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Abstract—This paper presents an extension of our previous
work on hybrid metric/topological maps to enable uncertainty
reduction planning through the map, taking into account both
map uncertainty and distance. An enhancement of the edge
structure which enables the simulation of bidirectional edge
propagation through an extended Kalman filter is proposed in
our heuristic search planning algorithm to plan for maximal
map uncertainty reduction. This work expands on the heuristic
search framework proposed in [1] to apply in hybrid met-
ric/topological maps instead of more constrained camera sensor
networks. Experimental results from realistic simulations and
deployment on a real robotic system are presented to show the
efficacy of the proposed algorithm and validate our approach
for uncertainty reduction.
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I. INTRODUCTION

This paper presents a heuristic search planning framework
which results in reducing the uncertainty in a map created
by an exploring robot. The proposed approach is applied
in the context of hybrid metric/topological maps as an
extension to our previous work in ear-based exploration,
but the methods proposed can be applied to any generic
mapping technique that maintains a metric state represen-
tation of the environment. This work is a continuation of
the Simultaneous Localization and Uncertainty Reduction
(SLURM) framework, proposed in the context of exploring
a camera sensor network [2], utilizing a single [3] or multiple
robots [4]. In [5] a hybrid metric/topological map was
proposed to facilitate the generation of an efficient and
accurate environment representation. Further improvements
in the accuracy of the resulting map are feasible with the
utilization of the proposed heuristic-search path planning
algorithm. Under the assumptions of a static GPS-denied
world the exploration strategy is solely based on laser-scan
data and odometry information.

The topological representation of the environment has
the advantage that it gives us a simple way to encode
all the distinct locations in the environment. Since the
Generalized Voronoi Graph [6] (GVG) is used as the graph-
based representation, the distinct locations in the environ-

Figure 1. Our main robotic platform, a TurtleBot 2, is equipped with
a Hokuyo laser range-finder used for navigation. Several experiments
performed with this configuration validate the Ear-based exploration, the
construction of the hybrid Metric/Topological map, and the heuristic path
planning.

ment correspond to the points that are equidistant to more
than two obstacles. Naturally, the edges of the graph rep-
resent the connectivity of the distinct locations, commonly
termed meetpoints. During the exploration process, the robot
processes all the information available and maintains an
extended Kalman Filter (EKF) to keep track of the state
of the robot and the pose of the visited meetpoints. As
the robot navigates further and further through unknown
territory, the uncertainty of the robot and the map will
inevitably grow. If the uncertainty grows too large, then
further exploration is futile; any newly discovered nodes
will have its location easily confused with other landmarks
regarding the map. Thus, in order to reduce map uncertainty,
the robot must return to previously visited nodes, also known
as re-localization. One such re-localization strategy is to
always return to the node with the current least uncertainty in
the map via the shortest path. This strategy can be appealing
due to its simplicity, but this paper demonstrates that such
a strategy is not optimal in reducing map uncertainty.



In the proposed framework, a heuristic search planning
method seeks to maximize the uncertainty reduction in
the map, with respect to the amount of distance that the
robot has to travel. Therefore, at any point during the
exploration the robot is capable of re-localizing efficiently
at a minimal cost possible in terms of traveled distance
and time. The heuristic search algorithm is based on the
well-known A* search algorithm and takes into account the
accumulated uncertainty of the map in the form of the trace
of the covariance of the extended Kalman filter; a common
metric [7], see Eq. (1). However, it is important to note that
there is no proof of optimality in this case since the trace of
the covariance measure is not a sufficient statistic. The cost
function of the priority queue which describes the search
order is dictated by the following variables and parameters:

trace(Pt) =
n

∑
i=n

Pt
ii (1)

• Current distance traveled: As in the formulation of
classic A* algorithm, the proposed method keeps track
of the distance already traveled from the start for each
possible path solution, allowing it to choose paths that
have minimal combined current cost and heuristic.

• Distance to target: In the context of re-localization, the
robot has access to the explored map of the environ-
ment. In order to satisfy the condition of a consistent
and admissible heuristic, this measured distance to the
target will be the shortest path distance computed from
available map information from the current location to
the goal.

