of a simple closed (Jordan) curve.

From the coloring of shocks into four types in the previous section, it can be seen that 2-

shocks and 4-shocks are isolated points, whereas 1-shocks and 3-shocks are neighbored by

other shocks of the same type. To build the shock graph we shall group together shocks

of the same type that form a connected component, denoting the groups with labels ~1; 2; ~3

and 4, and breaking apart the ~1's at branch-points.2 Let each shock group be indexed by

a distinct integer i, and let ti denote its time (or times) of formation, corresponding to the

radius function evaluated at the shocks in the group. Hence, ti will be an interval for a ~1;

for 2's, ~3's and 4's it will be a single number. Finally, let # denote a start symbol and � a

terminal symbol. The SG is a connected graph, rooted at a vertex labeled #, such that all

other (non-terminal) vertices are shock groups, and directed edges to non-terminal vertices

indicate the genesis of new shock groups.

De�nition 2 The Shock Graph of a 2-D shape, SG(O), is a labeled graph G = (V;E; ),

with:

� vertices V = f1; :::; ng;

� edges (i; j) 2 E � V �V directed from vertex i to vertex j if and only if i 6= j, ti � tj,

and i [ j is connected in the plane;

� labels  : V ! l, with l 2 f~1; 2; ~3; 4;#;�g; and

� topology such that, 8j 2 V with (j) 6= #; 9i 2 V with (i; j) 2 E.

The SG is built by \reversing" the grass�re evolution, analogous to growing a shape by

adding lumps of material onto its seeds. The children of the unique vertex labeled #, at

which the graph is rooted, are the last shock groups to form. Vertices with label � are leaves

of the SG, whose parents are the �rst shock groups to form. This reverse-time dependency

is important because the last shocks to form correspond to the most signi�cant (central)

shape features.

2The ~ symbol is used to denote a curve segment. A branch-point, where the maximal inscribed disc

\touches" the boundary at more than two points, will be shared by all ~1's that overlap at it.
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Proposition 1 Any 2-D shape O has a unique corresponding shock graph SG(O).

proof: The uniqueness of the skeleton S(X) follows from its de�nition as the union of

maximum open discs. Hence the medial axis Me(X), which is strictly contained in the

skeleton S(X) [48, pp. 382{383], is also unique. (In fact the two sets are very close since

Me(X) = S(X)[31].) The coloring of medial axis points into four types in Section 1 is

unique, which implies that a unique set of vertices exists for the corresponding SG. Finally,

by De�nition 2, the direction of an edge between two abutting vertices is ambiguous only

when ti = tj for all shocks in i and j. Due to the continuity of the radius function along the

skeleton [48, pp. 381{382], the only possibility is that the two vertices share the point where

they touch, in which case we have the contradiction that all shocks in i and j would lie in

the same ~3, and hence in a single vertex. The uniqueness of the shock graph follows. 2

2.1 The Shock Graph Grammar

The notion of entry-level categories for shape that we seek is intimately connected to the

topological structure of the shock graph. This structure is highly constrained because the

events that govern the birth, combination, and death of shock groups can be abstracted

into a small number of rewrite rules, shown in Figure 2. In analogy to Leyton's Process

Grammar [29], the rules have been grouped according to the semantic processes that they

characterize, although the alphabet of shock types that they operate on is quite di�erent

from boundary-based codons.

De�nition 3 The Shock Graph Grammar, SGG, is a quadruple G = (V;�; R; S), with

1. V = f~1; 2; ~3; 4;#;�g, the alphabet;

2. � = f�g, the set of terminals;

3. S = #, the start symbol; and

4. R = fR1; :::; R10g, the set of rules given in Figure 2.

9



The rewriting system emphasizes the generative process of growing a shape by placing seeds,

adding protrusions, forming unions, and so on. It operates by beginning at the start symbol

and repeatedly replacing the left-hand side of a rule by the corresponding right-hand side

until no further replacements can be made [28]. It is the SGG that captures the beauty of

shock graphs, because the rules embody constraints from the domain of curve evolution. In

particular,

Proposition 2 The rewrite rules of the SGG are su�cient to derive the shock graph SG(O)
of any 2-D shape O.

proof: A constructive proof appears in Appendix A. The strategy is to derive the rules by

enumerating all legal parents and children for each vertex type.

We can now make several observations. First, since the same shock cannot be born at

two distinct times there exists no path from a vertex back to itself. Hence, the SG is a

directed acyclic graph. This has important consequences for object matching because the

problem of searching directed acyclic graphs is computationally much simpler than that of

searching arbitrary graphs [24]. Second, since there exist rules in the SGG whose left-hand

sides do not consist of single nonterminals, the SGG is not context-free. Third, the rewrite

rules indicate that a 2-shock and a 4-shock can only be added by rules 5 and 0 respectively,

and that semantically equivalent rules exist for a ~3 (rules 6 and 1). Hence, a 2-shock and a

4-shock are each semantically equivalent to a ~3 in a speci�c context.

The SG's for a variety of shapes are shown in Figure 8. All the graphs were generated

automatically from the output of the shock detection process [49] displayed in Figure 7.

Following the third observation, only label types ~1 and ~3 have been explicitly assigned. A ~3

with a parent ~1 at each end acts as a 2 (a neck), and a ~3 with a # as a parent acts as a 4

(a seed).

