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Translation, Rotation, and Scale-Invariant Object
Recognition

L. A. Torres-Méndez, J. C. Ruiz-Suárez, Luis E. Sucar, and G. Gómez

Abstract—A method for object recognition, invariant under translation,
rotation, and scaling, is addressed. The first step of the method (prepro-
cessing) takes into account the invariant properties of the normalized mo-
ment of inertia and a novel coding that extracts topological object charac-
teristics. The second step (recognition) is achieved by using a holographic
nearest-neighbor algorithm (HNN), in which vectors obtained in the pre-
processing step are used as inputs to it. The algorithm is tested in char-
acter recognition, using the 26 upper case letters of the alphabet. Only four
different orientations and one size (for each letter) were used for training.
Recognition was tested with 17 different sizes and 14 rotations. The results
are encouraging, since we achieved 98% correct recognition. Tolerance to
boundary deformations and random noise was tested. Results for character
recognition in “real” images of car plates are presented as well.

Index Terms—Character recognition, holographic nearest neighbor, in-
variant-object recognition.

I. INTRODUCTION

Invariant-object recognition (IOR), whose aim is to identify an ob-
ject independently of its position (translated or rotated) and size (larger
or smaller), has been the object of an intense and thorough study. In
the last several years, an increasing number of research groups have
proposed a great variety of IOR methods. Among them, we can find
a number of optical techniques [6], [17], boundary-based analysis via
Fourier descriptors [9], [12], neural-network models [1], [5], [7], [18],
[19], invariant moments [2], [11], [13], and genetic algorithms [14].
However, most of these methods are too computationally expensive or
are not invariant under the three types of transformations: scaling, ro-
tation, and translation.1

In this contribution, we report a simple method for object recogni-
tion that achieves excellent invariance under translation, rotation, and
scaling. The method has two steps: preprocessing and recognition. The
first takes into account the moment of inertia of the object and a novel
coding that extracts topological object characteristics. The second step
is done by using a holographic nearest-neighbor algorithm (HNN),
where vectors obtained in the preprocessing stage are used as inputs to
it. Learning and recall with the HNN algorithm is extremely fast. Ini-
tially, we considered two dimensional (2-D) binary images and tested
our algorithm for invariant-character recognition. The method could
be extended easily for multilevel images, and we present the results in
recognition of characters in the real images (grey scale) of car plates.

In Section II, we will describe the preprocessing stage of our model.
In Section III, we introduce the HNN algorithm and discuss the way
this is used in IOR. In Section Iv, we will present results that show the
ability of our model to recognize the 26 letters of the alphabet regard-
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1A brief description of other methods is presented in Section V.

less of size and position (translation and rotation). In Section V, we
briefly describe related work in IOR. Conclusions and future work will
be the object of the last section.

II. PREPROCESSING

In invariant pattern-recognition models, preprocessing is defined
as the extraction of appropriate invariant features that are then used
for recognition by a classification system. The invariant features in
our work are real numbers that are fed as vectors to the classification
system. Fig. 1 illustrates the way that feature vectors are created.

The moment of inertia of the image is first calculated. In general,
the moment of inertia quantifies the inertia of a rotating object by
considering its mass distribution. The moment of inertia is normally
calculated by dividing the object intoN -small pieces of mass
m1; m2; � � � ; mN . Each piece is at a distancer1; r2; � � � ; rN from
the axis of rotation. The moment of inertia of the object is

I = m1r
2

1 +m2r
2

2 + � � �+mNr
2

N :

The moment of inertia depends on the position of the axis of rotation
and on the shape and mass of the rotating object. It is invariant under
translation and rotation. A bidimensional image is not an object with
mass, but we can represent it by a continuous functionf(x; y) in which
each pixel of the image can be considered a particle with mass equal to
the value of the intensity of the pixel. For binary images, the moment
of inertia of the object with respect to its centroid (central moment of
inertia) is

III =

N

i=1

d
2

i =

N

i=1

(xi � Cx)
2 + (yi � Cy)

2 (1)

whereCx; Cy are the centroid coordinates,xi; yi the image pixel co-
ordinates of the object, andN the total number of pixels in the object.