• Uncertainty measure: As mentioned previously, the
trace of the covariance matrix was chosen as our
map uncertainty measurement. Thus, the cost function
takes into account the trace combined with the current
distance traveled and shortest path distance to the goal
to determine which search state to consider next. As a
result, if the current solution path estimates a significant
uncertainty reduction, then this path is more likely to
be considered as the final re-localization path.

• α free parameter: Finally, there is α ∈ [0,1], a free
hyper-parameter that allows the user to control how
much bias to put towards considering uncertainty re-
duction over time efficiency. Fig. 2 demonstrates the
effect of changing α on the resulting solution path. The
two figures differ in path length due to the choice of
α , a parameter set by the user. All of these parameters
will be covered in greater details in Section V.

II. RELATED WORK

Topological maps were first described in the seminal paper
by Kuipers and Byun [8]. Further results with topological
maps were presented in [9] and [10]. Different groups have
previously proposed combining hybrid topological maps

(a) (b)

Figure 2. Effect of α on the resulting solution path starting from the same
source node to target node. (a) α = 1.0, which is equivalent to Dijkstra’s
shortest path (b) α = 0.0, heuristic search considering only map uncertainty
reduction.

and metric representations to achieve loop-closure, such as
Werner et al. [11] using a particle filtering approach in a
GVG representation to determine the location of the robot
using a sequence of signatures of the GVG meetpoints
recently visited. Work by Choset and Nagatani [12] is
closest in ideology to our previous contributions in ear-
based exploration as they rely on metric information at
the meetpoints overlayed on top of a GVG representation.
Multiple heuristics are considered to eliminate candidate
GVG meetpoints when the robot performs loop-closure.

Estimating the state of a map and its entropy is commonly
done using an extended Kalman filter, which is described
in [13] for SLAM. The EKF keeps track of a mean and
covariance for each map landmark. Many researchers, [14]
and [15], have proposed attempts to reduce the uncertainty
in the map estimates. Another group proposed in their
work [16] a simulation-based approach, in which multi-step
paths would be generated to determine the most uncertainty
reducing solution, however it comes at the expense of high
computational costs. Their work is most in common with
our proposed framework.

By contrast, our approach takes the exploration strategy
into account, hence the application of our heuristic search
based on A* can be applied to path plan to frontier nodes
during exploration but also when re-localizing to reduce
map uncertainty estimates. The algorithm depends on the
map uncertainty measure; the trace of the covariance is one
of the proposed measures in [7]. The cost function, which
combines both distance measures and the map uncertainty
measure, is based on a weighted linear combination pro-
posed by Makarenko et al. [15].

III. GVG EXPLORATION

The underlying exploration strategy, which is the focus
of our previous contributions, uses the Generalized Voronoi
Graph (GVG) as its navigation map. In a two dimensional
environment, the GVG can be computed online efficiently
using only range information from a laser range finder



mounted on the robot. Any location in space which is
equidistant to three or more obstacles is determined to be a
meetpoint (graph node). To avoid any mislabeled locations
as nodes, the range data is filtered to remove any spurious
edges. An important aspect of the GVG is its reactive nature,
hence once the edges between the meetpoints are discovered,
it becomes trivial to return to previously explored nodes
by following the relative orientations between the bearings
of the meetpoint. The overall procedure of the navigation
system is outlined as follows:

• Finding Meetpoints/Endpoints: The robot constantly
checks the filtered laser data during navigation to detect
meetpoints or endpoints. From there, the robot decides
towards which direction to explore next. If all the
directions have been previously explored, then the robot
selects a meetpoint (node) with unexplored edges to
proceed with exploration. Nodes with unexplored edges
are termed frontier nodes. Note that in the proposed ex-
ploration strategy, the robot systematically chooses the
next counter-clockwise direction to explore next. This
strategy is termed ear-based exploration, and results in
systematic frequent loop-closures; for more information
please refer to [5].

• Edge Following: When the robot is not at a meetpoint,
it has to be along an edge between two nodes in
the graph. Since an edge corresponds to only two
distinct obstacles in the environment, then the robot can
compute and follow the center-line. The robot’s steering
control can efficiently be dealt with using PD control.
After traveling along an edge, edge information, such
as its length and points along the line are stored for
further use in the heuristic search.