In the next Section we show that a shock graph can be reduced to a unique rooted shock

tree, which in turn implies a hierarchical ordering of shape information (shock vertices).

We then develop a formal approach to signi�cance-based matching, where the key idea is to

defeat complexity (when the database of shapes is diverse and large) by attending to most

10



V = {1, 2,   , 4, #,     }

U
N

IO
N

P
R

O
T

R
U

S
IO

N
D

E
A

T
H

44

Φ

Rule 7 :

Φ

Rule 8 :

Φ

2 2Rule 9 :

B
IR

T
H

##

... m ...

Rule 1:  

4

... n ...
4

Rule 2: 44

... m ...

1~ 1~

Rule 3:

... m ... ... m ... ... n ...

# #1~ 1~

1~ 1~ 1~
1~ 1~

1~

Rule 4: 

... m ...
m > 2

1~ 1~

1~ 1~

Σ Φ= {   }

Φ 

ΦS = {   }

~

Rule 6: 1~ 1~, 1~ 1~ 1~ 1~

Φ

Rule 10 : 1~ 1~

2

Rule 5:   1~ 1~, 1~ 1~

3
~

3
~

3
~

3
~ 3

~
3
~ 3

~

3
~

3
~

3
~ 3

~

Figure 2: The Shock Graph Grammar, SGG. Dashed lines partition distinct ends of a ~3. The

rules are grouped according to the di�erent semantic processes (on the left) that they characterize.

Note that the grammar is not context-free, e.g., rule 3 indicates that a ~1 can only be added onto

an end of a ~3 that has no parent ~1.

signi�cant components �rst, via a depth-�rst search of the underlying shock trees.

3 Shock Graph Matching

3.1 Problem Formulation

Given two shock graphs, one representing an object in the scene (V2) and one representing

a database object (V1), we seek a method for computing their similarity. Unfortunately,

due to occlusion and clutter, the shock graph representing the scene object may, in fact,

11



be embedded in a larger shock graph representing the entire scene. Thus we have a largest

subgraph isomorphism problem, stated as follows: Given two graphs G = (V1; E1) and H =

(V2; E2), �nd the maximum integer k, such that there exists two subsets of cardinality k,

E0
1 � E1 and E0

2 � E2, and the induced subgraphs G0 = (V1; E 0
1) and H 0 = (V2; E 0

2) are

isomorphic [17]. Further, since our shock graphs are labeled graphs, consistency between

node labels must be enforced in the isomorphism.

The largest subgraph isomorphism problem, can be formulated as a f0; 1g integer op-
timization problem. The optimal solution is a f0; 1g bijective mapping matrix M , which

de�nes the correspondence between the vertices of the two graphs G and H, and which min-

imizes an appropriately de�ned distance measure between corresponding edge and/or node

labels in the two graphs. More formally, we seek the matrix M , the global optimizer of the

following [24, 32]:

min �1
2

X
u2V1

X
v2V2

M(u; v)jju; vjj

s:t:
X
u02V2

M(u; u0) � 1; 8u 2 V1
X
v2V1

M(v; v0) � 1; 8v0 2 V2

M(x; y) 2 f0; 1g;8x 2 V1; y 2 V2

(2)

where jj:jj is a measure of the similarity between the labels of corresponding nodes in the

two shock graphs (see Section 3.4).

The above minimization problem is known to be NP-hard for general graphs [17], how-

ever, polynomial time algorithms exist for the special case of �nite rooted trees. Matula

and Edmonds [12] describe once such technique, involving the solution of 2n1n2 network

ow problems, where n1 and n2 represent the number of vertices in the two graphs. The

complexity was further reduced by Reyner [40] to O(n1:51 n2) (assuming n1 � n2), through a

reduction to the bipartite matching algorithm of Hopcraft and Karp [21]. If we could trans-

form our directed acyclic shock graphs to �nite rooted trees, we could pursue a polynomial

time solution to our problem.

In the following subsections we show that for any shock graph, there exists a unique rooted

tree. Next, we present a method for comparing the coarse topological structure of two shock
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trees which draws on a powerful recent result from the domain of semide�nite programming.

Namely, the eigenvalue decomposition of an adjacency matrix corresponding to a shock tree

leads to a property that is invariant to any consistent permutation or reordering of its subtrees

(submatrices).3 After de�ning a suitable measure of shock distance between corresponding

nodes in two shock trees, we present a novel modi�cation to Reyner's algorithm [40] which

combines coarse topological matching with shock distance to solve our largest isomorphic

subgraph problem in polynomial time.

3.2 Shock Graphs to Shock Trees

In this section we present a reduction that takes a DAG representing a shock graph to a

unique vertex labeled rooted tree whose size is polynomially bounded by the size of the

original shock graph. To begin, let G = (V;E) be a DAG representing a shock graph on n

vertices. A loop L is a subgraph of G formed by the intersection of two directed paths. More

formally, L originates at a vertex b, follows two paths P1 and P2, and ends at the vertex t.

We denote b as the base of L, t the tip of L, and P1 and P2 the wings of L. Referring to

the protrusion and birth rewrite rules (rules 1; 2; 3 and 4), in Figure 2, the base of L can be

a vertex whose type is drawn from the set f#; 4; ~3; ~1g. The wings, P1 and P2, are directed

paths consisting of a sequence of vertices whose types are drawn from the set f4; ~3; ~1g (rules
1; 2; 3; 4; and 6). Finally, the tip of L can be a vertex of type either 2 or ~3 (rules 5 and 6).

