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Translation, Rotation, and Scale-Invariant Object less of size and position (translation and rotation). In Section V, we
Recognition briefly describe related work in IOR. Conclusions and future work will
be the object of the last section.
L. A. Torres-Méndez, J. C. Ruiz-Suérez, Luis E. Sucar, and G. Gémez

Il. PREPROCESSING

Abstract—A method for object recognition, invariant under translation, In invariant pattern-recognition models, preprocessing is defined
rotation, and scaling, is addressed. The first step of the method (prepro- g the extraction of appropriate invariant features that are then used
cessing) takes into account the invariant properties of the normalized mo- . L . . .
ment of inertia and a novel coding that extracts topological object charac- for recognition by a classification system. The invariant featqr.es !n
teristics. The second step (recognition) is achieved by using a holographic Our work are real numbers that are fed as vectors to the classification
nearest-neighbor algorithm (HNN), in which vectors obtained in the pre- system. Fig. 1 illustrates the way that feature vectors are created.
processing step are used as inputs to it. The algorithm is tested in char-  The moment of inertia of the image is first calculated. In general,

acter recognition, using the 26 upper case letters of the alphabet. Only four : - o . . . .
different orientations and one size (for each letter) were used for training. the moment of inertia quantifies the inertia of a rotating object by

Recognition was tested with 17 different sizes and 14 rotations. The results considering its mass distribution. Th? moment of inertia is normally
are encouraging, since we achieved 98% correct recognition. Tolerance to calculated by dividing the object intaV-small pieces of mass

boundary deformations and random noise was tested. Results for character m,;, ms, -+, my. Each piece is at a distanee, r2, -+ -, rx from
recognition in “real” images of car plates are presented as well. the axis of rotation. The moment of inertia of the object is

Index Terms—Character recognition, holographic nearest neighbor, in-
variant-object recognition. I=mir? +mor+ +mnr.

The moment of inertia depends on the position of the axis of rotation
and on the shape and mass of the rotating object. It is invariant under
Invariant-object recognition (IOR), whose aim is to identify an obtranslation and rotation. A bidimensional image is not an object with

jectindependently of its position (translated or rotated) and size (largeass, but we can represent it by a continuous fungtian y) in which

or smaller), has been the object of an intense and thorough studyebth pixel of the image can be considered a particle with mass equal to
the last several years, an increasing number of research groups hheevalue of the intensity of the pixel. For binary images, the moment
proposed a great variety of IOR methods. Among them, we can findlinertia of the object with respect to its centroid (central moment of
a number of optical techniques [6], [17], boundary-based analysis weertia) is

Fourier descriptors [9], [12], neural-network models [1], [5], [7], [18],

. INTRODUCTION

[19], invariant moments [2], [11], [13], and genetic algorithms [14]. _ al o N 5 5

However, most of these methods are too computationally expensive or I= Z i = Z ((T” = Ca) (i = Cy) ) (1)
are not invariant under the three types of transformations: scaling, ro- = =

tation, and translatioh. whereC,., C, are the centroid coordinates,, y; the image pixel co-

In this contribution, we report a simple method for object recognbrdinates of the object, amdl the total number of pixels in the object.
tion that achieves excellent invariance under translation, rotation, andfranslation and rotation invariance is achieved by calculating the
scaling. The method has two steps: preprocessing and recognition. ggatral moment of inertia. On the other hand, by dividihgy N2
first takes into account the moment of inertia of the object and a novele will name itZ v ), scaling invariance is achieved. It was found em-
coding that extracts topological object characteristics. The second sp@iically that dividing by N gives better results (in recognition) than
is done by using a holographic nearest-neighbor algorithm (HNNjividing by justV [22]. It is also worth remarking that due to the finite
where vectors obtained in the preprocessing stage are used as inpuigdelution of any digitized image, a rotated object may not conserve the
it. Learning and recall with the HNN algorithm is extremely fast. Ininumber of pixels intact, sbmay vary. Using » reduces this problem,
tially, we considered two dimensional (2-D) binary images and testesb.
our algorithm for invariant-character recognition. The method could The possibility that two or more different images have the same or
be extended easily for multilevel images, and we present the resultséty closel » may generate a real problem for classification. To cir-
recognition of characters in the real images (grey scale) of car platesumvent this problem, we generalize the idea of Watanabe [23], and

