
Translation, Rotation and Scale Invariant Object Recognition

L. A. Torres-M�endez1, J. C. Ruiz-Su�arez2 and L. E. Sucar1

1Instituto Tecnol�ogico y de Estudios Superiores de Monterrey

Campus-Morelos

Apdo. Postal 99-C, Cuernavaca Morelos

62050, M�exico.

2Departamento de F��sica Aplicada, CINVESTAV-IPN

Unidad M�erida, A. P. 73 Cordemex, 97310 M�erida

Yucat�an, M�exico.

Abstract

A method for object recognition invariant under transla-
tion, rotation and scaling is addressed. The �rst step of
the method (preprocessing) takes into account the invari-
ant properties of the normalized moment of inertia and a
novel coding that extracts topological object characteris-
tics. The second step (recognition) is achieved by using a
Holographic Nearest Neighbor algorithm (HNN), where
vectors obtained in the preprocessing step are used as
inputs to it. The algorithm is tested in character recog-
nition, using the 26 upper case letters of the alphabet.
Only four di�erent orientations and one size (for each
letter) were used for training. Recognition was tested
with 17 di�erent sizes and 14 rotations. The results are
encouraging since we achieved 98% correct recognition.
Tolerance to manual and random noise was tested. Re-
sults for character recognition in real images of car plates
are also presented.
Keywords - Invariant object recognition, character

recognition, holographic nearest neighbor.

1 Introduction

Invariant object recognition (IOR), whose aim is to iden-
tify an object independently of its position (translated
or rotated) and size (larger or smaller), has been the
object of an intense and thorough study. In the last
several years, an increasing number of research groups
have proposed a great variety of IOR methods. Among
them, we can �nd a number of optical techniques [16, 6],
boundary-based analysis via Fourier descriptors [8, 11],

neural networks models [1, 5, 7, 18, 17], invariant mo-
ments [12, 10, 2], and genetic algorithms [13]. However,
most of these methods are too computationally expensive
or are not invariant under the 3 types of transformations:
scaling, rotation and translation.

A number of IOR methods have been proposed in the
literature. These can be classi�ed as: optical techniques
[16, 6], boundary-based analysis via Fourier descriptors
[8, 11], neural networks models [1, 5, 7, 18, 17], invariant
moments [12, 10, 2], and genetic algorithms [13].

It is important to mention recent IOR research based
on optical techniques such as composite harmonic �l-
ters [16] or STIR invariant transformations [4]. The for-
mer �lters involve the Mellin radial harmonics for scale
invariance [15], the logarithmic harmonics for projec-
tion invariance [14], and the circular harmonics for ro-
tation invariance [9]. Fang and Hausler [4] introduced
a new class of transforms that achieve scale, transla-
tion and in-plane rotation (STIR) invariance, simultane-
ously. In their approach, an intensity function S(x; y) is
mapped into a one-dimensional frequency spectrum func-
tion. Later, Ghahramani and Patterson [6] proposed a
higher-dimensional version of the STIR invariant trans-
forms in conjunction with an orthonormalization tech-
nique in an optical neural network resonator. Computer
simulations show that these type of techniques perform
well and have excellent noise tolerance. However, the
major disadvantage is their heavy computational require-
ments.

Boundary-based analysis using discrete Fourier trans-
forms has been proposed as alternative in IOR [8, 11]. Al-
gorithms based on this kind of analysis are called Fourier
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descriptors and basically, invariance is obtained by nor-
malizing the frequency representation of the image shape.
This is easily done via the discrete Fourier transform
properties but only on uniform contours of the shape.

Madaline structures for translation-invariant recogni-
tion [1], the self-organized neocognitron [5], and high-
order neural networks [7, 18, 17], are examples of IOR
neural based methods. The self-organized neocognitron
is a further extension of the cognitron, originally proposed
by Fukushima in 1975 [5]. This learning machine has the
ability to learn with no teacher and obtains, when learn-
ing is completed, a structure similar to the hierarchical
model of the visual nervous system. Although the work
of Fukushima is a major advance in the understanding of
visual processing in our brain, from an engineering point
of view its major drawback is that it is unable to cope
with large translations and rotations in the image. Fur-
thermore, the number of cells in this model increases al-
most linearly with the number of objects to be recognized,
making the training process very slow.

