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Abstract

In this paper we discuss the Recommendz 1 recommender
system. This domain-independent system combines the ad-
vantages of collaborative and content-based filtering in a
novel way. By allowing users to provide feedback not only
about an item as a whole, but also properties of an item that
motivated their opinion, increased performance seems to be
achieved. The features used to describe items are specified
by the users of the system rather than predetermined using
manual knowledge-engineering. We describe a method for
combining descriptive features and simple ratings, and pro-
vide a performance analysis.

1. Introduction

This paper describes an approach to the design of rec-
ommender systems [16] that provides both higher accuracy
and richer feedback than alternative methods. This work is
exemplified in a system we have developed called Recom-
mendz. A recommender system is a mechanism providing
suggestions regarding items of interest based on knowledge
of a user’s tastes. Most recommender systems are web-
based and base their suggestions on knowledge of a user’s
existing tastes in the domain of interest (for example, what
movies they like and dislike). Our recommender system is
web-based and contains a database of items from multiple
domains of interest (such as movies). Visitors to the site
provide feedback on particular items (such as movies they
have seen), and are then provided with predicted ratings on
items they have not yet rated.

Existing recommendation systems exploit both similari-
ties between users of the system and similarities in the “item
structure”, but most techniques use only a single scalar mea-
surement per item for each user (i.e. “did this user buy
this item”, or “did this user like this item”). Recommendz

1http://www.recommendz.com

differs in the type of feedback collected from the users as
well as in the algorithm that computes the recommendation
with this feedback. Broadly speaking, collaborative filter-
ing refers to making recommendations by matching users
to other users, and then exploiting a transitive relationship
between users and the items they rate: User A is similar to
User B, and User B likes item C, therefore A will like Item C.
An alternative methodology for recommendation systems is
to employ content (or item) based filtering, directly match-
ing items without explicitly referring to other users: User
A likes Item D, Item D is similar to Item C, therefore User
A will like Item C. In either case, the similarity relationship
between users or items is crucial, yet must be inferred based
on very sparse data.

Our approach is a hybrid of traditional collaborative fil-
tering and content-based filtering; however, our content in-
formation comes from the ratings of users, rather than from
a pre-existing database of item information or from an auto-
mated analysis of the items in consideration (although it is
possible that such information could be profitably incorpo-
rated into our system).

It is common in recommender systems for the user to
provide feedback about an item as a whole in the form of
a numeric rating in some range (e.g. from 1 to 5). In our
system the user gives feedback in this form, but is also re-
quired to provide feedback on at least one feature of the
item being rated. These features can be positive or negative
attributes. Specifically, the user specifies the quantity of the
feature associated with the item on a numeric scale, and then
rates the feature as being a negative or positive aspect of the
item, also on a numeric scale. For example, the film “Star
Wars” is frequently rated as being associated with a fairly
high level (or quantity) of the feature “Robots”, and users
vary in the extent to which they like or dislike this attribute
of the film.

There are several ways this semantic information can be
exploited to provide recommendations. Typically, the simi-
larity between a pair of users is calculated based on whether
they have rated a similar set of items, or on how similar the



numerical ratings for common items have been. The feature
information our system learns provides a sense of why the
users have preferences for certain items over others and can
help define the causative or explanatory basis for the ratings.
This allows the system both to gain a better understanding
of the similarity between users and to (better) explain the
recommendations made. Other researchers have identified
good explanations as being an important aspect of recom-
mender systems, in that they build user trust [13].

Another use of feature information is in building profiles
about the content of items. Such profiles may be useful to
users, but they can also be exploited in content-based algo-
rithmic variants (an issue we are examining, but which is
outside the scope of this paper).

In most non-trivial domains, the set of important features
is much smaller than the set of all possible items; this ap-
pears to be the case in the movie domain, as one might ex-
pect. This means that even in cases where traditional collab-
orative filtering is not able to determine a similarity between
two users because no items were rated in common, it is still
possible that they have used features in common, and on
that basis we can make recommendations.