In Section I, we will describe the preprocessing stage of our modgkopose a simple heuristic method able to extract invariant topological
In Section IlI, we introduce the HNN algorithm and discuss the wagharacteristics. This is based on the fact that the circle is the only ge-
this is used in IOR. In Section Iv, we will present results that show themetrical shape that is naturally and perfectly invariant to rotation (in
ability of our model to recognize the 26 letters of the alphabet regargD). The first part of the heuristic considers the number of intensity

pixel changes on a circular boundary of some radius inside the object as
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Fig. 1. General diagram showing the steps of the IRO system.

M N- M N

Fig. 2. Difference between the letters M and N. 112222214 112222214

Normalized differences:
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d dy
\L I Leatier
N 0 j0.08(0.08 0 [0.03{0.02|0.01
M 0{0.18(0.41|0.26|0.18 [0.06 |0.01
/“ J,'i' Fig. 4. Parameters obtained for the letters M and N.
dz
d;

consideringls” circles. R; is a positive integer, and); is a real value

No. of changes: 2 No. of changes: 2 in [0, 1]. Fig. 5 shows this coding scheme for different sizes and orien-
d, - dy = € dy - dy = cp tations of the lette .
In summary, we define three sets of invariant features to be obtained
in the preprocessing stage: 1) normalized central moment of inertia; 2)
€y # €y radial coding; and 3) differential radial coding. All these features are

invariant to translation, rotation, and scaling, and together, they provide

Fig. 3. Difference between the number of pixels in the changes of the Iett@rgObUSt feature set for the recognition or classification stage.

M and N.
I1l. HOLOGRAPHICNEARESTNEIGHBOR

1) Obtain the centroid of the object. The recognition stage uses a holographic nearest-neighbor (HNN)
2) Generatek™ equidistant concentric circle§; around the cen- algorithm that is based on the principles of the holographic associative
troid. The spacing is equal to the distance between the centr§§mory (HAM) [20]. The main motivations for using this technique

and the furthest pixel of the object divided By. are as follows.
3) For each circular boundary, count the number of intensity 1) Unlike other neural-network architectures, learning and recall
changes (zero to one or one to zero) that occur in the image. with the HAM is very fast (see Section V).
This is R;. 2) The HNN algorithm has, in general, a better performance (recog-
4) For each circle, obtain the two largest arcs that are not part of the  nition rate) than a simple nearest-neighbor technique.
object (we assume a known value for object and background).As in optical holography, the HNN algorithm bases its operation on
Measure each arc by counting the number of arc pixels, obtdfre principle of unfolding information of different phases in a single
the difference, and divide by the circumference. ThiDis= plane (see [20]).
(di — d2)/dc whered, is the length of the largest ar; is the The external data field is represented by the stimulus-respon$e set
length of the second largest arc, ahd is the circumference.

The radial coding can be represented by the following vector: S =(s1, 82, ., 501, Spr41)

wheres; are scalars defining the stimulus-response fiélfl,is the
Ry, Ry, -+, Ry, Dy, Do, ---, Dg number of input variables, and/1 is the associated response.
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Fig. 5. Extraction of topological characteristics for different rotations and sizes of the letter E. The first line indicates the number ofpikehsiitgnges in
each one of the eight circumferences, and the second line represents the normalized differences over the largest seven circumferences.

Each input real variable is mapped to polar variables by means of thement of inertial x'), the next eight are the number of intensity pixel

sigmoidal relationship changes when the eight circles are intersected by the |&ter( R~),
o the next seven are the normalized differences of the largest seven circles
9, = 27 (1 + J“‘SU/") (2) (Do - Ds), and finally, the last number is the letter identifier. As an

example, Table | shows the training vectors for lettérsF’, M, and

wheren ande are the mean and standard deviation for each of thege
variables. Equation (2) maps eacho phase values between zero and
2. B. Recognition