Assume that the tip t of L is a vertex of type 2. Then by rule 9, L will be terminated at

a vertex labeled �. Next, if t is a vertex of type 3, then P1 and P2 represent two directed

sequences of shocks that enter at opposite ends of t. In this case, t can not satisfy rule 3,

since it cannot be the root of any directed subgraph except a single node subgraph having

label � (rule 8). We therefore conclude that the tips of all loops are adjacent to nodes having

type � in G, and that each such tip participates in exactly one loop.

In our reduction, for each such tip node t we will maintain duplicate copies t1 and t2,

and rede�ne L to be the union of b and two new disjoint paths P 0
1 = P1 [ ft1g [ f�g and

3A consistent permutation or reordering of a subtree is any (recursive) re-ordering of the tree's branches

that maintains the same parent-child relations.
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P 0
2 = P2 [ ft2g [ f�g. It is easy to see, by induction on the number of tips in G, that such

a reduction is unique and produces a directed, or equivalently, a rooted tree. Further, since

G has only O(n) tips, each of which is duplicated at most once, there is an O(n) increase

in size of the graph. To perform the reduction, we need only check the in-degree of any ~3's

and 2's, and duplicate them if necessary. The complete reduction is therefore a linear time

process in terms of the number of vertices in G.

3.3 An Eigenvalue Characterization of a Shock Tree

The shock tree can be represented as a f0; 1g adjacency matrix, with 1's indicating adjacent

nodes in the tree. Any shock subtree therefore de�nes a submatrix of the adjacency matrix.

If, for a given shock subtree, we compute the eigenvalues of its corresponding submatrix,

then the sum of the eigenvalues is invariant to any similarity transformation applied to the

submatrix. This means that the eigenvalue sum is invariant to any consistent re-ordering

of the subtrees! In terms of our largest subgraph isomorphism problem, �nding the two

shock subtrees whose eigenvalue sums are closest represents an approximation to �nding the

largest isomorphic subtrees.4

In order to e�ciently compute the submatrix eigenvalue sums, we turn to the domain of

semide�nite programming. A symmetric n�nmatrixA with real entries is said to be positive

semide�nite, denoted as A � 0, if for all vectors x 2 Rn, xtAx � 0, or equivalently, all its

eigenvalues are non-negative. We say that U � V if the matrix U�V is positive semide�nite.

For any two matrices U and V having the same dimensions, we de�ne U � V as their inner

product, i.e., U � V =
X
i

X
j

Ui;jVi;j. For any square matrix U , we de�ne trace(U) =
P

i Ui;i.

Let I denote the identity matrix having suitable dimensions. The following result, due to

Overton and Womersley [37], characterizes the sum of the �rst k largest eigenvalues of a

symmetric matrix in the form of a semide�nite convex programming problem:

Theorem 1 For the sum of the �rst k eigenvalues of a symmetric matrix A, the following

4This analysis considers only the topological structure of the shock graph. Later, we will factor in

geometric information associated with its vertices.
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semide�nite programming characterization holds:

�1(A) + : : :+ �k(A) = max A � U
s:t: trace(U) = k

0 � U � I;

or, in a dual setting:

�1(A) + : : :+ �k(A) = min kz + trace(V )

S:T: zI + V � A

V � 0:

Before applying the above theorem, we must �rst convert our shock trees to adjacency

matrices. Given a bounded degree, rooted tree G = (V;E) with jV j = n and jEj = m, we

de�ne the adjacency matrix A of G to be a n� n symmetric, f0; 1g matrix with its (i; j)-th

entry Ai;j equal to 1 if (i; j) 2 E, and 0 otherwise. For each vertex v 2 G, let �(v) be the

degree of v, and let �(G) be the maximum degree over all vertices in G. For every vertex

u 2 G, we de�ne �(u) to be a vector in R�(G)�1, obtained through the following procedure:

For any child v of u in G, construct the adjacency matrix Av of the induced subtree

rooted at v, and for Av, compute the quantity �v = �1(Av)+ : : :+��(v)(Av). Construct

�(u) as the vector formed by f�v1 ; : : : ; �v�(u)g for which �v1 � : : : � �v�(u) .

The above procedure yields a vector assigned to each vertex in the shock tree, whose

elements are the individual eigenvalue sums corresponding to the node's (subtree's) adjacency

submatrix. Furthermore, for any rooted subtree, such a decomposition and vector coloring

of the vertices is uniquely de�ned. As stated earlier, the power of the above formulation lies

in the fact that if a symmetric matrix A undergoes any orthonormal transformation of the

form P tAP , the sum of its eigenvalues remains invariant. This, in turn, implies that this

vector labeling of all rooted trees isomorphic to G not only has the same vector labeling

but spans the same subspace in R�(G)�1. Moreover, this extends to any rooted tree which

has a subtree isomorphic to a subtree of G. In terms of our shock graphs, invariance to a

permutation matrix P implies invariance to a re-ordering of the subtrees of the rooted tree

described by A.
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It now remains to be shown that such a vector labeling can be computed e�ciently, i.e.,

that the �v function can be calculated in polynomial time. The elegance of Theorem (1)

lies in the fact that the equivalent semide�nite programming problem can be solved, for any

desired accuracy �, in time polynomial in O(n
p
nL) and log 1

�
, where L is an upper bound

on the size of the optimal solution, using a variant of the Interior Point method proposed by

Alizadeh [1]. In section 3.5, we embed this procedure in our own algorithm for �nding the

largest isomorphic subtrees corresponding to two shock graphs. In addition, we factor in a

measure of similarity between shock geometries, which we now discuss.