Translation and rotation invariance is achieved by calculating the
central moment of inertia. On the other hand, by dividingIII by N2

(we will name itIIIN ), scaling invariance is achieved. It was found em-
pirically that dividing byN2 gives better results (in recognition) than
dividing by justN [22]. It is also worth remarking that due to the finite
resolution of any digitized image, a rotated object may not conserve the
number of pixels intact, soIII may vary. UsingIIIN reduces this problem,
too.

The possibility that two or more different images have the same or
very closeIIIN may generate a real problem for classification. To cir-
cumvent this problem, we generalize the idea of Watanabe [23], and
propose a simple heuristic method able to extract invariant topological
characteristics. This is based on the fact that the circle is the only ge-
ometrical shape that is naturally and perfectly invariant to rotation (in
2-D). The first part of the heuristic considers the number of intensity
pixel changes on a circular boundary of some radius inside the object as
it crosses it. This simple coding scheme extracts the topological char-
acteristics of the object regardless of its position, orientation, and size.
Moreover, to obtain a more robust representation, we use several pro-
portionally arranged circles over each object. However, in some cases,
two different objects could have the same or very similar radial coding
(for example, lettersMMM andNNN , see Figs. 2–4). In the second part of the
heuristic, we take into account the difference in size of the two largest
arcs (for each circle) that are not part of the object. These correspond
to d1 andd2 in Fig. 3. For achieving size normalization, we divide this
difference by the circumference.

The methodology to obtain the radial coding of a binary 2-D object
can be summarized as follows:

1094–6977/00$10.00 © 2000 IEEE
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Fig. 1. General diagram showing the steps of the IRO system.

Fig. 2. Difference between the letters M and N.

Fig. 3. Difference between the number of pixels in the changes of the letters
M and N.

1) Obtain the centroid of the object.
2) GenerateK equidistant concentric circlesCi around the cen-

troid. The spacing is equal to the distance between the centroid
and the furthest pixel of the object divided byK.

3) For each circular boundary, count the number of intensity
changes (zero to one or one to zero) that occur in the image.
This isRi.

4) For each circle, obtain the two largest arcs that are not part of the
object (we assume a known value for object and background).
Measure each arc by counting the number of arc pixels, obtain
the difference, and divide by the circumference. This isDi =
(d1 � d2)=dC whered1 is the length of the largest arc,d2 is the
length of the second largest arc, anddC is the circumference.

The radial coding can be represented by the following vector:

R1; R2; � � � ; RK ; D1; D2; � � � ; DK

Fig. 4. Parameters obtained for the letters M and N.

consideringK circles.Ri is a positive integer, andDi is a real value
in [0, 1]. Fig. 5 shows this coding scheme for different sizes and orien-
tations of the letterEEE.

In summary, we define three sets of invariant features to be obtained
in the preprocessing stage: 1) normalized central moment of inertia; 2)
radial coding; and 3) differential radial coding. All these features are
invariant to translation, rotation, and scaling, and together, they provide
a robust feature set for the recognition or classification stage.

III. H OLOGRAPHICNEARESTNEIGHBOR

The recognition stage uses a holographic nearest-neighbor (HNN)
algorithm that is based on the principles of the holographic associative
memory (HAM) [20]. The main motivations for using this technique
are as follows.

1) Unlike other neural-network architectures, learning and recall
with the HAM is very fast (see Section IV).

2) The HNN algorithm has, in general, a better performance (recog-
nition rate) than a simple nearest-neighbor technique.

As in optical holography, the HNN algorithm bases its operation on
the principle of unfolding information of different phases in a single
plane (see [20]).

The external data field is represented by the stimulus-response setSSS

SSS = (s1; s2; � � � ; sM ; sM+1)

wheresi are scalars defining the stimulus-response field,M is the
number of input variables, andsM+1 is the associated response.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 1, FEBRUARY 2000 127

Fig. 5. Extraction of topological characteristics for different rotations and sizes of the letter E. The first line indicates the number of intensitypixel changes in
each one of the eight circumferences, and the second line represents the normalized differences over the largest seven circumferences.

