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Abstract

We present an approach to the automatic recogni-

tion of locations or landmarks using single camera im-

ages. Our approach is to learn visual features in the

appearance domain that can be used to characterize an

object or a location. These features are de�ned statis-

tically and then are recognized using principal compo-

nents in the frequency domain.

We show that this technique can be used to recog-

nize speci�c objects on varying backgrounds, as well as

environmental features.

1 Introduction

In this paper we present a formulation of coarse
robot position recognition based on learned features.
We focus on the recognition of locations or speci�c
objects, but not on computing the precise quantitative
position of either the robot or the object with respect
to the robot. We presume that quantitative position
estimation problems can, however, be addressed using
the types of computations we present here.

The features we used can be derived from almost
arbitrary pose-dependent sensor data, although in this
paper we consider only the use of camera data. Our
recognition technique can be applied to two types of
pose estimation scenario: recognition of an entire view
of a scene (for example a room), or recognition of a
speci�c class of objects that can be deposited in the
scene to act as landmarks. Our objective is thus to
be able to recognize a familiar learned scene or object
given a test image. This would allow a mobile robot to
recognize its current location. Several methods permit
a precise position estimate to be computed given an
approximate one using landmarks from either vision
or sonar[1, 2, 3]

Our approach is based on learning visual features
that characterize either an object in the scene or a

view of a scene (such as a room) in an o�-line learning
stage. Then, during on-line execution, a mobile robot
can recognize these known objects. (In the interests
of succinctness, we will hereafter refer to both familiar
items as well as familiar views of a scene as \objects").

The key contribution of this paper over preced-
ing work is with respect to the robustness of our ap-
proach to rotation, partial occlusion and other varia-
tions in the scene content. Known objects are recog-
nized from a set of characteristics appearance-based
features. Each of these features is computed to limit
its sensitivity of background image content, as well as
rotation and translation.

2 Background

Place recognition (or localization) methods can be
broadly classi�ed into local and global methods. Local
methods are those that produce a quantitative pose
estimate assuming the approximate neighborhood is
known, while global methods are those which oper-
ate over a large environment and often produce only
a qualitative estimate. The approach to position es-
timation presented in this paper is a global position
estimation scheme.

Several authors have considered the use of linear
subspace methods, often referred to as principal com-
ponents analysis or eigen- methods to recognize ob-
jects [4] or compute robot pose [5, 6]. In their basic
form, these methods represent images that containing
objects of interest in a low dimensional subspace. The
distance of a test image from known sample images
then is used to compute its identity. Such \appearance
based" methods have met with considerable success in
applications such as face recognition, but since they
use the entire image they are sensitive to occlusion,
rotation, illumination variation and scale changes.

Sim and Dudek [7, 8] used PCA methods on small
sub-windows of a larger image to compute quantita-



tively accurate local pose estimates from image sam-
ples in an environment. Their approach assumes that
a very approximate pose estimate is available as input
(i.e. what room the robot is in) and achieves a nu-
merically accurate pose estimate by combining infor-
mation from multiple observations using probabilistic
weighting of measurements.

In recent work, Lowe[9] has also proposed recog-
nizing objects using small image samples. In contrast
to this paper, Lowe appears to use large numbers of
samples each with a low disambiguating power. He
relies on votes techniques for recognition. Similarly,
Schmid et al. [10] has considered object recognition
using sub-windows extracted using the Harris opera-
tor each of which makes only a small contribution to
the �nal identi�cation. Our work, in contrast, uses
a small number of measurements each of which has
substantial disambiguating power.

3 Problem Statement

Scene and landmark recognition with computer vi-
sion using PCA methods has been limited by the need
to use essentially global image data. In particular,
PCA-based methods have been sensitive to variations
in the background behind objects of interest, and to
occlusion or change in parts of the scene. Traditional
global approaches fail to recognize objects successfully
if more than some 1/3 of the image changes (and sen-
sitivity is often much worse than this). Our work sets
out to accomplish appearance-based object recogni-
tion while remaining robust to variations in the back-
ground, changes in sub-parts of the scene, or occlusion
of a substantial fraction of the image. In addition, we
seek a recognition system that exhibits rotation invari-
ance since our robots often take images while their tilt
is unpredictable.

4 Approach

4.1 Principal Component Analysis
Overview

To perform the actual classi�cations of the im-
ages to be recognized ,an image compression technique
known as principal component analysis (PCA) is used.
This allows images to be compared in a lower dimen-
sional space (lower than the number of pixels N in an
image) by computing the eigenvectors of the covari-
ance matrix Q of the training image set (the train-
ing image set being the set of recognizable objects).
These eigenvectors form an orthogonal basis set for
representing individual images in the set. Images to

be recognized are projected onto this eigenspace and
matches are made by examining the Euclidean dis-
tance between points in this space.

