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Abstract

We present an approach to appearance-based object

recognition using single camera images. Our approach

is based on using an attention mechanism to obtain vi-

sual features that are generic, robust and informative.

The features themselves are recognized using principal

components in the frequency domain.

In this paper we show how the visual characteristics

of only a small number of such features can be used

for appearance-based object recognition that is not con-

founded by planar rotations or background clutter.

1 Introduction

In this paper we consider appearance-based object
recognition with robustness that is increased over that
exhibited by traditional methods. In particular, we out-
line two improvements to standard PCA-based recogni-
tion that increase its resistance to background variation,
in-plane rotation and partial occlusion.

Object modeling based on linear subspace approxi-
mation of intensity images has developed into a powerful
technique for object recognition. This is traditionally
accomplished by a principal components analysis of an
ensemble of training images, a long standing image pro-
cessing technique reintroduced to the vision community
by Turk and Pentland [1] and by Murase and Nayar [2]
among others. Work in this �eld has been constantly
hindered by two well-known problems: the use of global
images for PCA-based recognition leads to sensitivity
of the recognition of a foreground object to background
content; the technique is very sensitive to any rotation
of the foreground object, even simple planar rotations.

In this paper, we address both of these issues simulta-
neously and, in addition, perform recognition eÆciently.
Our approach is based on using an attention mechanism
to obtain visual features that are generic, robust and in-
formative. These features then serve as the cues to ob-
ject recognition. The features themselves are recognized
using principal components in the frequency domain.

The use of local features extracted by an attention
operator allows us to develop an approach to recogni-
tion that can extract discriminative cues from an object

of interest even though much of the image may contain
irrelevant content, or when the object to be recognized
is occluded. This achieves partial insensitivity to back-
ground clutter, although it does entail a dependence
on the availability of one or more appropriate attention
operators. The truly adventurous might take this as a
justi�cation of the wide variety of alternative attention
mechanisms observed in the human visual system [3].
The use of amplitude spectra to subsequently recognize
the features that attract attention allows the features
to be recognized independent of their rotation in the
plane. This, in turn, allows object recognition to be
achieved independent of 2D rotations.

In this paper we describe the function of our sys-
tem using a single attention operator based on sym-
metry [4]. This operator has a number of attractive
features including scale invariance, biological relevance,
and stability. Our approach has also been tested with
alternative attention operators although a discussion of
the associated issues are outside the scope of this pa-
per. SuÆce it to say that in an applied context, we
would propose to use the technique described here with
features extracted by multiple attention subsystems.

The outline of this paper is as follows. In Section 2
we briey consider some relevant background research,
followed by our problem statement in Section 3. In Sec-
tion 4 we provide the details of the methods we used to
implement our object recognition system. This in turn
is followed by some of our experimental results (shown
in Section 5). Finally, in Section 6 we summarize our
observations and discuss some further issues and ongo-
ing work.

2 Background

Several authors have considered the use of linear
subspace methods, often referred to as principal com-
ponents analysis or eigen- methods to recognize ob-
jects [5, 1] or compute robot pose [2]. In their basic
form, these methods represent images that contain ob-
jects of interest in a low dimensional subspace. The dis-
tance of a test image from known sample images then is
used to compute its identity. Such \appearance based"
methods have met with considerable success in appli-



cations such as face recognition, but since they use the
entire image the are sensitive to occlusion, rotation, il-
lumination variation and scale changes.

In recent work, Lowe[6] has also proposed recognizing
objects using small image samples. In contrast to this
paper, Lowe initially generates a large number of sam-
ples, of which only a few are necessary for recognition.
He relies on voting techniques for recognition. Simi-
larly, Schmid et al. [7, 8] has considered object recog-
nition using small windows extracted using the Harris
operator each of which makes only a small contribution
to the �nal identi�cation. Our work, in contrast, uses
a smaller number of measurements each of which has
substantial disambiguating power. Kohtaro Ohba and
Katsushi Ikeuchi [9], present independently developed
work of a very similar avour as our own. They too
choose to perform the recognition of their extracted fea-
tures using PCA, however they only concern themselves
with the recognition of occluded objects.

3 Problem Statement

Global PCA-based methods have been sensitive to
variations in the background behind objects of inter-
est; the location of the object to be recognized within
the image; changes in the orientation of the object and
to occlusion or changes in parts of the scene. Tradi-
tional global approaches fail to recognize objects suc-
cessfully if more than some 1/3 of the image changes
(and sensitivity is often much worse than this). Our
work sets out to accomplish appearance-based object
recognition while remaining robust to variations in the
background, changes in sub-parts of the scene, or occlu-
sion of a substantial fraction of the image. In addition,
we seek a recognition system that exhibits some rota-
tion invariance (speci�cally planar rotation invariance)
since our robots often take images while their tilt is un-
predictable.

