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Abstract

Mobile robot navigation and localization is fre-
quently aided by, or even dependent upon, a good es-
timate of the rate of dead-reckoning error accumula-
tion. Sensor data can be used for position estimation,
but this often involves overhead in acquiring and pro-
cessing the data. By sensing and then classifying the
surface type, an estimate of the rate of error accu-
mulation for dead-reckoning allows us to estimate ac-
curately how often localization, including sensor data
acquisition, must be performed.

In the experiments we describe, a boom-mounted
microphone is tapped on di�erent oor materials,
much as a blind man might tap his cane. The acous-
tic signature arising from the contact is then used
to classify the oor type by comparing a windowed
power spectrum of the acoustic signature with one of a
family of prototypical signatures generated statistically
from the same material. The technique is low-cost,
involves limited computational expense, and performs
very well.

1 Introduction

Mobile robot navigation and localization is fre-
quently aided by, or even dependent upon, a good
estimate of the rate of dead-reckoning error accumu-
lation. Sensor data (in particular sonar or laser range
data) can be used for position estimation but often
entails delays in order to acquire the measurements
or process the data. By observing the material type

Floor type percentage error

tile 1%
rough oor 8%
carpet 11%

Table 1: Average positional error accumulated over
a simple polyhedral path (ten tours of a square of ap-
proximately two feet by two feet). In general, the mag-
nitude of the errors depends on various parameters of
the trajectory but the relative magnitudes as a function
of surface type vary consistently.

over which the robot is moving, an estimate of the rate
of error accumulation for dead-reckoning allows us to
accurately estimate how often localization, including
sensor data acquisition, must be performed. For vari-
ous oor coverings in our laboratory, for example, the
rate of error accumulation varies by a factor of 10 (See
Table 1). The system we propose uses dead-reckoning
and knowledge of the material over which it is mov-
ing to maintain an estimate of its position and un-
certainty in position. When this uncertainty exceeds
a prescribed limit, re-localization is performed using
either sonar or video data [5].

The approach presented in this paper use a simple
sensory probing strategy to address the three main
problems associated with the sensing-odometry com-
bination. The probe can:

� detect obstacles for collision avoidance,



� detect holes or drop-o�s (for example stairways
or ramps),

� be used to perform oor surface identi�cation
while navigating (the emphasis of this paper).

This third task, in particular, is the most useful in
tackling the positional error inherent in odometry. By
identifying surface properties such as compliance (e.g.
plastic or carpeted surfaces) which would lead to high
odometric errors, or hardness (e.g. tiled surfaces)
which would lead to lower odometric errors, an appro-
priate frequency of use for the more resource intensive
perception system could be determined.

A boom-mounted microphone is mounted on the
front of the robot and is tapped on the ground in
front of the mobile robot as it moves, analogous to
the way in which a blind person might use their cane.
The acoustic/vibrational signature picked up by the
microphone and arising from the contact is then used
to classify the oor type. In previous studies, we have
examined various strategies and control mechanisms
and assemblies for performing the tapping [6]. Surface
identi�cation is accomplished by preceding the use of
the on-line system by a surface learning phase where
di�erent samples are classi�ed and protypes for recog-
nition are generated. A family of several prototypes
may be generated for a single material. During the
on-line stage, a real signal is acquired by tapping, and
identi�cation is performed by comparing a windowed
power spectrum of the acoustic signature with the sets
of families of prototypical signatures generated during
the learning stage. The technique is low-cost and in-
volves only limited computational expense.

The inspiration for the sensory probe presented in
this paper is the specialized manner in which certain
blind people use a cane easily to detect obstacles and
drop-o�s and surface height variations. Furthermore,
using proprioceptive vibrations that travel up the cane
from the impact of the tip against the oor surface,
the user can often identify the type of material under-
foot [8]. The experienced user can walk a line dividing
two di�erent oor materials, using the cane to identify
each one and the border between them. It should be
noted that this ability does not come simply from the
sound of the cane hitting the oor; if the cane is insu-
lated from the user's hand, so that he or she cannot
feel the impact but only hear it, the ability to di�eren-
tiate oor materials is severely impaired. On the other
hand, if the sound of the impact is deadened (e.g. with
earplugs), the user still has this ability, although ac-
curacy is decreased. By mounting a microphone at
the tip of a boom, and using the boom in the same

manner as a cane, a robot can (in principle) detect
obstacles, holes, and do surface identi�cation in the
same manner as a blind person. This is the subject of
the present article.