Various methods exist to compute the eigenvectors
of Q and we choose the singular values decomposition
of the matrix PT where PT is the transpose of the
matrix P where each row consists of a training image
from which the average of all the training images has
been subtracted.

Since any M by N matrix A (M � N) can be
written as

A = UXVT (1)

we choseA to be PT . U andV areM by N and N by
N matrices, respectively, with orthonormal columns,
and X is an N by N diagonal matrix containing the
singular values of A along its diagonal [11]. Speci�c
to our needs is the fact that the columns of U are
the eigenvectors of PPT and the columns of V are
the eigenvectors of PTP, hence the eigenvectors of the
covariance matrix are obtained.

4.2 Using attention operators and sub-
windows to make PCA robust

Since each row of P contains the intensity values
of an entire image consisting of a recognizable object
with no preprocessing, classic PCA as outlined above
is very sensitive to translations, rotations (planar or
non-planar), scaling of the object within the image
and occlusions. Furthermore as no a priori segmenta-
tion can be done in the image to be recognized, back-
grounds which di�er from those within the training
set result in misclassi�cation of the objects to be rec-
ognized as only raw intensity values are considered.
This is due to the fact that all the images are com-
pared in the eigenspace constructed by P. Objects to
be recognized which are o� center, rotated (planar or
non-planar), scaled, occluded even partially or on dif-
ferent backgrounds relative to those within P, when
projected onto the eigenspace result in points that are
not necessarily close to their corresponding training
image eigen points. We account for some of these
problems by the introduction of an interest operator
which chooses points within the images. Sub-windows
are cropped around the chosen points and instead of
performing PCA on the entire image, it is performed
on these sub-windows. We use a symmetry based con-
text free attention operator [12] which is independent
of segmentation.

Our recognition algorithm consists of a training
phase and a testing phase. During the training phase
we run the interest operator on the set of images which



we want to recognize, crop around these interest points
and build P. In the testing phase, we run the interest
operator on the image to be recognized, process the in-
formation in the sub-windows obtained to account for
planar rotations and varying backgrounds and project
them onto the eigenspace.

In the absence of noise the attention operator will
choose the same points of interest in testing images
as those it chose during the training phase (which is
mostly the case for the operator we use). This achieves
translation invariance as all that matters is the image
data in the immediate neighborhood of the attention
point.

Multiple interest points are chosen for the recogni-
tion of an object. So long as a suÆcient fraction of
the interest points associated with the object are re-
covered, the object can be recognized. Since a voting
scheme is devised for all the sub-windows around the
interest points chosen, see section 4.5, partial occlu-
sions cause the interest points that are chosen on the
occluding object in the image to cast erroneous votes.
The points chosen on the object itself, cast good votes
and can thus at times (depending on the degree of
occlusion) reliably identify the object itself.

4.3 Feature Locality

The image content around each selected interest
point is extracted in a manner that is not purely local.
Emphasis should be given to the immediate neighbor-
hood of the interest point chosen while image data as
one heads to the periphery of the sub-window should
hold less weight. Multiplying the data within the sub-
window with a two dimensional Gaussian reduces sen-
sitivity to distal points which may be on the back-
ground.

4.4 Rotation Invariance

The use of a Fourier basis for the sub-windows pro-
vides rotation invariance. This depends on represent-
ing the data in polar form and on the shift theorem.
One of the properties of the two-dimensional Fourier
Transform is the shift theorem. Given a function
f(x; y) in the spatial domain, its Fourier Transform
gives us a function F (u; v) in the frequency domain.
The shift theorem states that the Fourier Transform
of f(x� a; y � b), where a and b are constants, is:

ej2�(au+bv)F (u; v) (2)

This property can be exploited in our situation to help
achieve planar rotation invariance around the chosen

(a) (b) (c) (d)

Figure 1: Polar Sampling of an Ice tea can. (a) and (b) are
(x; y) images with (b) rotated by 45 degrees. (c) and (d) are
their corresponding polar (�; r) images. Note how a 45 degree
rotation in (x; y) image turns into a shift in � (�; r) image

interest points. This is due to the fact that both
f(x; y) and f(x � a; y � b) have the same same am-
plitude spectrum in the frequency domain as:

jej2�(au+bv)F (u; v)j = jF (u; v)j (3)

Given a sub-window in the image, we �rst convert it
into a polar coordinate system. Thus any rotations
about the interest point are reected as shifts in � in
the polar image, see Figure 1. Once a polar represen-
tation of the sub-window is obtained, it is multiplied
by a two-dimensional Gaussian with a standard devia-
tion of a quarter the length of the square sub-window.
This is e�ectively the Hamming window as a notion of
continuity is introduced between the two ends of each
line of the image and thus one gets rid of some of the
potential high frequency components in the spectrum
introduced.