3.4 The Distance Between Two Vertices

The eigenvalue characterization introduced in the previous section applies to the problem of

determining the topological similarity between two shock trees. Returning to the opening

scenario, this, roughly speaking, de�nes an equivalence class of objects belonging to the same

entry-level category. For example, a broad range of dogs will have very similar shock tree

structures. On the other hand, when one is interested in discriminating between a short-

legged Dachschund and \Loki", a Siberian Husky, geometric properties will play a signi�cant

role.

This geometry is encoded by information contained in each vertex of the shock tree.

Speci�cally, recall from Section 2 that both ~1's and ~3's are curve segments of shocks. In the

former case, the segment is directed, while in the latter case, there is a partial order but

no preferred direction, since all the shocks were formed at the same time. Each shock in

a segment is further labeled by its position, its time of formation (radius of the skeleton),

and its direction of ow (or orientation in the case of ~3's), all obtained from the shock

detection algorithm [49]. In order to measure the similarity between two vertices u and

v, we interpolate a low dimensional curve through their respective shock trajectories, and

assign a cost C(u; v) to an a�ne transformation that aligns one interpolated curve with the

other. Intuitively, a low cost is assigned if the underlying structures are scaled or rotated

versions of one another.

Assume that S and S 0 are two (sampled) shock sequences of the form S = (s1; : : : ; sp)
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and S0 = (s01; : : : ; s
0
q), where each shock point si represents a 4-tuple (x; y; t; �) corresponding

to its Euclidean coordinates (x; y), formation time t, and direction �. Note that when the

samples are obtained from a a ~1, the sequence is ordered by time of formation. On the other

hand, for a ~3 there is a partial order to the samples, but no preferred direction. In the latter

case, both directions will have to be tried. In order to �nd the 4D-simplex corresponding to

the basis for the a�ne transformation (in a 4-D space) between the two sets, we choose three

equidistant points on the chains formed by partial orders (s1 � : : : � sp) and (s
0
1 � : : : � s0q).

Clearly, to preserve the partial order of the points in each sequence, s1 should be transferred

to s01, and sp to s0q.

Let (A;B) be the transformation pair for this partial order and, without loss of generality,

assume that p � q. We apply the transformation (A;B) to sequence S to form the sequence

bS = (ŝ1; : : : ; ŝp). Let 	( bS) and 	(S0) denote the interpolated 4-D curves passing through

the points of the sets bS and S0, respectively. A Hausdor� distance measure between the

curves 	( bS) and 	(S 0) is de�ned by �nding the closest point on curve 	(S0) for each point

in the sequence bS, and the closest point on curve 	( bS) for each point in the sequence S0:

�(	( bS);	(S0)) =
X
x2bS

inf
y2	(S0)

jjx� yjj2 +
X
x2S0

inf
y2	(bS) jjx� yjj2:

We observe that in a �xed dimension Euclidean space, the distance between a point

and a low-degree smooth polynomial curve can be e�ciently approximated. For example, if

	( bS) and 	(S0) are piecewise linear approximations for bS and S0, �(	( bS);	(S0)) can be

computed in time O(pq).

3.5 Algorithm for Matching Two Shock Trees

Our recursive algorithm for matching the rooted subtrees G and H corresponding to two

shock graphs is inspired by the algorithm proposed by Reyner [40]. The algorithm recur-

sively �nds matches between vertices, starting at the root of the shock tree, and proceeding

down through the subtrees in a depth-�rst fashion. The notion of a match between vertices

incorporates two key terms: the �rst is a measure of the topological similarity of the sub-
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trees rooted at the vertices (see Section 3.3), while the second is a measure of the similarity

between the shock geometry encoded at each node (see Section 3.4). Unlike a traditional

depth-�rst search which backtracks to the next statically-determined branch, our algorithm

e�ectively recomputes the branches at each node, always choosing the next branch to de-

scend in a best-�rst manner. One very powerful feature of the algorithm is its ability to

match two trees in the presence of noise (random insertions and deletions of nodes in the

subtrees).

Before stating our algorithm, some de�nitions are in order. Let G = (V1; E1) and H =

(V2; E2) be the two shock graphs to be matched, with jV1j = n1 and jV2j = n2. De�ne d to be

the maximumdegree of any vertex in G and H, i.e., d = max(�(G); �(H)). For each vertex v,

we de�ne �(v) 2 Rd�1 as the unique eigen-decomposition vector introduced in Section 3.3.5

Furthermore, for any pair of vertices u and v, let C(u; v) denote the shock distance between

u and v, as de�ned in Section 3.4. Finally, let �(G;H) (initially empty) be the set of �nal

node correspondences between G and H representing the solution to our matching problem.