2 Background

Most work on robotic sensors falls into two cate-
gories: tactile sensors and position sensors [1]. Our
work also uses what is essentially a tactile sensor, but
it is unlike most existing tactile sensors described in
the literature. Most work on tactile sensors has been
conducted with the goal of identifying shapes by fol-
lowing their contours, just as a human hand can iden-
tify a shape using �ngers. These sensors are largely
feelers, and at best could be used for obstacle detec-
tion and drop-o� detection, but they do not have the
sophistication for surface identi�cation. With the de-
velopment of slippage detectors, and possibly the im-
plementation of a much �ner grain of sensor within a
large feeler, surface identi�cation could be similar to
that of a human hand, but for this much more devel-
opment is needed.

Krotkov [3] has also recently examined generic sur-
face identi�cation (without motivation from mobile
robot navigation) using acoustic signatures in a dif-
ferent framework and with a somewhat di�erent ap-
proach than our own. His reported identi�cation rates
are slightly lower than those reported here.

Surface identi�cation has been explored to a lim-
ited degree within the context of quality control, but
the focus is primarily on detecting atypical samples,
rather than on classi�cation. These systems rely pri-
marily on defects that change the acoustic or electro-
magnetic reectivity of the surface, and as such are
able to identify simply everything that is not a par-
ticular surface. Visual systems have been developed
to identify many surfaces with high success rates eg.
[9] but there exist oor surfaces which they cannot
identify with any notable success rate. Furthermore,
these systems are often costly in terms of equipment
and processing power. The sensor we describe here
has the advantages of being cheap and fast.

3 System Hardware

Our work in this area began with a small condenser-
type microphone attached to the tip of a boom (ex-
ible rod) mounted on an RWI B-12 mobile robot
equipped with radio antenna controlled from a Sun



workstation, with a separate onboard HC11 micro-
controller for controlling the tapping pattern of the
boom in front of the robot, much as a blind man would
tap his cane [6].

In subsequent work [4], we chose to concentrate on
a new mechanical system to support the boom. The
results reported here were obtained using a commer-
cial pan and tilt unit connected to a Silicon Graphics
(SGI) workstation (there is also a version for the Sun
SPARC 1+ workstation) using the 44kHz sampling
frequency of the SGI audio port (8000 Hz sampling
rate for the SPARCstation).

3.1 Acoustic transduction

The microphone used was selected to be impact re-
sistant, small, and and light weight. In some environ-
ments, a microphone design that limits sensitivity to
ambient sounds may also be desirable. In fact, since
a large part of the acoustic signature comes from the
vibratory signal of the impact itself, acceptable results
may be obtainable by coupling the acoustic transducer
to the tapping stick and minimizing the sensitivity to
sound (in this case, avoiding the pickup of motor noise
from the drive becomes an issue). In practice, we have
obtained good results using various low-cost condenser
type microphones.

3.2 Pan and Tilt Unit

The experimental methodology employed a two
degree-of-freedom stepper-motor based pan-tilt unit
(Directed Perception, model PTU-C) to move the
boom-mounted microphone.

An appropriate boom must behave with both exi-
bility and rigidity. Flexibility leads to reduced torque-
load on the drive and a reduced risk of damage when
the sensor is driven (or overdriven) into a rigid mate-
rial. On the other hand, rigidity increases the impact
noise of the microphone and simpli�es modelling of
the end-point position and control of the rod (which
is complicated by the impacts on di�erent materials
that it must sustain).

In previous work [6], a piece of 7.5mm diameter
semi-rigid lucite (similar to plexiglass) was used. More
recent work [4] demonstrated that a thin hollow alu-
minum rod proved to be a more stable experimen-
tal platform and this was the boom used for the ex-
periments reported here (trading o� exibility against
rigidity).

4 Sound Analysis

A simple �xed threshold was used to detect the on-
set of the impact signal when the boom/microphone
makes contact with the oor material. Time domain
analysis immediately shows that typical oor materi-
als can have have substantially di�erent signal char-
acteristics. For example, linoleum tends to have a
bell-shaped decaying waveform with a characteristic
double-bell, whereas those waveforms for carpet and
tile exhibit much variability.

Although qualitative time domain classi�cation of
such signals is used in some contexts, we found ex-
isting qualitative classi�cation schemes (attack, de-
cay rate, etc.) insu�ciently precise or inapplicable
to this class of signals. Instead, we used a continu-
ous frequency domain characterization of the signals
[2]. For most materials we have examined, discrimina-
tion is possible even with 8 kHz bandwidth although
our current implementation can use somewhat higher
frequencies. Characteristic spectra including one with
high-frequency components are shown in Figure 1.
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Figure 1: Sample characteristic time domain signal
signals from metal and wood oor surfaces.