We then proceed to obtain the amplitude image
through the Fourier transform of the two dimensional
polar image outlined above. This amplitude image is
invariant to any rotations about the center of the win-
dow and thus we achieve planar rotation invariance.
Note that rotations about arbitrary points are handled
automatically since for any interest point they can be
described as a translation and a rotation about the
center.

4.5 Classi�cation

In the o�-line training phase, the set of data gath-
ered from all the sub-windows of all the training im-
ages are collectively used to create the database of rec-
ognizable objects or images. Application of PCA to
this allows for the construction of a sub-space suitable
for recognition.

On-line recognition is performed by associating the
interest regions from a test image with their training
image counterparts. This is achieved by successively
projecting each sub-window onto the eigenspace cre-
ated o�-line and �nding the closest known eigenpoint



corresponding to the most similar training sub-window
image.

A voting mechanism is added as multiple inter-
est points represent an image or object to be recog-
nized. The following algorithm is used to accumulate
the data obtained by the projection of all the interest
points for a given test image:

� For each interest point x in the test image

{ Project x onto the eigenspace to get the

eigenpoint ~X

{ Find the closest projected training

point ~Y in the eigenspace to ~X

{ Find D = dist( ~X; ~Y ) where dist is

Euclidean distance.

{ Given ~Y find its corresponding training

image T

{ Add the value of 1=(D + �) to T's weight

W. Note that � is a constant.

The training image with the largest value of W is
the closest match to the test image.

5 Experimental Results

Tests were conducted on two sets of colour images
to exemplify the recognition of both objects that act as
landmarks, as well as entire views. We used a database
of 20 objects (Figure 2) taken from the Columbia Ob-
ject Image Library (COIL) and a database of 20 scenes
(Figure 8) taken at various locations in our lab.

Recognition performance on these two training sets
was evaluated using sub-window sizes of 10 by 10 pix-
els together varying numbers of interest points per im-
age. In this paper we show results using 64 interest
points per image, but similar �ndings have also been
obtained with as few as 5 interest points extracted per
image. A complete analysis of the results obtained
from varying these parameters is part of our ongoing
research.

Figure 3 shows four examples of the test images
used for object recognition. Note that the objects
within the images are rotated, partially occluded and
placed on arti�cial backgrounds. Figures 4, 5, 6 and
7 show the values of W as outlined in the algorithm
of section 4.5 for the images shown in �gure 3. The
ordering of the test images corresponds to the order-
ing of the results. The fourth test case is particularly
interesting in that it illustrates how the approach can
occasionally fail: it shows erroneous results caused by
the fact that the majority of the interest points chosen
fall on the background. Interestingly enough, the clos-
est match found is the clay mug which has a similar

Figure 2: Database of training objects (all 128x128 images)

Figure 3: Test images used for obtaining results of Fig-
ures 4, 5, 6 and 7

colour to the background in the failing test case. An
issue this raises is that the attention operator must
be suitably tuned with respect to both the scale and
structure of the types of objects of interest. While this
is a subject of ongoing research; we note that this type
of artifact can also be seen with human observers (the
\Where's Waldo" series of books serves as a familiar
example).

Figure 9 shows four of the test images used for the
room recognition. Note that in these test cases, the
camera is no longer aligned in the fashion it was when
the training pictures were taken. The big black tri-
angle in the �rst image is to simulate the occlusion
of half the test image. Figure 10 shows the training
images chosen by our system which best represent to
test cases shown in �gure 9.
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Figure 4: Recognition of the alien head from Figure 3
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Figure 5: Recognition of the deoderant stick from Figure 3
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Figure 6: Recognition of the ice tea can from Figure 3
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Figure 7: Failed recognition of the last ice tea can Figure 3

Figure 8: Database of training rooms (all 256x256 images)

Figure 9: Test images used for obtaining results of Figures 10



Figure 10: Training images from �gure 8 chosen by our system
when using Figures 9 as test cases.

6 Conclusions

In this paper we have presented an approach to vi-
sion based recognition for navigation. In particular,
an approach to the recognition of landmark objects
and of scenes that would allow places in the world to
be recognized by a mobile robot. Subsequent to this
recognition, various existing approaches for precise lo-
calization could be used (for example to compute the
speci�c pose with a room of interest) [7].

Our approach
to recognition is based on appearance-based subspace
projection, although by using an attention mechanism
we manage to achieve robustness in the fact of back-
ground variations (for landmarks), large amounts of
occlusion, planar rotation, and other distortions.

Unresolved issues relate to the use of multiple at-
tention operators, which might allow for even greater
robustness in the face of very complex occluding ob-
jects or extremely large degrees of occlusion. We are
also examining the question of how to automatically
select an appropriate number of interest points from
an image to assure con�dent yet eÆcient recognition.
We note, in passing, that since only small image sub-
windows are used for the recognition process, it is
highly eÆcient as compared to traditional full-image
PCA methods.
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