Although the space of features is, at least in the domain
under consideration, smaller than the space of items, it is
still large enough that making the entire list available to
each user when rating would be overwhelming. For that
reason we use a statistical method to determine similar fea-
tures based on usage, and to suggest, for a given item, a set
of features which may be appropriate for the user and item.

2 Background

The system called Tapestry is often associated with the
genesis of computer-based recommendation and collabora-
tive filtering systems. In Tapestry [10], users were able to
annotate documents with text comments. Other users were
then able to query these annotations to find suitable doc-
uments. Both the annotation and filtering process in this
system were performed manually. The key attribute of this
system is that it allowed recommendations to be generated
based on a synthesis of the input from many other users.

The collaborative paradigm begun with Tapestry was
later automated in a number of projects [16, 3, 14].

Recommender systems can be broadly classified with re-
spect to two algorithmic variations: pure collaborative fil-
ters and content-based filters. Collaborative filtering is the
process of filtering based on preference data from a commu-
nity of users, ignoring characteristics of the items in ques-
tion. Similarity between users is determined based on pref-
erence data, and then preferred items are recommended to
similar users. In a variation on this approach, it has been
shown that it can be useful to calculate the similarity be-
tween items based on preference data, and then to recom-

mend similar items to the user [17]. Content-based filtering
is the opposite of pure collaborative filtering: User inter-
ests are captured in some way, content profiles are learned
for items, and users are then matched to items based on the
degree to which interests and content coincide.

In the Entree system [4, 5], Burke created a recom-
mender system for restaurants in which user feedback is
not specified as a numeric overall rating, but in which users
specify a semantic rating in which he or she feels the current
item is lacking. The system uses the feedback both to learn
what the user is looking for and to build a profile of each
item. It is then possible to recommend restaurants which
fit the user’s desires. In Entree, the set of semantic ratings
available is predetermined by manual knowledge engineer-
ing.

The CoFIND [8] system also uses a semantic rating sys-
tem. In this system, the user provides feedback on the “qual-
ities” of the item and qualities are suggested if they are used
repeatedly. The emphasis in CoFIND is in organizing re-
sources to aid in learning.

The problem of how to efficiently prompt the user to
provide useful feedback, known as preference elicitation,
is important to recommender systems [1]. The issue is to
identify those items which will be useful to the system in
predicting preferences, so that the user can provide as much
information with as little burden as possible. In our case we
wish to identify items and features which are actually use-
ful. Several researchers have examined approaches to this
problem, including Partially Observable Markov Decision
Processes [1] and the Expected Value of Information [2].
For a theoretical analysis of this problem, see [7].

One straightforward method of making recommenda-
tions is to find the nearest neighbors of a particular user,
according to some similarity measure [3]. Once the neigh-
bors have been found, we can interpolate among the ratings
of that neighborhood to predict ratings and make recom-
mendations.

One similarity measure which has commonly been used
in recommender systems is Pearson Correlation [15, 12].
It takes into account differing biases in ratings between
the users under consideration, based only on items rated in
common. Other similarity measures include vector similar-
ity [3]. Our system’s nearest neighborhood recommenda-
tion scheme can be easily modified to use any such measure.

3 Approach

3.1 Ratings data

In preliminary experiments, we determined that having
the user provide feedback to substantiate their rating was
effective in improving the mean absolute error of predic-
tions [9]. That preliminary study asked the user to indicate



the presence of a feature and specify a numerical rating re-
garding their liking or dislike of it. We have observed that
the extent to which a feature is applicable is an important
criterion for both user satisfaction and performance. In ad-
dition, a user’s reaction to a feature can depend significantly
on the strength of its observed “presence” (i.e. a little bit of
violence may be good, but a lot may be negative). Based on
these observations we permit a user to:

1. specify an overall opinion of the item,

2. select a relevant feature of the item,

3. specify the quantity of that feature in the item (or ap-
plicability of the feature to the item),

4. specify the degree to which the presence of this feature
was a positive or negative factor.