Each input real variable is mapped to polar variables by means of the
sigmoidal relationship

�i = 2� 1 + e
(��s )=�

�1

(2)

where� and� are the mean and standard deviation for each of these
variables. Equation (2) maps eachsi to phase values between zero and
2�.

The HNN algorithm is similar to the well-known nearest-neighbor
algorithm (NN) [13]. This latter algorithm is based on the idea that
the minimum Euclidean distance between the input and each training
vector can be used to classify the input vector. Moreover, to prevent
the domination of a subgroup of features, the NN algorithm normalizes
these features. The normalization consists of subtracting the mean from
each feature variable and dividing the result by the standard deviation
of the corresponding feature in the training set.

In our model, we calculate the mean (�) and standard deviation (�)
for each variable on the complete set of training vectors (all classes).
Furthermore, once� and� are evaluated, the real components of each
vector are mapped to a phase domain. Thus, we end up withq-phase
vectors of dimensionM . When a new pattern is presented to the HNN,
it decides which is the best match by finding the minimum distance
between that new pattern (�t) and training phases (�exp) for each vari-
able. More clearly, among theq-phase vectors, we find the minimum

of M
i=1(�

i
exp � �it)

2.
Working with phases instead of real numbers, and calculating the

mean (�) and standard deviation (�) for each variable on the complete
set of training vectors makes the HNN algorithm superior to the normal
NN algorithm [22].

IV. EXPERIMENTAL STUDY AND RESULTS

The algorithm was tested in character recognition using the 26
upper-case letters of the alphabet. Four different orientations and
only one size were used for training. Recognition was tested with 17
different sizes and 14 rotations for each size.

A. Learning

In order to obtain an increased noise tolerance, during the learning
stage, we consider four different orientations for each character. Thus,
we have only 104 input patterns (26 × 4) for the learning process. Each
training vector is formed by 17 positive numbers, using eight circles
for the radial coding in this case. The first one is the normalized central

moment of inertia (IIIN ), the next eight are the number of intensity pixel
changes when the eight circles are intersected by the letter (R0 � � �R7),
the next seven are the normalized differences of the largest seven circles
(D0 � � �D6), and finally, the last number is the letter identifier. As an
example, Table I shows the training vectors for lettersAAA; FFF ; MMM , and
TTT .

B. Recognition

We generated 238 experimental images (17 different sizes and 14
different rotations) for each one of the 26 letters. The largest letter has
100 × 100 pixels, and the smallest has 20 × 20 pixels. Fig. 6 shows a
few of the generated images of the letterEEE.

During recognition, each one of the 238 images for each one of the
26 characters is presented to the HNN. It is important to mention that
most of the characters used to test the method present certain degree
of noise or deformation. This noise is intrinsically produced during the
transformation of the letters to other sizes and orientations. Moreover,
different amounts of noise can be added to the letters to be recognized.
The noise was applied to the boundary (Fig. 7) or randomly (Fig. 8).
The boundary noise simulates the effect of deformations in the object
boundary, although it is difficult to measure the exact degree of defor-
mation. The random noise is generated by changing the value of pixels
inside the object in a random (uniform) manner, where the percentage
of altered pixels is varied from 10% to 90%.

C. Results

The obtained results are shown in Table II. As we can see, invariant-
object recognition is obtained with almost 100% accuracy on images
with sizes between 100 × 100 and 45 × 45 pixels. The performance of
the model decreases slightly for smaller letters. However, this problem
was solved by adding a second group of training vectors for letter sizes
between 30 × 30 and 20 × 20 pixels. We used another 104 training pat-
terns for small letters, and the performance for this range (25 × 25–20
× 20) is shown in Table II [22].

Noisy images (see Figs. 7 and 8) are recognized correctly by our
model as well, indicating the robustness of it. An accuracy of 98% is
obtained, with images having up to 60% of random noise.