IV. LOCALIZATION

During the exploration of the unknown environment, an
extended Kalman filter is used to estimate the state and
propagation uncertainty of the robot. The accumulated un-
certainty is encoded in the covariance matrix P. The structure
of the matrix is in 2:

Pt =

[
Pr

t Prl
t

Plr
t Pmap

t

]
(2)

where Pr encodes the uncertainty of the robot’s pose; Pmap

encodes the uncertainty of the map; and Prl ,Plr records the
cross-correlation between the robot and the map. The EKF
only uses odometry information to track the motion of the
robot through the corridors, by applying the following robot
propagation equations Eq. (3):

Figure 3. Ear-based exploration using the GVG representation.
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During propagation, the estimated pose and uncertainty
of the mapped meetpoints does not change. As the robot
encounters meetpoint i for the first time, the robot adds the
pose of the meetpoint into the EKF and keeps track of the
state Xi = [xi,yi,θi]. Whenever meetpoint i is re-visited, an
update is performed using the following update equations:



S = HPHT +R

H = [−CT (θ)−CT (θ)J(Xmt p
i −Xt+1)]

C(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
J =

[
0 −1
1 0

]
K = PHT S−1

X = X+Kr

P = P−KSKT (4)

where r is the difference between the recorded value of
the meetpoint and the latest estimate and R is the noise
covariance of the laser sensor.

V. HEURISTIC SEARCH PLANNING

During the exploration of the environment, the robot needs
to path plan to return to frontier nodes to continue exploring
unknown territory. When path planning in a GVG/metric
map to go from one node to another, the proposed heuristic
method can be utilized in order to improve the quality of the
map. The heuristic search method does so by computing a
cost function dependent on map uncertainty and traveled dis-
tance. Thus, the robot can perform this search for all frontier
nodes and selecting to return to the node which offers the
best improvement. Naturally, the same path planning method
can also be applied to when the robot requires re-localization
to reduce map uncertainty. In that case, searching is not
restricted to only frontier nodes but allowed to return to any
node in the current known map.

It is important to note at this point that re-localization
physically moves the robot to reduce the map uncertainty.
In contrast, it is possible to anticipate how the state and
covariance estimates in our EKF will update to re-visiting
previously explored nodes, without physically moving the
robot. This work strides to achieve that with this heuristic
search planning algorithm by picking the path which will
maximally reduce the map uncertainty through re-localiza-
tion.

A. Search Cost Function

The proposed heuristic search algorithm is based on the
A* search algorithm; given a source node s and a target
node t, the algorithm maintains a closed and an open set to
keep track of nodes visited. As nodes are dequeued from the
open set, those nodes are added to the closed set to avoid
duplicate nodes in the resulting path. The neighbours of the
currently processed node are added to the open set (if they
do not belong to the closed or open set). In the case where
the neighbour is already in the open set, then the partial path
is preserved to that node which results in the least cost of the
two solutions. The algorithm is guaranteed to terminate and,

given an admissible and consistent heuristic, also guaranteed
to be optimal.

In the discussed framework, the uncertainty measure used
is the trace of the covariance matrix Pmap; see Eq. (2),
recording only the uncertainty of the mapped meetpoints.
Taking into account the covariance of the robot would result
in the introduction of a location bias since the covariance
of the robot depends on its current pose. This component
contributes towards the current cost g of the solution path.
The other component of the current cost g is the distance
traveled. Finally, the chosen heuristic cost h is the straight-
line distance between the current node and the target node.
Given that edge information is stored for the known map,
the shortest path distance can be computed using Dijkstra’s
algorithm and still satisfy the requirements for heuristic
admissibility.