High Order Networks (HON) have been utilized re-
cently for invariant recognition [7, 18]. In this type of
model, one has to encode in the values of the synaptic
weights the properties of invariance. In other words, the
known relations between pixels of the images are used
and the invariance is directly constructed in the network.
A third order network has been proposed [17], in which
combinations of triplets of image pixels are used as in-
variant relations. The triplets form triangles representing
similar angles (�; �; 
) in any transformation of the same
image. The weights are restricted in such way that all
the combinations of three pixels de�ning similar triangles
are connected to the output with the same weight. The
number of combinations of possible triplets increases in
a nonlinear proportion to the number of input data, this
being the main disadvantage of this approach.

IOR based on moments and invariant functions of mo-
ments, is another popular invariant recognition scheme.
In 1962 Hu [10], introducing nonlinear combinations of
regular moments derived a set of seven composed mo-
ments with translation, scaling and rotation invariant
properties. However, the moments proposed by Hu do
not posses orthogonal properties making reconstruction
of the input image computationally di�cult. To over-
come this problem, Teague [20] suggested orthogonal mo-
ments based on the general properties of orthogonal poly-
nomials. In general, it has been shown by Teague and
other researchers [21], that in terms of information re-
dundancy, orthogonal moments (Legendre, Zernike and
pseudo-Zernike) perform better than any other type of
moments. In terms of overall performance, Zernike and

pseudo-Zernike moments outperform the others [12]. But
in general, the main disadvantage of using these methods
is that the moment computation is too computationally
intensive.

A genetic classi�er system, able to correctly classify
all the letters of the alphabet has been proposed by
McAulay et al. [13]. This classi�er system has only
scaling and translation invariant properties and some ro-
bustness against certain distortions and noise. Finding
an e�cient mapping of the 2-D image into the classi�er
system rules is one of the main di�culties of this ap-
proach. Watanabe [23] proposed a direct coding using
four strings representing projected views in 4 directions:
horizontal, vertical, ordinary diagonal, and auxiliary di-
agonal. These strings are formed considering the number
of runs of blacks in each row, in the corresponding direc-
tion string, and are compressed to show only variations.
This coding is an e�cient way to extract topological char-
acteristics but it is only invariant to scaling and transla-
tion, not to rotation.

In this contribution we report a simple method for ob-
ject recognition that achieves excellent invariance under
translation, rotation and scaling. The method has two
steps: preprocessing and recognition. The �rst takes
into account the moment of inertia of the object and a
novel coding that extracts topological object character-
istics. The second step is done by using a Holographic
Nearest Neighbor algorithm (HNN), where vectors ob-
tained in the preprocessing stage are used as inputs to it.
Learning and recall with the HNN algorithm is extremely
fast. Initially we consider two dimensional (2D) binary
images and tested our algorithm for invariant character
recognition. The method could be easily extended for
multilevel images and we present some results in recogni-
tion of characters in real images (grey scale) of car plates.

In section 2 we will describe the preprocessing stage
of our model. In section 3 we introduce the Holographic
Nearest Neighbor algorithm and discuss the way this is
used in IOR. In section 4 we will present results that show
the ability of our model to recognize the 26 letters of the
alphabet regardless of size and position (translation and
rotation). In section 5 we brie
y describe related work in
IOR. Conclusions and future work will be the object of
last section.

2 Preprocessing

In invariant pattern recognition models, preprocessing is
de�ned as the extraction of appropriate invariant features
that are then used for recognition by a classi�cation sys-
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tem. The invariant features in our work are real numbers
that are fed as vectors to the classi�cation system. Figure
1 illustrates the way that strings are created.

Normalized
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Image
NxN

I/N2

Holographic
Asociative
Memory

String of 
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Object

 

15 parameters
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object
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Figure 1: General diagram showing the steps of the In-
variant Object Recognition.

The moment of inertia of the image is �rst calculated.
In general, the moment of inertia quanti�es the inertia of
a rotating object considering its mass distribution. The
moment of inertia is normally calculated by dividing the
object into N small pieces of mass m1, m2, ... mN . Each
piece is at a distance, r1, r2, ..., rN , from the axis of
rotation. The moment of inertia of the object is:

I = m1r
2
1 +m2r

2
2 + :::+mNr

2
N

The moment of inertia depends on the position of the
axis of rotation and on the shape and mass of the rotating
object and is invariant under translation and rotation. A
bidimensional image is not an object with mass, but we
can represent it by a continuous function f(x,y), where
each pixel of the image can be considered as a particle
with mass equal to the value of the intensity of the pixel.
For binary images, the moment of inertia with respect to
the image centroid (central moment of inertia) is:

I =

NX
i=1

d2i =

NX
i=1

((xi � Cx)
2 + (yi � Cy)

2) (1)

where Cx; Cy are the centroid coordinates, xi; yi the im-
age pixel coordinates of the object and N the total num-
ber of pixels.
Translation and rotation invariance is achieved by cal-

culating the central moment of inertia. On the other
hand, by dividing I by N2 (we will name it IN), scal-
ing invariance is achieved. Is was found empirically that

dividing by N2 gives better results (in recognition) that
dividing just by N [22]. It is also worth remarking that
due to the �nite resolution of any digitized image, a ro-
tated object may not conserve intact the number of pixels,
so I may vary. Using IN reduces this problem, too.
The possibility that two or more di�erent images have

the same, or very close, IN may generate a real prob-
lem for classi�cation. To circumvent this problem, we
generalize the idea of Watanabe [23], and propose a sim-
ple heuristic method able to extract invariant topological
characteristics. This is based on the fact that the circle
is the only geometrical shape that is naturally and per-
fectly invariant to rotation (in 2D). The �rst part of the
heuristic considers the number of intensity pixel changes
in a circle of some radius inside the object as it crosses
it. This simple coding scheme extracts the topological
characteristics of the object regardless its position, orien-
tation, and size. Moreover, to obtain a more robust rep-
resentation we use several proportionally arranged circles
over each object. However, in some cases two di�erent
objects could have the same or very similar radial coding
(for example, lettersM and N). In the second part of the
heuristic we also take into account the di�erence in size
of the two largest arcs (for each circle) that are not part
of the object. For achieving size normalization, we divide
this di�erence by the total number of pixels in the circle.
The methodology to obtain the radial coding of a bi-

nary 2D object con be summarized as follows:

1. Obtain the centroid of the object.

2. Generate K equidistant concentric circles, Ci,
around the centroid.

3. For each circle, count the number of intensity changes
(0 to 1 or 1 to 0) that occur in the image, this is Ri.

4. For each circle, obtain the two largest arcs that are
not part of the object (we assume a known value
for object and background). Measure each arc by
counting the number of pixels, obtain the di�erence
and divide by the size of the circle. This is: Di =
(d1 � d2)=dC , where d1 is the length of the largest
arc, d2 is the length of the second largest arc, and
dC is the length of the circle.

The radial coding can be represented by the following
vector:

R1; R2; :::; RK ; D1; D2; :::; DK ;

considering K circles. Ri is positive integer and Di is a
real value in [0,1]. Figure 2 shows this coding scheme for
di�erent sizes and orientations of letter E.
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Figure 2: Extraction of topological characteristics of dif-
ferent rotations and sizes of letter E. The �rst line indi-
cates the number of intensity pixel changes in each one of
the 8 circles, and the second line represents the normal-
ized di�erences over the largest 7 circles.

In summary, we de�ne 3 sets of invariant features: (i)
normalized central moment of inertia, (ii) radial coding,
and (iii) di�erential radial coding; to be obtained in the
preprocessing stage. All these features are invariant to
translation, rotation and scaling; and together provide
a robust feature set for the recognition or classi�cation
stage.

3 Holographic Nearest Neighbor

The recognition stage uses a Holographic Nearest Neigh-
bor (HNN) algorithm that is based on the principles of
the Holographic Associative Memory (HAM) [19]. The
main motivations for using this technique are:

� Unlike other neural network architectures, learning
and recall with the HAM is very fast (see next sec-
tion).

� The HNN algorithm has, in general, a better perfor-
mance (recognition rate) that a simple nearest neigh-
bor technique.

As in optical holography, the Holographic Nearest
Neighbor algorithm bases its operation on the principle
of unfolding information of di�erent phases in a single
plane, see [19].
The external data �eld is represented by the stimulus-

response set S:

S = (s1; s2; :::sM ; sM+1);

where si are scalars de�ning the stimulus-response �eld,
M is the number of input variables and sM+1 is the as-
sociated response.

Each input real variable is mapped to polar variables
by means of the sigmoidal relationship:

�i = 2�(1 + e(��si)=�)�1 (2)

where � and � are the mean and standard deviation for
each of these variables. Equation 2 maps each si to phase
values between 0 and 2�.

The HNN algorithm is similar to the well known Near-
est Neighbor algorithm (NN) [12]. This later algorithm is
based on the fact that the minimum Euclidean distance
between the input and each training vector gives the best
answer for each class. Moreover, to prevent the domina-
tion of a subgroup of features, the NN algorithm normal-
izes these features. The normalization consists of sub-
tracting from each variable the mean and dividing the re-
sult by the standard deviation of the corresponding class.