The algorithm begins by forming a n1 � n2 matrix �(G;H) whose (u; v)-th entry has

the value C(u; v)jj�(u)� �(v)jj2, assuming that u and v are compatible in terms of their

shock order, and has the value1 otherwise. Next, we form a bipartite edge weighted graph

G(V1; V2; EG) with edge weights from the matrix �(G;H).6 Using the scaling algorithm of

Goemans, Gabow, and Williamson [16], we then �nd the maximum cardinality, minimum

weight matching in G. This results in a list of node correspondences between G and H,

calledM1, that can be ranked in decreasing order of similarity.

From M1, we choose (u1; v1) as the pair that has the minimum weight among all the

pairs in M1, i.e., the �rst pair in M1. (u1; v1) is removed from the list and added to the

solution set �(G;H), and the remainder of the list is discarded. For the subtrees Gu1 and

Hv1 of G and H, rooted at nodes u1 and v1, respectively, we form the matrix �(Gu1 ;Hv1)

5Note that if the maximum degree of a node is d, then excluding the edge from the node's parent, the

maximum number of children is d� 1. Also note that if �(v) < d, then then the last d� �(v) entries of � are

set to zero to ensure that all � vectors have the same dimension.
6G(A;B;E) is a weighted bipartite graph with weight matrix W = [wij] of size jAj � jBj if, for all edges

of the form (i; j) 2 E, i 2 A, j 2 B, and (i; j) has an associated weight = wi;j.
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using the same procedure described above. Once the matrix is formed, we �nd the matching

M2 in the bipartite graph de�ned by weight matrix �(Gu1 ;Hv1), yielding another ordered

list of node correspondences. The procedure is recursively applied to (u2; v2), the edge with

minimum weight inM2, with the remainder of the list discarded.

This recursive process eventually reaches the leaves of the subtrees, forming a list of

ordered correspondence lists (or matchings) fM1; : : : ;Mkg. In backtracking step i, we

remove any subtrees from the graphs Gi and Hi whose roots participate in a matching pair

in �(G;H) (we enforce a one-to-one correspondence of nodes in the solution set). Then,

in a depth-�rst manner, we �rst recomputeMi on the subtrees rooted at ui and vi (with

solution set nodes removed). As before, we choose the minimum weight matching pair, and

recursively descend. Unlike a traditional depth-�rst search, we are dynamically recomputing

the branches at each node in the search tree. Processing at a particular node will terminate

when either subtree loses all of its nodes to the solution set.

We can now state the algorithm more precisely:

procedure isomorphism(G,H)

�(G;H) ;
d max(�(G); �(H))

for u 2 VG compute �(u) 2 Rd�1 (see Section 3.3)

for v 2 VH compute �(v) 2 Rd�1 (see Section 3.3)

call match(root(G),root(H))

return(cost(�(G;H))

end

procedure match(u,v)

do

f
let Gu  rooted subtree of G at u

let Hv  rooted subtree of H at v

compute jVGu
j � jVHv

j weight matrix �(Gu;Hv)
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M max cardinality, minimum weight bipartite matching

in G(VGu
; VHv

) with weights from �(Gu;Hv) (see [16])

(u0; v0) minimum weight pair inM
�(G;H) �(G;H) [ f(u0; v0)g
call match(u0,v0)

Gu  Gu � fxjx 2 VGu
and (x;w) 2 �(G;H)g

Hv  Hv � fyjy 2 VHv
and (w; y) 2 �(G;H)g

g
while (Gu 6= ; and Hv 6= ;)

In terms of algorithmic complexity, observe that during the depth-�rst construction of

the matching chains, each vertex in G or H will be matched at most once in the for-

ward procedure. Once a vertex is mapped, it will never participate in another mapping

again. The total time complexity of constructing the matching chains is therefore bounded

by O(n2
p
n log log n), for n = max(n1; n2) [16]. Moreover, the construction of the �(v)

vectors will take O(n
p
nL) time, implying that the overall complexity of the algorithm is

max(O(n2
p
n log log n); O(n2

p
nL).

The above algorithm provides, in polynomial time better than O(n3) an approximate

optimal solution to the minimization problem in 2. The matching matrix M in (2) can be

constructed using the mapping set �(G;H). Our algorithm is particularly well-suited to the

task of matching two shock trees since it can �nd the best correspondence in the presence

of occlusion and/or noise in the tree.

3.6 An Illustrative Example

To illustrate the matching algorithm, we consider the two shock trees shown in Figure 3

(top), each of which describes a di�erent view of a brush. The underlying shocks, along with

the �nal computed correspondences between nodes, are depicted in Figure 3 (bottom). The

sequence of steps in �nding this best correspondence (minimum-weightmaximumcardinality
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Figure 3: Top: The shock trees derived for two di�erent views of a brush. Bottom: The

correspondences between nodes in the shock trees computed by the matching algorithm.

matching) between the two shock trees is shown in Figure 4. We briey describe each step

in the sequence:

� Steps 1{4
The algorithm �nds the minimumweight matching between the two shock trees, seeking

to �nd the two subtrees which are maximally similar in terms of their topological

structure and the geometry of their root nodes (shocks). In this example, the two

subtrees rooted at 1-007 and 1-005 (denoted by bold circles in Figure 4) are selected as

most similar. In step 2, this pair is added to the set of �nal correspondences (denoted

by short-dashed circles), and the algorithm is recursively applied to the subtrees of

1-007 and 1-005. In this manner, the correspondences (3-001,3-002) and (1-003,1-001)

are added to the set of �nal correspondences.
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Figure 4: Step-by-step execution of the matching algorithm applied to the shock trees in

Fig. 3. The roots of subtrees selected as most similar are denoted by bold circles. These are

subsequently added to the set of �nal correspondences (short-dashed circles). Unmatched

nodes are denoted by long-dashed circles.