The cost of a solution path up until node i, c(i) is then

c(i) = g(i)+h(i) (5)

where g(i) is the combined cost from s to i and h(i) is the
distance-only heuristic cost from i to t. We also have

g(i) = d(s, i)+ tr(Pmap
i ) (6)

with tr(Pmap
i ) = tr(Pi)− tr(Pr

i ), the trace of covariance
matrix after traveling to node i, and d(s, i) is the traveled
distance from s to i. The issue with the current formulation
of Eq. (6) is that distance and uncertainty measures have
no common grounds of scale. As proposed in [15], the
distance components are scaled by the shortest path distance
1/d∗(s, t) and the uncertainty component by 1/tr(Pmap

s ), the
trace of covariance matrix at the start location. Finally, a
free hyper-parameter α is included, which decides whether
to prioritize uncertainty reduction or minimizing traveled
distance. The updated cost function then becomes:

c(i) = α
d(s, i)
d∗(s, t)

+(1−α)
tr(Pmap

i )

tr(Pmap
s )

+α
h(i)

d∗(s, t)
(7)

with α ∈ [0,1]. Setting α = 1 would then give you Dijkstra’s
shortest path, whereas the other extreme, α = 0, will com-
pletely disregard distance to maximize uncertainty reduction.
The normalization allows for α to vary smoothly, and the
user has complete control over the search bias through the
choice of the free parameter α .

B. Solution Path Simulation

The previous subsection described how the search plan-
ning algorithm creates parallel solution paths and decides
which direction to explore next based on the proposed cost
function. Each solution path maintains its own state and
covariance in order to simulate the motion of the robot
to obtain accurate estimates of the trace of the covariance.
Those solution paths are created by adding the neighbours



of the node i currently under consideration into the open
set. In other words, the solution path from s to i is already
determined and the neighbours of i are all potential can-
didates in the solution path from s to t. Those new paths
prolong the current path from s to i, hence the state and
covariance X and P are copied from the path from s to i.
During the simulation and propagation of the motion of the
robot through the environment, the only modifications to the
local state and covariance information are for that specific
solution path; it does not affect at all the information stored
in the EKF that keeps track of the state of the physical robot,
since the robot is not moving during the heuristic search
simulation.

To simulate the motion of the robot from one node to
another, the edge information stored during exploration is
used. One issue that arises from using the stored edge infor-
mation is that the robot has only traveled most of the edges
in a single direction. The proposed approach reverses the
information of the edge completely, including the orientation
of the robot at every point along the line segment of the
edge. Using those bidirectional edges, the path between any
pair of nodes can be simulated by repeatedly propagating
the points along the line through the EKF and calling an
update operation on the EKF for all edges along that path,
as outlined in IV. Through this process, the uncertainty
estimate gets updated through re-localization simulation,
leading to find a solution path to the target that maximizes
uncertainty reduction. Running this search algorithm to all
other nodes in the environment means that the best target
node to physically re-localize the robot to can be found.

VI. EXPERIMENTAL RESULTS

All of our software framework is implemented in the
Robot Operating System (ROS) environment 1. Furthermore,
the experiments are run using Stage 2, a simulation en-
gine that takes into account odometry drift and wheel slip
to create more realistic robotic simulations. In addition,
the heuristic search planning algorithm was deployed on
a TurtleBot 2, and several experiments of exploring and
mapping the corridors of our building were performed.

A. Heuristic Search Validation

1) Simulated Environment: The first experimental setup
tests the validity and efficiency of our heuristic search
algorithm itself. In a simulated environment shown in Fig.
4a, which consists of a symmetrical grid-like world, heuristic
search simulations were executed planning a path from all
meetpoints in the map as the source node to all other
meetpoints in the environment as the target node. It is
important to note that in the interest of preserving the con-
sistency of the robot state and covariance, the robot needs to
navigate to the start node before running the heuristic search

1http://wiki.ros.org/
2http://wiki.ros.org/stage

(a) (b)

Figure 4. (a) The grid-like world environment used to compare the effect
of α in our heuristic search method. (b) The floorplan of the Center for
Intelligent Machines, McGill University, used to carry out the relocalization
experiments.

simulations. In order to avoid unintentional re-localization
while positioning the robot at the source node, it would be
required to restart the robot at the same location it finished
exploring the environment for the first time to keep each
set of heuristic search simulations from different meetpoints
to all be on an even playing field. This was achieved by
incorporating a map saving/loading feature in our system to
allow the user to repeat experiments consistently. Finally,
this procedure was repeated 4 times in total, comparing the
effect of α on the uncertainty reduction from re-localization
and on the total distance traveled by the robot. Specifically,
the experiments ran with α = 0.0,0.001,0.01 and 1.0.