As was mentioned before, both preprocessing and recognition
are computationally efficient. The system was tested in an IBM
RS6000-H50 workstation with the following results. The mean time
for the preprocessing stage, including the moment of inertia and the
radial coding, is 0.105 462 s, with a standard deviation of 0.0187 s.
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TABLE I
TRAINING VECTORS OFLETTERSA (65), F (70), M (77),AND T (84) IN FOUR DIFFERENTROTATIONS: 0�, 35�, 70�, AND 105�

Fig. 6. Testing images of the letter E.

The mean time for recognition using the HNN algorithm is 0.108 846
s, with a standard deviation of 0.034 49 s. So the total mean time for
IOR in our experiments is approximately 0.2 s and is very stable. The
training time for the HNN is the same as the recognition time for
each pattern used for training, which is approximately 0.1 s times the
number of training patterns.

D. Multilevel Images

The methodology for IOR can be extended from binary images
to multilevel images. For this, before the IOR method is applied,
the image is made binary using a technique based on the intensity
histogram of the image. Assuming a single object in the image, the

Fig. 7. Letters A, E, and X with some degree of boundary noise recognized
with 100% accuracy.

Fig. 8. Different percentages of random noise applied to the letter K.

intensity histogram will usually be bimodal, with one peak corre-
sponding to the object and other to the background. So we apply a
simple histogram-based segmentation (binarization) using a threshold
at the following intensity value [3]:

Th = m� k � (max�min)
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TABLE II
AVERAGE PERCENT OFRECOGNITION FOREACH OF THE 26 LETTERS FORDIFFERENTSIZES

where
Th threshold
m median of the intensity values
max maximum
min minimum
k constant that is obtained empirically.
The proposed methodology for IOR has been applied for recognizing

characters in car plates [8]. In this case, the images have 256 gray levels
and are binarized using the previous method. For this application, we
segmented the plate in the image, and we automatically isolated the
area in which each character is located. So, as in the previous experi-
ments, we can assume that there is a single object in the image to be
recognized, and in this case, it is a single character. The system was
tested with 90 images of car plates obtained under natural-illumination
conditions. Fig. 9 shows an example of an image of a car plate, and
Fig. 10 shows the segmented characters with the circles used to obtain
the radial coding. The recognition results (assuming the segmentation
of the characters is correct) are similar to those obtained with the arti-
ficially generated characters, with nearly 90% correct recognition.

V. RELATED WORK

A number of IOR methods have been proposed in the literature.
These can be classified as: optical techniques [6], [17], boundary-based
analysis via Fourier descriptors [9], [12], neural-networks models [1],
[5], [7], [18], [19], invariant moments [2], [11], [13], and genetic algo-
rithms [14].

It is important to mention recent IOR research based on optical tech-
niques such as composite-harmonic filters [17] or scale, translation, and
in-plane rotation (STIR)-invariant transformations [4]. The former fil-
ters involve the Mellin radial harmonics for scale invariance [16], the
logarithmic harmonics for projection invariance [15], and the circular
harmonics for rotation invariance [10]. Fang and Hausler [4] intro-
duced a new class of transforms that achieve STIR invariance simulta-
neously. In their approach, an intensity functionS(x; y) is mapped into
a one-dimensional (1-D) frequency-spectrum function. Later, Ghahra-
mani, and Patterson [6] proposed a higher dimensional version of the
STIR-invariant transforms in conjunction with an orthonormalization
technique in an optical neural-network resonator. Computer simula-
tions show that these types of techniques perform well and have ex-
cellent noise tolerance. However, the major disadvantage is their heavy
computational requirements.

Boundary-based analysis using discrete Fourier transforms has been
proposed as an alternative to IOR [9], [12]. Algorithms based on this
kind of analysis are called Fourier descriptors and basically, invariance
is obtained by normalizing the frequency representation of the image
shape. This is done easily via the discrete Fourier-transform properties
but only on uniform contours of the shape.