In our model, we calculate the mean (�) and standard
deviation (�) for each variable on the complete set of
training vectors (all classes). Furthermore, once � and
� are evaluated, the real components of each vector are
mapped to a phase domain. Thus, we end up with q
phase vectors of dimension M . When a new pattern
is presented to the HNN, it decides which is the best
match by �nding the minimum distance between that
new pattern and training phases for each variable. More
clearly, among the q phase vectors we �nd the minimum

of
qPM

i=1(�
i
exp � �it)

2.

Working with phases instead of real numbers, and cal-
culating the mean (�) and standard deviation (�) for each
variable on the complete set of training vectors, makes
the HNN algorithm slightly superior to the normal NN
algorithm [22].

4 Experimental Study and Re-

sults

The algorithm was tested in character recognition using
the 26 upper case letters of the alphabet. Four di�er-
ent orientations and only one size were used for training.
Recognition was tested with 17 di�erent sizes and 14 ro-
tations for each size.

4



4.1 Learning

In order to obtain an increased noise tolerance we con-
sider, during the learning stage, four di�erent orienta-
tions for each character. Thus, we have only 104 input
patterns (26 � 4) for the learning process. Each input
vector is formed by 17 positive numbers (M = 16), using
in this case 8 circles for the radial coding. The �rst one is
the normalized central moment of inertia (IN ), the next
eight are the number of intensity pixel changes when the
8 circles are intersected by the letter (R0:::R7), the next
seven are the normalized di�erences of the largest seven
circles (D0:::D6) and �nally, the last number is the let-
ter identi�er. As an example, Table 1 shows the training
vectors for letters A, F, M and T.

Figure 3: Some testing images of letter E.

4.2 Recognition

We generated 238 experimental images (17 di�erent sizes
and 14 di�erent rotations) for each one of the 26 letters.
The largest letter has 100 x 100 pixels, the smallest 20 x
20 pixels. Figure 3 shows few of the generated images of
letter E.
During recognition, each one of the 238 images for each

one of the 26 characters, is presented to the HNN. It is
important to mention that most of the characters used to
test the method present certain degree of noise or defor-

mation. This noise is intrinsically produced during the
transformation of the letters to other sizes and orienta-
tions. Moreover, we also add di�erent amounts of noise
to the letters to be recognized. The noise was applied in
manual form (Fig. 4) or randomly (Fig. 5). The manual

noise simulates the e�ect of deformations in the object
boundary, although it is di�cult to measure the exact
degree of deformation. The random noise is generated by
changing the value of pixels inside the object in a ran-
dom (uniform) manner, the percentage of altered pixels
is varied from 10% to 90%.

Figure 4: Letters A, E, and X with some degrees of noise
recognized with 100% accuracy.

4.3 Results

The obtained results are shown in table 2. As we can
see, invariant object recognition is obtained with almost
100% accuracy on images with sizes between 100x100 and
45x45 pixels. The performance of the model decreases
slightly for smaller letters. However, this problem could
be solved by adding a second group of training vectors
for letter sizes between 30x30 and 20x20 pixels. We used
another 104 training patterns for small letters and the
performance for this range (25x25{20x20) improves [22].

Noisy images (see Figs. 4 and 5) are also correctly
recognized by our model, indicating the robustness of it.
An accuracy of more than 98% is obtained with images
having up to 60% of random noise.

As it was mentioned before, both preprocessing and
recognition are computationally e�cient. The system
was tested in an IBM RS6000-SP2 workstation with the
following results. The mean time for the preprocessing

5



stage, including the moment of inertia and the radial
coding, is 0.105462 seconds, with a standard deviation
of 0.0187. The mean time for recognition using the HNN
algorithm is 0.108846 seconds, with a standard deviation
of 0.03449. So the total mean time for IOR in our ex-
periments is approx. 0.2 seconds and is very stable. The
training time for the HNN is the same as the recognition
time for each pattern used for training, that is approx.
0.1 seconds times the number of training patterns.

Figure 5: Di�erent percentages of random noise applied
to letter K.