Our results in Fig. 5 show the effectiveness of our
heuristic search approach. The top figures demonstrate the
effect of α on the total distance of the solution path offered
by our heuristic search algorithm, for all pairs of nodes in
the environment. The bottom figures show the uncertainty
reduction after performing the re-localization path proposed
by the algorithm, for different values of α .

The error bar plots (a)-(d) show the increased solution
path length α changes. In Fig. 5, as expected, the graph
shows a y= x plot since our algorithm computes the shortest
path for α = 1.0. Interestingly enough, our data points for
small distances d∗(i, j) (meaning that the nodes in the pair
(i, j) are close) show larger variances than for data points
between pairs (i, j) at larger distances. The reason for this
is that when i and j are nearby, the cost function will often
result in selecting the direct path since traveling further away
can often lead to increased robot uncertainty. When the two
nodes are further apart, the heuristic search has more leeway
to lengthen the solution path, if that suits it with increased
uncertainty reduction.

The same analysis can be made about the plots (e)-(h)
which show the uncertainty reduction with respect to the
shortest path for the same values of α . Picking the shortest
path as the solution does not perform very well since the
algorithm constrains the choice of paths. Hence, even if
a small deviation from the shortest path could allow for
a large uncertainty reduction, the algorithm doesn’t allow
for this deviation, leading to poor performance. Another
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Figure 5. (a)-(d) Error bar plots showing length of the solution path d∗(i, j) compared to the shortest path distance using α = 1.0,0.01,0.001 and 1.0
for (a) through (d), respectively. (e)-(h) error bar plots showing total uncertainty reduction (in %) from single re-localization for all pairs (i, j) again using
α = 1.0,0.01,0.001 and 1.0 for (e) through (h), respectively.

interesting observation is that all the other three variants
seem to converge roughly to the same uncertainty reduction
for larger distances. However, for α = 0.01 at small
distances, it is apparent that the strategy is not performing
optimally. The logical explanation here is that at larger
distances, the shortest path solution provides access to all
other uncovered nodes within small deviations. In that case
then, allowing the solution path to deviate slightly as in
α = 0.01 becomes equivalent to allowing large deviations
such (α = 0.0) because the algorithm cannot provide any
larger deviations to obtain better results. This information is
extremely resourceful for maximizing the efficiency of our
proposed solution as our heuristic search planning method
looks through all possible target nodes for re-localization.

2) Real robotic environment: We repeated the previous
setup but deployed it on a real robotic system, the TurtleBot
2, instead of running in simulated environment. The experi-
ments were conducted at the Center for Intelligent Machines
at McGill University; see Fig. 4b. We started the robot from
three different locations in the environment and let it explore
the entire environment. After the environment was fully
explored, the robot would compute the same heuristic search
algorithm with every other meetpoint as the target node. The
same values for α were chosen, in order to show the effect
of varying α on the produced final map uncertainties.

Fig. 6 shows the results from aggregating the three
trials for each value of α . Unsurprisingly, our uncertainty
reduction method is validated by the uncertainty reduction
floating around 30%. However, what we notice is that the
resulting uncertainty reduction percentages as well as length
of solution paths are almost identical for all the values of
α . The explanation for this is quite simple; if we look at

the environment, we see that there are hardly any different
paths possible from any two junctions in the environment.
In other words, the only variation possible is based at the
triangular set of meetpoints in the middle of the environment.
Therefore, using α = 0 compared to α = 1, the robot can
only take the longer side of the triangle rather than the
shortest path. This minimal difference is insignificant in
terms of uncertainty reduction, which shows in the results.
Nonetheless, this set of experiments still validates that our
system works in real environments and demonstrates the
value of relocalization in producing higher accuracy maps.