� Steps 5{6
After descending to the bottom of the subtrees rooted at (1-007,1-005), control is

returned to (1-007,1-005) and these two subtrees are removed from the original shock

graphs. From the resulting shock subtrees, we repeat the process of �nding the best

corresponding subtrees. In step 5, the subtree pair (1-006,1-004) is selected and added

to the �nal correspondences in step 6.
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Figure 5: The 18 tool shapes used in our experiments. Top: The originals. Bottom: The

silhouettes were segmented automatically using the active contour developed in [50].

� Steps 7{12
After removing the subgraphs originating at (1-006,1-004), a new pair (3-002,3-001) is

selected in step 7, and added to the �nal correspondences in step 8. After removing this

new pair, the process is applied to the remaining shock forests in step 9, resulting in

the selection of the pair (1-004,1-002). This pair is added to the �nal correspondences

in step 10. In step 11, the pair (1-005,1-003) is selected and added to the �nal corre-

spondences in step 12. The algorithm terminates by leaving the nodes 1-001 and 1-002

as unmatched vertices (denoted by long-dashed circles) in the shock tree corresponding

to leftmost object in Figure 3 (bottom).

4 Examples

We demonstrate our shape matching system with several examples. To evaluate its per-

formance under occlusion, articulation of structures, and changes in viewing and imaging

conditions, we constructed our own database of tool images, and selected 18 for the exper-

23



Figure 6: The 8 biological shapes. The hands are variations of a range image segmented from

the NRCC database, and the da Vinci face pro�les and horses were scanned from a book of his

sketches.

iments described here, as shown in Figure 5 (top). The binary silhouettes were extracted

automatically using the active contour developed in [50], as shown in Figure 5 (bottom).

Observe that due to shadows and highlights, there may be slight discrepancies between the

segmented outlines and the \true" ones; our matching algorithm is designed to robustly

handle such discrepancies. We supplemented the tool shapes with silhouettes of 8 biological

shapes, Figure 6.

The shock-based descriptions of representative shapes, numerically computed using the

algorithms developed in [49], are shown in Figure 7, with the derived shock graphs in Figure 8.

Note that apart from a \smallest scale" regularization induced by the sampling grid, the

procedure for shock detection is automatic [49]. Notice how for each shape a hierarchy of

components emerges, with the most signi�cant components (e.g., the palm of the hand, and

the neck of the pliers) placed closest to the root node. Similar descriptions were computed

for each of the shapes in the database.

To evaluate our matcher's ability to compare objects based on their prototypical or

coarse shape, we chose as a prototype for each of our 9 object classes, that object whose

total distance to the other members of its class was a minimum.7 We then computed the

similarity between each remaining object in the database and each of the class prototypes,

with the results shown in Table 1. For each row in the table, a box has been placed around

the most similar shape. We note that for the 15 test shapes drawn from 9 classes, all but one

are most similar to their class prototype, with the class prototype coming in a close second

in that case. The recovered correspondences between nodes for the best matches in rows 1,

7For each of the three classes having only two members, the class prototype was chosen at random.
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Figure 7: The shocks computed for a hand (segmented from the NRCC database), and a

plier, a brush, a hammer, a wrench and a screwdriver, all from our own tool database. The

labels correspond to vertices in the derived shock graphs, as shown in Figure 8.
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Figure 8: The shock graphs for a hand (top left), a plier (top right), a brush (middle left), a

hammer (middle right), a wrench (bottom left) and a screwdriver (bottom right). Compare

with Figure 7. The vertices are labeled according to their type, with the arrows in the

direction of shape growth. The distinct ends of a ~3 are partitioned with a dashed line.

4, and 9 in Table 1, are shown in Figures 3 and 9.

Three very powerful features of our system our worth highlighting. First, the method

is truly generic: the matching scores impose a partial ordering in each row, which reects

the qualitative similarity between structurally similar shapes. An increase in structural

complexity is reected in a higher cost for the best match, e.g., in the bottom two rows of

Figure 1. Second, the procedure is designed to handle noise or occlusion, manifest as missing

or additional vertices in the shock graph. Third, the depth-�rst search through subtrees is

extremely e�cient.
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Instance Distance to Class Prototype