This provides a more natural transliteration of the form of
a typical interpersonal dialogue regarding the review of an
item, but it does impose more overhead on the user. For
example,

I thought that movie was pretty good. There was
a lot of action and special effects, which is great.
It’s just too bad that the romantic subplot was un-
derdeveloped.

becomes

Overall: 8
action quantity 8 opinion 5

romantic subplot quantity 2 opinion -4

Precisely, a rating by user u on item i is of the following
form:

Exactly one overall rating, rui ∈ [1, 10]. This represents
the user’s opinion of i on the whole, where a rating of 1
indicates extreme dislike and a 10 indicates extreme prefer-
ence.

For this item, u must select a minimum of one feature
which was important to his or her overall opinion, and in
general will choose a set of features Fui. Suppose feature
f ∈ Fui is chosen. Then the user specifies the feature quan-
tity of f perceived to be in the item, q

f
ui ∈ [0, 10], where 0

indicates the complete absence of this feature while 10 indi-
cates a very large amount. To complete this feature rating,
the user must specify his or her feature opinion of this pres-
ence of f in the item, as o

f
ui ∈ [−5, 5], where a rating of

−5 should be used for extremely negative features, and 5
should be used for extremely positive features.

Among users of the system who are not affiliated with the
research project, 58% of all ratings used 3 or more features.

The set of all users is U , the set of all items I , and the set
of all features in the system, F . For convenience, we denote
the set of all items rated by user u as Iu, and the set of all
features used by user u as Fu.

3.2 Hybrid CF using feature biases

The system uses a nearest-neighbor interpolation scheme
to recommend items that are preferred by similar users.
Typically, user similarity is computed as the Pearson cor-
relation [3] of items rated in common between the users. In
our system the ratings are more complicated so while we
also use Pearson correlation, we actually compute three dif-
ferent similarity measures and then take a weighted average
of the three to arrive at one similarity value.

Suppose we wish to compute the similarity between
users u and w.

First, we have the similarity in overall ratings, which is
just the Pearson correlation between the overall ratings of
the items rated in common.

sr(u,w) =

∑

i∈IC
(rui − r̄u)(rwi − r̄w)

√

∑

i∈IC
(rui − r̄u)2

∑

i∈IC
(rwi − r̄w)2

(1)

where in each summation, IC = Iu∩Iw, the items common
to both user u and w; and r̄u is the mean overall item rating
for user u.

To make use of feature information, we calculate statis-
tics for feature ratings. In effect we compare user biases
toward features, rather than comparing feature usage on an
item-by-item basis. Thus, the next similarity measure we
compute will be the similarity in feature bias between the
two users. For each user u, for each feature used, we cal-
culate the mean feature opinion for feature f over all items,
ōf

u, and the mean opinion over all features, ōu. Then, using
the Pearson correlation:

so(u,w) =

∑

f∈FC
(ōf

u − ōu)(ōf
w − ōw)

√

∑

f∈FC
(ōf

u − ōu)2
∑

f∈FC
(ōf

w − ōw)2

(2)
where in each summation, FC = Fu ∩ Fw, the features
which have been used by both user u and w.

Finally, we wish to get a third measure based on the sim-
ilarity in bias toward quantity.

sq(u,w) =

∑

f∈FC
(q̄f

u − q̄u)(q̄f
w − q̄w)

√

∑

f∈FC
(q̄f

u − q̄u)2
∑

f∈FC
(q̄f

w − q̄w)2

(3)
where in each summation FC = Fu∩Fw, the features which
have been used by both user u and w; q̄u is the mean quan-
tity rating by user u over all features and items; and q̄f

u is
the mean quantity rating from user u for feature f , over all
items.

We now want to combine these three similarity measures
into one. To do this we compute a weighted sum of sr, so,
and sq using weights ωr, ωo, and ωq , respectively. The final
similarity between two users u and w then is:

s(u,w) =
ωrsr + ωoso + ωqsq

ωr + ωo + ωq

(4)



Figure 1. Screenshot of providing feature feedback for a movie in Recommendz.