The HNN algorithm is similar to the well-known nearest-neighbor
algorithm (NN) [13]. This latter algorithm is based on the idea thafli]:i
the minimum Euclidean distance between the input and each train
vector can be used to classify the input vector. Moreover, to prev
the domination of a subgroup of features, the NN algorithm normaliz
these features. The normalization consists of subtracting the mean fr,
each feature variable and dividing the result by the standard deviat

We generated 238 experimental images (17 different sizes and 14
erent rotations) for each one of the 26 letters. The largest letter has
x 100 pixels, and the smallest has 20 x 20 pixels. Fig. 6 shows a
aw of the generated images of the letler
uring recognition, each one of the 238 images for each one of the
éPcharacters is presented to the HNN. It is important to mention that
most of the characters used to test the method present certain degree

of the corresponding feature in the training set. f o dof tion. Thi ise is intrinsicall duced durina th
In our model, we calculate the megn) @nd standard deviatiom ornoise or deformation. This noise 1 intrinsically produced during the
nsformation of the letters to other sizes and orientations. Moreover,

for each variable on the complete set of training vectors (all classe % i ts of noi be added to the letters to b ized
Furthermore, oncg ands are evaluated, the real components of eac erent amounts of noise can be added o the [etters o be recognized.
he noise was applied to the boundary (Fig. 7) or randomly (Fig. 8).

vector are mapped to a phase domain. Thus, we end upgvitiase - . . . .

vectors of dimensiod{ . When a new pattern is presented to the HN 'I"he boundary noise ;lmu_la_tes the effect of deformations in the object

it decides which is the best match by finding the minimum distan undary, although it is difficult to measure the exact degree of defor-
mation. The random noise is generated by changing the value of pixels

between that new patterj and training phasesds;) for each vari- inside the object in a random (uniform) manner, where the percentage
able. More clearly, among t hase vectors, we find the minimum . . . !
Y g thep of altered pixels is varied from 10% to 90%.

Working with phases instead of real numbers, and calculating tEe Results
mean {:) and standard deviatiow ) for each variable on the complete

set of training vectors makes the HNN algorithm superior to the normal The obtained results are shown in Table II. As we can see, invariant-
NN algorithm [22]. object recognition is obtained with almost 100% accuracy on images

with sizes between 100 x 100 and 45 x 45 pixels. The performance of
the model decreases slightly for smaller letters. However, this problem
was solved by adding a second group of training vectors for letter sizes

The algorithm was tested in character recognition using the B@tween 30 x 30 and 20 x 20 pixels. We used another 104 training pat-
upper-case letters of the alphabet. Four different orientations agfhs for small letters, and the performance for this range (25 x 25—20
only one size were used for training. Recognition was tested with 3(720) is shown in Table Il [22].
different sizes and 14 rotations for each size. Noisy images (see Figs. 7 and 8) are recognized correctly by our
model as well, indicating the robustness of it. An accuracy of 98% is
obtained, with images having up to 60% of random noise.

In order to obtain an increased noise tolerance, during the learningAs was mentioned before, both preprocessing and recognition
stage, we consider four different orientations for each character. Thase computationally efficient. The system was tested in an IBM
we have only 104 input patterns (26 x 4) for the learning process. E&RB6000-H50 workstation with the following results. The mean time
training vector is formed by 17 positive numbers, using eight circlder the preprocessing stage, including the moment of inertia and the
for the radial coding in this case. The first one is the normalized centradial coding, is 0.105462 s, with a standard deviation of 0.0187 s.

IV. EXPERIMENTAL STUDY AND RESULTS

A. Learning
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TABLE |
TRAINING VECTORS OFLETTERSA (65), F (70), M (77) AND T (84) IN FOUR DIFFERENTROTATIONS: 0°, 35°, 7C°, AND 105’