0.02 2.17 4.48 3.55 2.96 0.21 4.58 14.33 10.01

2.39 0.10 5.97 15.90 3.98 0.14 26.12 17.28 28.94

10.89 4.72 2.08 12.24 3.12 2.15 19.73 10.11 12.64

7.15 6.42 1.19 1.35 5.10 3.38 10.58 11.11 11.11

4.08 7.72 2.98 1.49 4.26 4.14 26.60 13.54 14.21

14.77 6.72 5.69 0.36 2.30 5.90 10.58 16.25 19.10

7.86 8.90 5.94 0.74 1.59 1.10 10.81 10.39 16.08

2.66 4.23 3.23 6.47 0.62 1.48 11.73 15.38 15.15

3.18 5.31 1.25 4.64 0.60 1.30 14.18 17.22 9.08

4.55 0.76 1.32 2.86 1.49 0.11 21.38 15.35 13.04

6.77 19.46 22.11 13.27 8.21 29.50 0.15 5.12 5.03

8.73 23.14 31.45 24.41 10.16 31.08 0.18 8.45 7.05

12.46 19.0 27.40 14.58 24.26 17.10 8.85 7.49 16.93

13.86 23.07 12.81 11.24 17.48 23.23 6.02 6.92 3.06

15.73 21.28 14.10 12.46 19.56 19.21 9.53 7.12 5.06

Table 1: Experiment 1: similarity between database shapes and class prototypes. In each

row, a box is drawn around the most similar shape (see the text for a discussion).
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Figure 9: Top to Bottom: The computed correspondences between nodes for the best

matches in rows 4 and 9 of Table 1.

In the next two experiments, Tables 2 and 3, we compare a number of objects to other

members of their class as well as to a member from a di�erent class. The objects have

been chosen to illustrate the power of the matcher to deal with changes in image plane

rotation, scale, deformation, occlusion, translation, and even slight rotation in depth. In

both experiments, the results reect the matcher's ability to compare shapes within the

same class, at a �ner scale.
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Instance Distance to Class Exemplars

8.89 0.38 4.70 5.94

1.49 0.36 1.35 0.89

5.21 9.95 0.57 10.01

1.17 7.02 2.91 2.08

Table 2: Experiment 2: similarity between members of a class. Each row of the table high-

lights di�erent aspects of matching invariance (in addition to translation): Rows 1 and 2:

invariance to deformation, image rotation, and illumination; Row 3: invariance to deforma-

tion, scaling, and occlusion; and Row 4: invariance to deformation, scaling, image rotation,

and illumination.

Instance Distance to Class Exemplars

0.09 0.29 0.16 5.42

1.48 1.30 3.46 0.11

6.53 0.79 5.24 0.37

Table 3: Experiment 3: similarity between members of a class. Each row of the table high-

lights di�erent aspects of matching invariance (in addition to translation): Row 1: invariance

to scaling, deformation (di�erent taper), and occlusion; Row 2: invariance to scaling, image

rotation, and slight rotation in depth; and Row 3: invariance to image rotation, scaling, and

occlusion.
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5 Conclusions

In this paper, we have approached the problem of generic 2-D shape recognition by abstract-

ing a representation of shape based on singularities of a curve evolution process into a shock

graph, whose structure is characterized by a shock graph grammar. We have introduced a

speci�c matching algorithm that manages complexity by matching most signi�cant compo-

nents �rst. The algorithm takes into account both the coarse topology of two shock trees as

well as the geometry associated with the shocks in each vertex. The novelty of the algorithm

lies in its eigen-decomposition of a shock tree. This representation provides a powerful means

for e�ciently computing the best correspondence between two shock graphs in the presence

of noise and occlusion. Experiments with a variety of shapes demonstrate that the approach

is generic, and robust under articulation, occlusion and changes in viewpoint.

Our work has lead to two exciting directions for research which we are currently pursu-

ing. First, it should be clear that object representation and the development of matching

algorithms are not independent of how a large database of objects should be organized. In

future work we shall extend our matching algorithms to provide a framework for indexing

2-D objects. Using a vector of eigenvalue sums computed on the subtrees of a shock tree,

similar subtrees can be retrieved from a database via a simple vector norm. Second, building

on ideas from aspect graphs, we shall extend our approach in 2-D to a view-based strategy

for generic 3-D object recognition. The intuitive idea is that a collection of su�ciently dis-

tinct projected views of an object can be represented by concatenating the associated shock

graphs, after which a matching algorithm very similar to the one we have introduced here can

be directly applied. Although much work remains to be done, empirical evidence indicates

that the shock graph is quite stable under small changes in viewpoint. In contrast, except in

constrained environments, the stable extraction of 3-D components has proved notoriously

di�cult.
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A Local Con�gurations in the Shock Graph

A constructive approach to characterizing the structure of the shock graph is to determine

all legal parents and children for each vertex type. An exhaustive enumeration of these local

con�gurations remains tractable, since we have a small number of vertex types. A similar

tabulation was �rst provided (though without proof) by Blum [6, p. 257], and related results

were also derived in [49].

Recall that the SG is rooted at a unique vertex labeled # and has one or more terminal

vertices labeled �. All other vertices are shock groups taken from the set V nf#;�g =

f~1; 2; ~3; 4g. It follows from the \coloring" in Section 1 and the continuity of the radius

function along the skeleton [48, pp. 381{382] that no 2, ~3, or 4 can \touch" a distinct 2, ~3

or 4. Therefore,

Observation 1 No 2, ~3 or 4 can have a 2, ~3 or 4 as a parent or as a child.

As a consequence, if a vertex has multiple parents or children taken from the set V nf#;�g,
such vertices can only be ~1's. The following lemma holds for the case of multiple parents.