With the ability to calculate this similarity s between any
two users, we can find the k nearest neighbors of user u,
which we denote as Nk

u . We will be interested in the sub-
set of Nk

u who have rated item i, denoted Nk
ui. With this

information, we can predict the rating of user u on item i:

r̃ui =

∑

w∈Nk
ui

s(u,w)(rwi − r̄wi)
∑

w∈Nk
ui

s(u,w)
+ r̄u (5)

Note that we normalize the predicted rating according to
the users’ overall rating biases, and then make the actual
prediction by adding to the user’s overall mean rating.

3.3. Feature Suggestion

In our system, it is up to the users to contribute features
which can then be used by all. Because of this, the number
of features in the system is constantly growing. In order to
encourage feedback and to be better able to compare user
similarity, we would like users to use preexisting features.
At the same time we cannot simply present the users with
a list of all features in the database, as that would be over-
whelming. What we wish to do then is suggest relevant
features. The suggested features should be relevant to the
item to be rated, and should provide useful information to
the system.

Recommendz suggests features using a combination of
the following techniques:

Features on which users differ widely in opinion are
likely more useful for determining inter-user similarity (this
was suggested by Goldberg et al [11]). To exploit this, we
suggest features where variance in feature opinion has been
high for the current item.

From the features which were not suggested as high-
variance features we probabilistically select several more,
according to their opinion rating variance. The probability
of selecting a feature is directly proportional to the ratio of
its variance to the largest variance of all features under con-
sideration.

Based on usage we can calculate the correlation between
features. Given these correlations we can suggest features

which have not been used on the item in question but which,
according to the correlation, are related to features which
have been used to rate the item. To calculate the correlation
between two features f and g, we examine their quantity
ratings on items for which both have been used:

correlation(f, g) =

∑

i∈If∩Ig

q̄
f
i q̄

g
i

(qmax)2

|If ∩ Ig|
(6)

where If is the set of all items which feature f has been
used to rate, and qmax is the maximum quantity rating, in
our case 10.

We can also suggest several features which are directly
correlated not to features which have actually been used on
the item, but which are correlated to those features which
are directly correlated to the features used on the item. It is
also possible to iteratively suggest features which are cor-
related to features which in turn are indirectly correlated to
the original features of the item.

Suggesting such features allows us to explore the feature
space more than focusing entirely on features known to be
relevant. We have not yet performed a detailed quantitative
analysis to see how well this procedure works, but our initial
qualitative observations suggest that it is quite useful.

4 Results

4.1 User response

Since our rating system is new, the question arose as to
how users feel about providing feedback. The initial con-
cern was that the detail required might be too complicated,
or too time-consuming and arduous. We felt this was a very
important issue: The nature of our problem domain is such
that accurate predictions will be useless if users are so an-
noyed by the interface that they never use the system.

In order to determine whether our rating system was in
fact a problem, we examined feature usage among users not



affiliated with the research project. We found that the aver-
age number of features entered per rated item was roughly
2.5, with just over 58% of items rated with 3 or more fea-
tures and only 23% of all items rated using the bare mini-
mum of one feature. Some users have used 8, 10, or even
more features to rate a single item.

Due to these results, we are confident that on average
users do not find our system overly complicated or too ar-
duous to use. It is possible that many users find the process
of providing detailed feedback fun in and of itself, but such
a claim would require collecting user feedback about the
system itself, something we have only done informally thus
far; however, this hypothesis fits with results reported by
Swearingen and Sinha indicating that users of recommender
systems are willing to provide more feedback if they feel
they are getting something in return [18].

4.2 Experimental results

A commonly used error measure in recommender system
research is the normalized mean absolute error (NMAE)
(e.g. in [11, 6]). When the maximum and minimum possi-
ble overall ratings are rmax and rmin, then the normalized
mean absolute error for user u is defined as

NMAE(u) =
1

rmax − rmin

1

|Iu|

∑

i∈Iu

|ṽui − vui| (7)

To test our system, we used leave-one-out cross-
validation over all users who had rated at least 10 items.
There were 149 such users at the time of our experiments.