4 Approach

To perform the actual classi�cations of the images to
be recognized, an image compression technique known
as principal component analysis (PCA) is used. This
allows images to be compared in a lower dimensional
space (lower than the number of pixels N in an image)
by computing the eigenvectors of the covariance matrix
Q of the training image set (the training image set be-
ing the set of recognizable objects). These eigenvectors
form an orthogonal basis set for representing individual
images in the set. Images to be recognized are projected
onto this eigenspace and matches are made by examin-
ing the Euclidean distance between points in this space.
The smaller the distance between the point representing
the image to be recognized and another point (one of

the projected training set images), the better the match.
Dimensionality reduction comes into play as it can be
shown that despite the fact that all N eigenvectors are
needed to represent the images exactly, only a small
number k (k � N) is generally suÆcient for capturing
the primary appearance characteristics of the recogniz-
able objects [10]. These k eigenvectors correspond to
the k largest eigenvalues of the covariance matrix Q.
Comparisons are thus made in this lower dimensional
eigenspace.

Various methods exist to compute the eigenvectors of
Q and we choose the singular values decomposition of
the matrix PT where PT is the transpose of the matrix
P where each row consists of a training image from
which the average of all the training images has been
subtracted.

4.1 Using attention operators and sub-
windows to make PCA robust

Since each row of P contains the intensity values
of an entire image consisting of a recognizable object
with no preprocessing, classic PCA as outlined above is
very sensitive to translations, rotations (planar or non-
planar), scaling of the object within the image and oc-
clusions. Furthermore, as no a priori segmentation can
be done in the image to be recognized, backgrounds
which di�er from those within the training set result
in misclassi�cation of the objects to be recognized as
only raw intensity values are considered. This is due
to the fact that all the images are compared in the
eigenspace constructed by P. Objects to be recognized
which are o� center, rotated (planar or non-planar),
scaled, occluded even partially or on di�erent back-
grounds relative to those within P, when projected onto
the eigenspace result in points that are not necessarily
close to their corresponding training image eigen points.
We account for some of these problems by the introduc-
tion of an interest operator which chooses points within
the images. Sub-windows are cropped around the cho-
sen points and instead of performing PCA on the entire
image, it is performed on these sub-windows. We use
a symmetry based context free attention operator [4]
which is independent of segmentation.

Our recognition algorithm consists of a training
phase and a testing phase. During the training phase
we run the interest operator on the set of images which
we want to recognize, crop around a selected group of
these interest points (see Section 4.2) and build P. In
the testing phase, we run the interest operator on the
image to be recognized, process the information in the
sub-windows obtained to account for planar rotations
and varying backgrounds and project them onto the
eigenspace.



In the absence of noise the attention operator will
choose the same points of interest in testing images as
those it chose during the training phase (which is mostly
the case for the operator we use). This achieves trans-
lation invariance as all that matters is the image data
in the immediate neighborhood of the attention point.

Multiple interest points are chosen for the recogni-
tion of an object. So long as a suÆcient fraction of the
interest points associated with the object are recovered,
the object can be recognized. Since a voting scheme
is devised for all the sub-windows around the interest
points chosen, see Section 4.5, partial occlusions cause
the interest points that are chosen on the occluding ob-
ject in the image to cast erroneous votes. The points
chosen on the object itself, cast good votes and can thus
at times (depending on the degree of occlusion) reliably
identify the object itself.

4.2 Filtering Interest Points

Once an interest map is obtained from the attention
operator, interest points are chosen from the map such
that the information content within the sub-windows
around the interest point is plentiful. The degree of in-
formation within a sub-window is determined by com-
puting the standard deviation of intensity values within
that window. A standard deviation threshold is com-
puted and any cropped sub-windows with standard de-
viations less than that threshold are rejected.

Another level of discrimination is introduced by re-
quiring that sub-windows cropped around chosen inter-
est have a minimum degree of overlap with other chosen
sub-windows. This results in interest points being cho-
sen over a large portion of the object to be recognized
instead of multiple windows being chosen around a few
points which are considered most interesting by the op-
erator.

4.3 Feature Locality

The image content around each selected interest
point is extracted in a manner that is not purely local.
Emphasis should be given to the immediate neighbor-
hood of the interest point chosen while image data as
one heads to the periphery of the sub-window should
hold less weight. Multiplying the data within the sub-
window with a two dimensional Gaussian reduces sensi-
tivity to distal points which may be on the background.
This also reduces the sensitivity to the shape of the win-
dow. Advantages are also gained for the achievement of
rotation invariance as outlined in the next section.