4.4 Multilevel Images

The methodology for IOR can be extended from binary
images to multilevel images. For this, before the IOR
method is applied, the image is made binary by a tech-
nique based on the intensity histogram of the image. As-
suming a single object in the image, the intensity his-
togram will usually be bimodal, with one peak corre-
sponding to the object and other to the background. So
we apply a simple histogram{based segmentation (bina-
rization) using a dividing threshold at the following in-
tensity value [3]:

Th = m� k � (max�min)

where Th is the threshold,m is the median of the intensity
values, max is the maximum and min is the minimum. k
is a constant that is obtained empirically.

5 Conclusions

In the present work, a novel method to recognize 2-
dimensional objects invariant to size, translation and ro-
tation, is reported. This method takes advantage of the

properties of the normalized central moment of inertia
and a coding scheme which extracts invariant topological
characteristics of two-dimensional objects. The method
is easy to understand and implement, and compared to
other methods, computer requirements are negligible.
Recognition is made by means of a holographic near-

est neighbor algorithm. In the work reported here, only
104 patterns representing 26 letters are used for train-
ing. The HNN is able to correctly recognize, regardless of
its position, orientation, and size, any upper case letter
with 17 di�erent sizes and 14 di�erent rotations, includ-
ing some noise added randomly ormanually. The method
was extended to handle multilevel images and applied for
character recognition in images of car plates.
In summary, we have described a IOR model which is

robust, computationally fast and easy to implement.
Future work will be done in testing the model with dif-

ferent 2D objects, and in using other classi�cation tech-
niques in the recognition stage.
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I=N2 Radial coding Normalized di�erences Id

LETTER A

0.34 1 1 2 2 1 3 3 2 0.43 0.05 0.26 0.31 0.09 0.00 0.29 65

0.40 1 1 2 2 1 3 3 2 0.39 0.07 0.23 0.31 0.11 0.02 0.42 65

0.36 1 1 2 2 1 3 3 2 0.42 0.06 0.26 0.31 0.09 0.00 0.43 65

0.35 1 1 2 2 1 3 3 2 0.41 0.09 0.25 0.31 0.11 0.01 0.43 65

LETTER F

0.34 0 1 2 2 2 2 1 1 0.57 0.16 0.04 0.10 0.19 0.66 0.70 70

0.40 0 1 2 2 3 4 2 2 0.49 0.11 0.05 0.11 0.01 0.10 0.05 70

0.37 0 1 2 2 3 4 2 2 0.51 0.15 0.06 0.11 0.00 0.06 0.03 70

0.36 0 1 2 2 3 4 2 2 0.48 0.11 0.05 0.11 0.00 0.18 0.10 70

LETTER M

0.27 0 1 1 2 3 3 2 1 0.28 0.21 0.11 0.03 0.04 0.04 0.05 77

0.31 0 1 1 1 3 3 2 4 0.28 0.22 0.20 0.05 0.04 0.04 0.01 77

0.29 0 1 1 1 3 3 2 4 0.28 0.22 0.19 0.04 0.04 0.04 0.01 77

0.28 0 1 1 1 3 3 2 4 0.29 0.21 0.19 0.03 0.05 0.04 0.02 77

LETTER T

0.42 1 1 2 2 2 2 2 3 0.00 0.01 0.01 0.00 0.00 0.00 0.03 84

0.49 1 1 2 2 3 3 3 3 0.00 0.01 0.01 0.01 0.00 0.02 0.01 84

0.45 1 1 2 2 3 3 3 3 0.00 0.01 0.02 0.01 0.00 0.03 0.00 84

0.45 1 1 2 2 3 3 3 3 0.21 0.02 0.00 0.01 0.02 0.01 0.02 84

Table 1: Training vectors of letters A (65), F (70), M (77), and T(84) in 4 di�erent rotations: 0, 35, 70, and 105
degrees.

Size # Letters A B C D E F G H I J

100x100-45x45 168 100 100 98 100 98 100 100 100 100 100
40x40-30x30 42 100 100 98 96 90 88 88 100 100 100
25x25-20x20 28 100 98 98 94 95 89 89 100 100 99

K L M N O P Q R S T U V W X Y Z

100 98 100 99 99 96 100 98 99 98 100 100 96 100 100 99
100 95 100 98 100 95 90 100 91 96 100 94 94 95 100 92
93 50 32 99 98 96 97 100 89 89 89 94 100 100 98 95

Table 2: Average percent of recognition for each one of the 26 letters for di�erent sizes: between 100x100 to 45x45
pixels, 168 testing letters, between 40x40 to 30x30 pixels, 42 testing letters, and between 25x25 to 20x20 pixels, 28
testing letters.
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