Fig. 9. Example of an image of a car plate.

Fig. 10. Segmented characters illustrating the radial coding for the car plate
image in Fig. 9.

Madaline structures for translation-invariant recognition [1], the
self-organized neocognitron [5], and high-order neural networks [7],
[18], [19], are examples of IOR neural-based methods. The self-orga-
nized neocognitron is a further extension of the cognitron originally
proposed by Fukushima in 1975 [5]. This learning machine has the
ability to learn with no teacher, and when learning is completed, it ob-
tains a structure similar to the hierarchical model of the visual nervous
system. Although the work of Fukushima is a major advance in the
understanding of visual processing in our brain, from an engineering
point of view, its major drawback is that it is unable to cope with
large translations and rotations in the image. Furthermore, the number
of cells in this model increases almost linearly with the number of
objects to be recognized, making the training process very slow.
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High-order networks (HON’s) have been utilized recently for in-
variant recognition [7], [19]. In this type of model, one has to encode
the properties of invariance in the values of the synaptic weights. In
other words, the known relations between pixels of the images are used,
and the invariance is directly constructed in the network. A third-order
network has been proposed [18], in which combinations of triplets of
image pixels are used as invariant relations. The triplets form trian-
gles representing similar angles (�; �; ) in any transformation of the
same image. The weights are restricted in such a way that all the com-
binations of three pixels defining similar triangles are connected to the
output with the same weight. The number of combinations of possible
triplets increases in a nonlinear proportion to the number of input data.
This is the main disadvantage of this approach.

IOR based on moments and invariant functions of moments is an-
other popular invariant-recognition scheme. In 1962, Hu [11], intro-
ducing nonlinear combinations of regular moments, derived a set of
seven composed moments with translation, scaling, and rotation-in-
variant properties. However, the moments proposed by Hu do not pos-
sess orthogonal properties, making reconstruction of the input image
computationally difficult. To overcome this problem, Teague [21] sug-
gested orthogonal moments based on the general properties of orthog-
onal polynomials. In general, it has been shown by Teague and other
researchers [21] that in terms of information redundancy, orthogonal
moments (Legendre, Zernike, and pseudo-Zernike) perform better than
any other type of moments. In terms of overall performance, Zernike
and pseudo-Zernike moments outperform the others [13]. But in gen-
eral, the main disadvantage of using these methods is that the moment
computation is too computationally intensive.

A genetic classifier system, able to correctly classify all the letters
of the alphabet, has been proposed by McAulayet al. [14]. This clas-
sifier system has only scaling and translation-invariant properties and
some robustness against certain distortions and noise. Finding an effi-
cient mapping of the 2-D image into the classifier system rules is one of
the main difficulties of this approach. Watanabe [23] proposed a direct
coding using four strings representing projected views in four direc-
tions: horizontal, vertical, ordinary diagonal, and auxiliary diagonal.
These strings are formed considering the number of runs of blacks in
each row in the corresponding direction string and are compressed to
show variations only. This coding is an efficient way to extract topo-
logical characteristics, but it is only invariant to scaling and translation,
not to rotation.

VI. CONCLUSION

In this work, a novel method to recognize 2-D objects invariant to
size, translation, and rotation is reported. This method takes advantage
of the properties of the normalized central moment of inertia and a
coding scheme that extracts invariant topological characteristics of 2-D
objects. The method is easy to understand and implement, and com-
pared to other methods, computer requirements are negligible.

Recognition is made by means of a holographic NN algorithm. In the
work reported here, only 104 patterns representing 26 letters are used
for training. Regardless of its position, the HNN is able to correctly
recognize orientation, size, and any upper-case letter with 17 different
sizes and 14 different rotations, including some noise added randomly
or to the boundary. The method is extended to handle multilevel images
and applied for character recognition in images of car plates.

In summary, we have described an IOR model that is robust, com-
putationally fast, and easy to implement.

Future work will be done in testing the model with different 2-D
objects and in using other classification techniques in the recognition
stage.
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