4.4 Rotation Invariance

The use of a Fourier basis for the sub-windows chosen
around the interest points provides rotation invariance.
One of the properties of the two-dimensional Fourier

(a) (b) (c) (d)
Figure 1: Polar Sampling of an Ice tea can. (a) and (b) are
(x; y) images with (b) rotated by 45 degrees. (c) and (d)
are their corresponding polar (�; r) images. Note how a 45
degree rotation in (x; y) image turns into a shift in � (�; r)
image

Transform is the shift theorem. Given a function f(x; y)
in the spatial domain, its Fourier Transform gives us
a function F (u; v) in the frequency domain. The shift

theorem states that the Fourier Transform of f(x�a; y�
b), where a and b are constants, is:

ej2�(au+bv)F (u; v) (1)

This property can be exploited in our situation to help
achieve planar rotation invariance around the chosen in-
terest points. This is due to the fact that both f(x; y)
and f(x�a; y� b) have the same same amplitude spec-
trum in the frequency domain as:

jej2�(au+bv)F (u; v)j = jF (u; v)j (2)

Given a sub-window in the Cartesian coordinate sys-
tem, we �rst convert it into a polar coordinate system
by sampling in a circular fashion with increasing radii
from the center of the window. Thus any rotations
about the interest point are reected as shifts in � in
the polar image, see Figure 1. Once a polar represen-
tation of the sub-window is obtained, it is multiplied
by a two-dimensional Gaussian with a standard devia-
tion of a quarter the length of the square sub-window.
This is e�ectively the Hamming window as a notion of
continuity is introduced between the two ends of each
line of the image and thus one gets rid of some of the
potential high frequency components in the spectrum
introduced due to the discontinuities in the discrete two
dimensional image which we treat as a continuous sig-
nal. Section 4.3 also outlines advantages of such an
operation.

We then proceed to obtain the amplitude image
through the Fourier transform of the two dimensional
polar image outlined above. This amplitude image is in-
variant to any rotations about the center of the window
and thus we achieve planar rotation invariance. Note
that rotations about arbitrary points are handled au-
tomatically since for any interest point they can be de-
scribed as a translation and a rotation about the center.



4.5 Classi�cation

In the o�-line training phase, the set of data gathered
from all the sub-windows of all the training images are
collectively used to create the database of recognizable
objects or images. Application of PCA to this allows for
the construction of a sub-space suitable for recognition.

On-line recognition is performed by associating the
interest regions from a test image with their train-
ing image counterparts. This is achieved by succes-
sively projecting each sub-window onto the eigenspace
created o�-line and �nding the closest known eigen-
point corresponding to the most similar training sub-
window image. A kd-tree was implemented to search
the eigenspace eÆciently for the nearest neighbor of the
projected eigenpoint. Since such a data structure also
allows one to retrieve the n nearest neighbors eÆciently,
part of our ongoing research involves selecting not just
the nearest neighbor but choosing an eigenpoint from
the n nearest neighbors.

A voting mechanism is added as multiple interest
points represent an image or object to be recognized.
The following algorithm is used to accumulate the data
obtained by the projection of all the interest points for
a given test image:

� For each interest point x in the test image

{ Project x onto the eigenspace to get the

eigenpoint ~X

{ Find the closest projected training point
~Y in the eigenspace to ~X

{ Find D = dist( ~X; ~Y ) where dist is

Euclidean distance.

{ Given ~Y find its corresponding training

image T

{ Add the value of 1=(D + �) to T's weight

W. Note that � is a constant.

� is a constant which is introduced to account for
outliers which can cast large votes. All our experiments
in Section 5 use an � value of one.

The training image with the largest value ofW is the
closest match to the test image.

5 Experimental Results

In this section, we report the results of object-
recognition tests using a database of assorted objects.
Since we were unable to �nd a suitable database (such
as Columbia University's COIL database) that included
suÆcient background variation, we were forced to con-
struct of own database1 Figure 2 shows a sample of the

1These images are available to other researchers at
http://www.cim.mcgill.edu/~dudek/objects

set of objects with which the database of images was
created. Three views were taken for each object; �g-
ure 2 only shows one such view per object for six of the
14 recognizable objects used for our experiments. 2

Recognition performance on the training set was
evaluated using sub-window sizes of 10x10 and 20x20
pixels respectively. The eigenspace itself was created
using 50 interest points per training image and the 30
most signi�cant eigenvectors were used for classi�ca-
tion. Tests were conducted to evaluate the accuracy of
the recognition as a function of the number of interest
points. Figure 3 shows 6 of the 17 test samples which
were used to obtain the results shown in Figure 4. Note
that these test images include training objects which
are placed on various non-uniform backgrounds. Test
images also include examples where the object to be
recognized undergoes limited non-planar rotations. De-
spite that, recognition was still reliably achieved. Note
also that some of the objects are partially occluded.