B. Relocalization Experiments

The second set of experiments demonstrate the advantages
of performing re-localizations using our heuristic search
algorithm during the exploration phase of the unknown
environment. These experiments were done in simulation
using Stage, but this time in a more realistic environment;
Fig. 4b shows the map for part of the Center for Intelligent
Machines at McGill University, the chosen environment. In
one set of experiments, the robot explored the entire envi-
ronment without re-localizing. At the end of its exploration,
the robot performed re-localization once using our heuristic
search planning method. In the other set of experiments, the
robot was set to have a probability ε = 0.1 of re-localizing
whenever it reached a meetpoint. Heuristic search on the
current partial exploration map was used to determine which
node to return to. In addition, the robot also performed re-
localization once to further reduce its map uncertainty.

Fig. 7 shows the state of the map covariance at two dif-
ferent times during the mapping process; in Fig. 7a and 7c,
the robot has just finished exploring the entire environment
whereas in Fig. 7b and 7d the robot has completed a re-local-
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Figure 6. (a)-(d) Error bar plots showing length of the solution path d∗(i, j) compared to the shortest path distance using α = 1.0,0.01,0.001 and 1.0
for (a) through (d), respectively. (e)-(h) error bar plots showing total uncertainty reduction (in %) from single re-localization for all pairs (i, j) again using
α = 1.0,0.01,0.001 and 1.0 for (e) through (h), respectively.

(a) (b)

(c) (d)

Figure 7. (a) shows the map 2-σ uncertainty ellipses after exploring the
entire environment without re-localizing during exploration (b) shows the
map uncertainty reduction after performing re-localization (c) and (d) show
the same maps as in (a) and (b), except that re-localization was performed
during exploration of the environment (prior to the map shown in (c)).

ization procedure. The red uncertainty ellipse is the current
covariance of the robot, while the blue uncertainty ellipses
are the covariances of the meetpoints in the map. Notice that
the 2-σ uncertainty ellipses in Fig. 7c and 7d are smaller
than in Fig. 7a and 7b. This reduced uncertainty is the result
of performing re-localizations prior to completely exploring

the environment. The explanation is that when the robot
uncertainty has increased, further exploration only results in
large uncertainty maps. Re-localizations after exploring the
entire environment are still useful, as demonstrated in the
contrast between the two figures Fig. 7a and 7b before and
after re-localizing. However, maintaining a lower uncertainty
during exploration is key to result in more accurate final
maps. The numerical results for tr(Pmap) show that the final
map in Fig. 7d is 41.7% more accurate than in Fig. 7b. Even
more importantly, the trace of uncertainty in Fig. 7c is only
53.2% that of Fig. 7a. This highlights the importance of
frequent re-localizations during the exploration phase.

VII. CONCLUSION

This paper presented an extension to our previous work
in autonomous exploration and mapping using a hybrid met-
ric/topological representation. The SLURM framework [17]
was adapted from a camera sensor network setup to an
indoor environment exploration setting. The work presents a
SLAM solution based on a combination of the Generalized
Voronoi Graph for the topological aspect and an extended
Kalman filter to keep track of a metric map.

The results shown in this paper were collected by running
in simulated environments on the Stage platform in ROS
as well as on a real robotic system, the TurtleBot 2. We
are looking to perform further experimentations in different
environments with the TurtleBot 2 as well as the Husky3.

This work extended the exploration framework with a
heuristic search planning approach to map uncertainty reduc-
tion. The search algorithm exploits the known information
about the environment by propagating the stored edge in-
formation through parallel hypotheses filters to simulate the

3http://www.clearpathrobotics.com/husky/



effects of re-localization on the actual system. The output
of the proposed strategy is a solution path for the robot
to re-localize to which is estimated to be most beneficial in
map uncertainty reduction. Our technique is validated by the
results from running simulations in a realistic environment
and running on a real robotic system. Moreover, the effects
of our hyper-parameter α on the length and the uncertainty
reduction of the output solution path are elaborated.

Overall, the results suggest that uncertainty reduction can
be incorporated into the SLAM framework to produce even
more accurate maps at the cost of added computational over-
head. The inclusion of a free parameter α in our heuristic
search algorithm makes the uncertainty reduction strategy
even more pragmatic since the user has the flexibility of
picking α to suit the needs of the mapping task.
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