By way of comparison, we examined the global mean
rating algorithm (“POP” [3]), in addition to our hybrid CF
method described in sections 3.2. The weighting schemes
used, along with names by which we will refer to those
schemes, are given in table 1. These tests were performed
over a range of sizes for the nearest neighborhood. Note that
Pure CF, Pure Opinion, and Pure Quantity are not hybrid
methods.

Note that in an appendix to [11], Goldberg et al. showed
that NMAE for prediction by guessing random values was
either 0.333 or 0.282, depending on whether the distribution
of ratings and predictions were uniform or normal, respec-
tively.

4.2.1 POP prediction

The POP prediction for an item is simply the global mean
rating. This is the sort of recommendation to be found in
many popular sources (e.g. the metacritic 2 web site).

On our data, the POP algorithm produced an NMAE of
0.234.

2http://www.metacritic.com

Table 1. Explanation of the weighting combi-
nations used in testing our approach.

ωr ωo ωq

Pure CF 1 0 0
Pure Opinion 0 1 0
Pure Quantity 0 0 1
Features Only 0 1 1
All 1 1 1
CF+ 3 1 1
Opinion+ 1 3 1
Quantity+ 1 1 3
Features+ 1 3 3

4.2.2 Pure CF versus Hybrid CF with feature bias

Pure collaborative filtering (i.e. with no influence given to
the feature rating data) outperformed POP predictions, but
was in turn outperformed by all of the hybrid schemes ex-
cept for those which gave the most weight to the feature
quantity ratings (Pure Quantity and Quantity+). See Figure
2 for an illustration of this result.

Among the strictly hybrid methods, illustrated in Fig. 2,
we first see that CF+, which combines collaborative filter-
ing with a smaller amount of quantity and opinion rating
information, improves performance over collaborative fil-
tering alone. As more weight was given to the feature in-
formation, especially to feature opinion bias, performance
improved further. The results for non-hybrid methods are
not illustrated here due to space constraints but are similar,
with Pure Opinion performing better than traditional collab-
orative filtering.

5 Conclusions and Discussion

We have described a recommender system which uses
descriptive information regarding the items being rated. We
show that the use of supplementary descriptive features sub-
stantially improves the quality of recommendations over a
basic collaborative filter in the domain of movies. For rec-
ommendations based on other algorithms, such as sparse
factor analysis [6], we expect the same types of improve-
ment can be obtained (preliminary data has been collect to
support this conjecture, but it outside the scope of this pa-
per). A key impediment to the use of descriptive features is
the need to determine the set to be used and the subset to
be presented to a user. We have briefly discussed how this
problem can be solved using a combination of algorithmic
strategies.

A key aspect of our approach is to obtain supplementary
feature information for each item that a user rates. Getting
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Figure 2. NMAE of various feature bias-based
hybrid weighting schemes, as a function of
neighborhood size.

such supplementary information flies in the face of the con-
ventional wisdom that users seek to minimize the amount of
information they provide. This conventional wisdom is de-
rived, in large measure, from domains in which users do not
perceive any direct benefit from the extra effort they must
spend. In contrast, our users directly experience enhanced
performance from the addition of feature information, both
in terms of the quality of the recommendations and presum-
ably from the quality of the personalization they may re-
ceive. This is corroborated by the fact that 58 per cent of
all individual item ratings are accompanied by 3 or more
features ratings (despite the fact that the system does not
require this much data from a user).

This suggests that users find our feedback system useful.
In future work, we would like to quantitatively evaluate the
effectiveness of our feature suggestion method, and exam-
ine other formulae for computing inter-feature correlation.

While we seem to outperform traditional collaborative
filtering schemes, it appears we can do still better by mak-
ing more use of feature information. In ongoing work, we
are examining how to directly exploit feature information
to develop algorithmic variations akin to content-based fil-
tering. It also appears that the feature space itself exhibits
interesting structure. By making more use of the relation-
ship between features, it seems that we can both improve
the quality of the recommendations and provide richer user
feedback.
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