Figure 4 shows two performance plots. The �rst
graph shows the percentage of images that were rec-
ognized plotted against the number of interest points
used as input. Note that with 50 interest points all
of the objects shown in Figure 4 are recognized with a
sub-window size of 10x10. The second graph shows an
increase in the reliability of the recognition as one in-
creases the number of interest points. The reliability is
simply de�ned as the di�erence in vote strength between
the two most preferred models, more speci�cally the av-
erage of the sum of all the di�erences of W (as outlined
in Section 4.5) between the recognized object and the
second best candidate object. It is interesting to note
that roughly 70 percent of the test images were recog-
nizable with only 5 interest points. The area spanned by
5 interest points with a 10x10 window size corresponds
to 500 pixels which is merely 0.0016 of a 640 by 480
pixel image . This exempli�es the di�erence between
our approach to attention-based appearance modeling
and others based on the use of far more numerous but
\weaker" features.

An analysis of how the chosen window sizes (10x10
and 20x20 in the results shown here) a�ects recognition
is currently part of our ongoing research. From the re-
sults we see that while there seems to be no signi�cant
change in the percent of images recognized vs. num-
ber of interest points plot, the reliability of the recog-
nition was better when we used the larger 20x20 sub-
window. We also found that a lot of the images which
were not recognized even with 50 interest points when

2Note that all these color images are actually of size 640 by
480 while the images shown in this paper have been cropped and
scaled appropriately for legibility. The test images shown have
not been cropped but simply re-scaled for display.



Figure 2: 6 of the 14 training objects used for the database
of recognizable objects. (all 640x480 images)

Figure 3: 6 of the 17 test images (all 640x480 images) used
for results shown in �gure 4

using 10x10 sub-windows, were successfully recognized
with the larger sub-window, see Figure 6 for an example
of such an image. This is not surprising as the infor-
mation content per sub-window is greatly increased and
hence recognition is more reliable.

Figure 5 is interesting in that it illustrates how the
approach can occasionally fail: it shows erroneous re-
sults caused by the fact that the majority of the in-
terest points chosen fall on the background. An issue
this raises is that the attention operator must be suit-
ably tuned with respect to both the scale and structure
of the types of objects of interest. In the cases shown,
the background exhibits symmetric properties which at-
tracts the attention of the interest operator used as the
scale over which it was working was not appropriately
tuned. The images show where the 50 interest points
(10x10 sub-windows) were chosen and one can clearly
see that the majority of these do not lie within the ob-
ject of interest.
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Figure 4: Results obtained when varying the number of
interest points on images such as those shown in �gure 3.
The �rst graph shows the recognition performance on all the
17 images (of which 6 are shown in �gure 3) as a percentage.
The second graph shows the reliability of the recognition
performed. See Section 5 for a de�nition of reliability.



Figure 5: Example test image (containing sub-windows
around the interest points) which caused a failure (all
640x480 images).

6 Conclusions

In this paper we have presented a re�nement of
appearance-based object recognition using principal
components analysis. Rather than directly using a sub-
space of the entire image, we propose the use of a set
of cues selected with an attention operator to drive the
recognition process. The regions about these cues are
then learned and recognized using principal components
analysis in the Fourier domain. By using the frequency
domain to characterize the appearance of each atten-
tion point, we achieve invariance to two dimensional ro-
tations. The fact that we use a consensus of a number
of small attention points to identify an object makes
the technique robust and eÆcient. This robustness is
achieved since we only need a limited fraction of the
interesting points on an object to be visible. The eÆ-
ciency results from the fact that the set of local features
we use comprises only a small fraction of the entire im-
age (although we must process the entire image with the
attention operator). In principle, the approach should
also accomodate scaling fairly easily. In other work we
have also considered the e�ects of alternative attention
operators but none so far have improved on the results
presented here.

In this paper we have considered the performance
of the approach as a function of the number of inter-
est points used and briey discussed the impact of the
size of the subwindows extracted around each attention
point. Over our ensemble, \large" windows (0.13 per-
cent of the entire image) provide more reliable results
(even with only 5 feature points) but with smaller win-
dows we can still achieve good recognition rates by using
larger numbers of features. Clearly, the attention opera-

Figure 6: Example of a test image which was reliably rec-
ognized using 50 interest points and a window size of 20x20
but failed for the 10x10 case

tor must be well suited to the ensemble of objects being
recognized but our method is independent of the spe-
ci�c operator used. In ongoing work, we are examining
the use of multiple alternative operators in conjunction
with one another.
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