I/N? ] Radial coding | Normalized differences T1d
LETTER A
03 |1 1 2 2 1 3 3 2]043 005 026 031 009 000 029 | 65
040 |1 1 2 2 1 3 3 2]039 007 023 031 011 0.02 042 | 65
036 |1 1 2 2 1 3 3 2 042 006 026 031 009 0.00 043 | 65
03 |1 1 2 2 1 3 3 2|04 009 025 031 011 001 043 | 65
LETTER F
03 |0 1 2 2 2 2 1 1057 016 0.04 010 019 066 0.70 || 70
040 |0 1 2 2 3 4 2 2/|049 011 005 011 001 0.10 0.05 | 70
037 |0 1 2 2 3 4 2 2|051 015 0.06 011 000 0.06 0.03 | 70
036 |0 1 2 2 3 4 2 2/|048 011 0.05 011 000 0.18 0.10 || 70
LETTER M
027 |10 1 1 2 3 3 2 1|028 021 011 0.03 004 004 005 ]| 77
031 (0 1 1 1 3 3 2 4028 022 020 005 0.04 004 o001 77
029 {0 1 1 1 3 3 2 4/|028 022 019 004 004 004 0.01 ] 77
028 |0 1 1 1 3 3 2 4(029 021 019 003 005 0.04 0.02} 77
LETTER T
042 1 1 2 2 2 2 2 3|000 001 o0.01 000 0.00 0.00 0.03]| 84
049 1 1 2 2 3 3 3 3000 001 o0.01 001 000 002 0.01]| 84
04511 1 2 2 3 3 3 3|000 001 002 001 000 003 0.00]| 84
045 {1 1 2 2 3 3 3 3]021 002 000 001 002 001 0.02] 84

X M
9P
X 9 P
+ >V

Fig. 7. Letters A, E, and X with some degree of boundary noise recognized
with 100% accuracy.
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Fig. 6. Testing images of the letter E. - i -
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The mean time for recognition using the HNN algorithm is 0.108 84 J‘w Ei ~ |".| ‘ﬁ& i1
s, with a standard deviation of 0.034 49 s. So the total mean time - d & e | w- ] H
IOR in our experiments is approximately 0.2 s and is very stable. T 0% 0% 80% 90%

training time for the HNN is the same as the recognition time for

each pattern used for training, which is approximately 0.1 s times tb%_ 8. Different percentages of random noise applied to the letter K.
number of training patterns.

intensity histogram will usually be bimodal, with one peak corre-
sponding to the object and other to the background. So we apply a

The methodology for IOR can be extended from binary imag@gmple histogram-based segmentation (binarization) using a threshold
to multilevel images. For this, before the IOR method is appliegy the following intensity value [3]:

the image is made binary using a technique based on the intensity
histogram of the image. Assuming a single object in the image, the Th=m —k X (max — min)

D. Multilevel Images
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TABLE I
AVERAGE PERCENT OFRECOGNITION FOREACH OF THE 26 LETTERS FORDIFFERENT SIZES

Size # Letters A B| C D| E F G H 1 J
100x100-45x45 168 100 | 100 | 98 | 100 |{ 98 | 100 | 100 | 100 | 100 | 100
40x40-30x30 42 100 | 100 | 98 | 96 | 90 88 88 | 100 | 100 | 100
25x25-20x20 28 100 98 198 | 94|95 89 89 ( 100 | 100 99

K|L| M[N O| P Q R| S|T U VI W X Y!| Z
100 {98 100 [99 | 99|96 | 100 | 98 { 99 | 98 | 100 | 100 | 96 | 100 | 100 | 99
100 | 95 (100 | 98 {100 { 95| 90 [ 100 |91 | 96 | 100 [ 94 | 94 [ 95 | 100 | 92

93 | 50| 32199 98|96 9710089 |89 | 8| 941100 | 100 [ 98] 95

where

Th  threshold

m median of the intensity values

max Mmaximum

min  minimum

k constant that is obtained empirically.

The proposed methodology for IOR has been applied for recognizing
charactersin car plates [8]. In this case, the images have 256 gray leve
and are binarized using the previous method. For this application, w
segmented the plate in the image, and we automatically isolated thes
area in which each character is located. So, as in the previous exper =
ments, we can assume that there is a single object in the image to |
recognized, and in this case, it is a single character. The system was
tested with 90 images of car plates obtained under natural-illuminatipig. 9. Example of an image of a car plate.
conditions. Fig. 9 shows an example of an image of a car plate, and
Fig. 10 shows the segmented characters with the circles used to obtain
the radial coding. The recognition results (assuming the segmentati — —
of the characters is correct) are similar to those obtained with the ar
ficially generated characters, with nearly 90% correct recognition.