4.1 Correlation Techniques

Our approach to signal matching is simple and ef-
�cient: to perform a normalized cross correlation be-
tween an unknown signal s(!) and the signals ki(!)
which are members of a library L of known prototypes
along with their associated typing information:

m(s;ki) = s � ki: (1)

Preliminary classi�cation of the surface type t is thus a
matter of selecting the surface type that best matches
the candidate signal:

t = typei j max
i

(m(s;ki)) (2)

A further improvement was to threshold the cross
correlation product. If the product between the un-
known signal s(!) and the ki(!) for type t was above
0.9, then the classi�cation was deemed to be success-
ful; otherwise (values less than 0.9), the signal s(!)
was deemed to be \unknown". This allowed us to de-
termine if a signal s(!) could be correctly identi�ed
or not.

Clearly, the di�culty with this method is establish-
ing the characteristic spectra of known surfaces (oor
materials). In fact, simple methods such as averaging
are inappropriate. A major reason for this is that we
have found that the acoustic signature of simple sur-
faces (even at a �xed location) can take on di�erent
prototypical forms, as shown in Figure 2. Note that al-
though the two signals are grossly similar, they exhibit
as variety of di�erent peaks and amplitude variations.
In addition, we have found that di�erent harmonics
can be excited in di�erent proportions due to varia-
tions in operating conditions such as temperature and
humidity.

By using a small set of alternative characteristic
spectra for each material, this problem can be re-
solved. In the section below, we outline this method-
ology for generating a family of characteristic spectra.
This approach has the advantage of being generic, i.e.
it makes few assumptions about the speci�c class of
surfaces being dealt with, it can be performed auto-
matically, and is much less case-speci�c that methods
that attempt to infer \higher-level" features for detec-
tion.

4.2 Our experiments : generating charac-
teristic spectra

Six categories of oor material were chosen for
study: wood (table top), cement (cylinder), plastic
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Figure 2: Two di�erent acoustic signatures for the
same glass surface.

(empty box), glass (empty bottle), and two kinds of
metal (I-beam, empty box).

Using these samples, a total of 105 training sam-
ples (acoustic signatures) were obtained over a one
day period, to generate the characteristic spectra re-
quired for our classi�cation purposes, using the mean
statistic for each surface: wood (20 samples), cement
(10), plastic (20), glass (40), I-beam (10), metal box
(5). (Median, maximum and minimum statistics were
also used to generate characteristic spectra but they
resulted in poorer recognition accuracy.)

As shown in Table 2, di�erent numbers of charac-
teristic spectra were required for the di�erent oor ma-
terials, based on qualitative observations of the vari-
ability in their acoustic signatures, i.e. the number of
characteristic spectra for each oor type was increased
until 100% of the training samples could be classi�ed
correctly.

Once these characteristic spectra were de�ned, a
total of 60 more samples were obtained for testing
purposes, ten for each oor type. The results of the
classi�cation are presented in Table 3. In some cases,
certain samples were identi�ed as \unknown"; no sam-



Floor type no. characteristic spectra

wood 3
cement 8
plastic 1
glass 3
I-beam 3

metal box 3

Table 2: Number of characteristic spectra, by oor
type, required for reliable surface classi�cation.

Floor type Pct. correctly identi�ed Pct. unknown

wood 100 0
cement 90 10
plastic 100 0
glass 100 0
I-beam 90 10

metal box 90 10

Table 3: Results of the oor type classi�cation using
characteristic spectra.

ple was mis-classi�ed.

In summary, over the 165 samples (105 for training
+ 60 for testing), we obtained a recognition accuracy
of 162=165 = 98%.

5 Conclusion

The `blind person's cane' paradigm is an excel-
lent method of secondary obstacle detection and sur-
face identi�cation as an aid to sonar and odome-
try e�ciency. It is fast, being computationally- and
time-inexpensive. While our experimental system is
not perfect, operating at 98% accuracy, further work
shows promise of eliminating errors.

For example, we have already explored the possibil-
ity of fully automating the data acquisition and spec-
tra re�nement so that the system may learn new sur-
face materials by itself by tapping the new material
and attempting to recognize it.

On another front, we have considered using strain
gauges at the tip of the boom as an alternative to
a microphone, but preliminary considerations suggest
that the mounting and signal processing would entail
substantial additional complexity.
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