Lemma 1 A vertex in the SG can have at most two ~1's as parents. If it has exactly two ~1's

as parents, it must be a 2-shock.

proof: Recall that a ~1 is a curve segment of 1-shocks along which the radius function

varies monotonically. Let a ~1 of length L be parametrized by arc-length s, such that R(s)

increases monotonically with s. Let x(0) = (x(0); y(0)) denote the �rst point, where the

radius function is smallest. For each s 2 (0; L), there exists a continuous mapping from

x(s) to its associated pair of bi-tangent points (p(s);q(s)), by which the two boundary

segments associated with the interval (0; L) can be reconstructed, see Figure 10 (a). Let

�(s) be the angle between the line segments p(s)x(s) and q(s)x(s), on the narrower side.

Two conditions must hold: 1) �(s) must be � � for each s 2 (0; L), since the radius function

R(s) increases monotonically with s, 2) no other shock can lie in the reconstructed (shaded)

region in Figure 10 (a), because the grass�re can only traverse a point in the plane once (the

entropy condition in [23]).
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Figure 10: An illustration of shock patterns, with arrows drawn in the direction of increasing

radius. (a) Geometry of a ~1. (b) Two ~1's ow outwards from a 2. (c) An integer number of ~1's may

ow into a 4. (d) Two or more ~1's may ow into a ~1. (e) An end-point of a ~3 may have a single ~1

owing out of it, no shocks owing into or out of it, or an integer number of ~1's owing into it.

Now, consider a second distinct ~1 such that its �rst point (where the radius function is

smallest) coincides with x(0). The above two conditions must hold for the second ~1 as well.

Hence, the only possibility is that �(0+) is identically � for points in�nitesimally close to

x(0) on each ~1. As a consequence, the regions reconstructed by the two ~1's will have no

empty space between them, so the �rst points of no other ~1's can coincide with x(0). We

note that by the coloring in Section 1, x(0) is a 2-shock, as illustrated in Figure 10 (b). The

result follows. 2

To determine the remaining local con�gurations it is now su�cient to enumerate all the

possible children for each vertex type. A child corresponds to an abutting vertex, containing
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no shocks that formed after any of the shocks in the vertex under consideration (De�nition 2).

Note that by Observation 1, if the vertex is of type 2, ~3, or 4, only children of type ~1 have

to be considered.

Children of a #: Since the SG is built in \reverse" time, any children of the # symbol

will be the last shocks to form in the forward evolution. By the coloring in Section 1, an

isolated point of annihilation is a 4; an annihilating curve segment is a ~3. These situations

correspond to Rule 1 in Figure 2, which states that any number of ~3's or 4's can act as seeds

for the shape. These are the only possible children. A � cannot be a child since the interior

of a Jordan curve is non-empty, and hence a null shape is disallowed.

Children of a ~1: A child of a ~1 can have no shock whose time of formation is greater than

that of any shock in the ~1 (De�nition 2). Hence, by the coloring in Section 1, a child cannot

be a 4. It is possible for two or more distinct ~1's to be children, e.g., one could place two

or more triangular wedges around the dashed circle in Figure 10 (d). This corresponds to

Rule 4. By Lemma 1, a 2 must be a child of two distinct ~1's. This corresponds to Rule 5.

A ~1 cannot have two or more ~3's as children. (Refer to the proof of Lemma 1 but now let

x(0) in Figure 10 (a) coincide with the end point of a ~3. A similar argument as before shows

that no other ~3's can have x(0) as an end point.) However, a single ~3 could be a child, as

in Figure 10 (e) (left). The other end of the ~3 may or may not be the child of a distinct ~1.

Thus, in contrast to Rule 5, we have two separate cases in Rule 6. Finally, when a ~1 has no

abutting shock with smaller radius, it has a � as a child. This corresponds to Rule 10.

Children of a 2: If a 2 has a ~1 as a child, its time of formation must be greater than that

of all shocks in the ~1 (De�nition 2). However, this would violate the coloring in Section 1

(see Figure 10 (b)). Therefore, the only possible child is a �, corresponding to Rule 9.

Children of a ~3: In contrast to a ~1, which can only have children at the end point where

the radius function is smallest (De�nition 2), a ~3 can have children at either end point. It

is possible for an integer number of ~1's to be children, e.g., one could place one or more
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triangular wedges around the dashed circle in Figure 10 (e) (right). However, by the same

argument as in the previous paragraph, children can only be present at an end point that

does not have a ~1 as a parent. Hence, we have two cases in Rule 3: if one end point of a ~3

has a parent ~1, an integer number of ~1's can be children at the other end point; if neither

end point has a parent ~1, an integer number of ~1's can be children at each end point. Finally,

when the ~3 has no abutting shock with smaller radius at either end point, as in Figure 10

(e) (middle), it has a � as a child. This corresponds to Rule 8.

Children of a 4: By the coloring in Section 1, a 4 corresponds to a medial axis point

where the radius function achieves a strict local maximum. It may have an integer number

of ~1's as children, examples of which appear in Figure 10 (c). This corresponds to Rule 2.

When it has no abutting ~1's, as in the case of a perfect circle, it has a � as a child. This

corresponds to Rule 7.

The above enumeration of all legal local vertex con�gurations in the SG shows that its

structure is highly constrained. In particular, since a rewrite rule exists in Figure 2 for each

legal parent/child of each vertex type, the proof of Proposition 2 is complete.
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