V. RELATED WORK

A number of IOR methods have been proposed in the literatur
These can be classified as: optical techniques [6], [17], boundary-bas
analysis via Fourier descriptors [9], [12], neural-networks models [1
[5], [7], [18], [19], invariant moments [2], [11], [13], and genetic algo-
rithms [14].

Itis important to mention recent IOR research based on optical tec
nigues such as composite-harmonic filters [17] or scale, translation, a ~—_
in-plane rotation (STIR)-invariant transformations [4]. The former fil- —
ters involve the Mellin radial harmonics for scale invariance [16], the
Iogarlthmlc harmonl.cs fpr prgjectlon invariance [15], and the Clr.cmqfig. 10. Segmented characters illustrating the radial coding for the car plate
harmonics for rotation invariance [10]. Fang and Hausler [4] |ntrqr-nage in Fig. 9.
duced a new class of transforms that achieve STIR invariance simulta-
neously. In their approach, an intensity functi®fx, y) is mapped into
a one-dimensional (1-D) frequency-spectrum function. Later, GhahraMadaline structures for translation-invariant recognition [1], the
mani, and Patterson [6] proposed a higher dimensional version of gef-organized neocognitron [5], and high-order neural networks [7],
STIR-invariant transforms in conjunction with an orthonormalizatiofL8], [19], are examples of IOR neural-based methods. The self-orga-
technique in an optical neural-network resonator. Computer simulsized neocognitron is a further extension of the cognitron originally
tions show that these types of techniques perform well and have gxeposed by Fukushima in 1975 [5]. This learning machine has the
cellent noise tolerance. However, the major disadvantage is their headylity to learn with no teacher, and when learning is completed, it ob-
computational requirements. tains a structure similar to the hierarchical model of the visual nervous

Boundary-based analysis using discrete Fourier transforms has bggstem. Although the work of Fukushima is a major advance in the
proposed as an alternative to IOR [9], [12]. Algorithms based on thisiderstanding of visual processing in our brain, from an engineering
kind of analysis are called Fourier descriptors and basically, invarianpeint of view, its major drawback is that it is unable to cope with
is obtained by normalizing the frequency representation of the imalgege translations and rotations in the image. Furthermore, the number
shape. This is done easily via the discrete Fourier-transform propertiéscells in this model increases almost linearly with the number of
but only on uniform contours of the shape. objects to be recognized, making the training process very slow.
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High-order networks (HON’s) have been utilized recently for in-
variant recognition [7], [19]. In this type of model, one has to encode
the properties of invariance in the values of the synaptic weights. In
other words, the known relations between pixels of the images are u£ ,
and the invariance is directly constructed in the network. A third-order
network has been proposed [18], in which combinations of triplets of
image pixels are used as invariant relations. The triplets form trian-[1]
gles representing similar angles. (3, ) in any transformation of the 2]
same image. The weights are restricted in such a way that all the com-=
binations of three pixels defining similar triangles are connected to the
output with the same weight. The number of combinations of possible[3]
triplets increases in a nonlinear proportion to the number of input data.[4]
This is the main disadvantage of this approach. [

IOR based on moments and invariant functions of moments is an-
other popular invariant-recognition scheme. In 1962, Hu [11], intro-
ducing nonlinear combinations of regular moments, derived a set ofl6]
seven composed moments with translation, scaling, and rotation-in-
variant properties. However, the moments proposed by Hu do not posi7]
sess orthogonal properties, making reconstruction of the input image
computationally difficult. To overcome this problem, Teague [21] sug-
gested orthogonal moments based on the general properties of orthoéf—‘]
onal polynomials. In general, it has been shown by Teague and other
researchers [21] that in terms of information redundancy, orthogonaljg)
moments (Legendre, Zernike, and pseudo-Zernike) perform better than
any other type of moments. In terms of overall performance, Zerniké10]
and pseudo-Zernike moments outperform the others [13]. But in gen-
eral, the main disadvantage of using these methods is that the momept;
computation is too computationally intensive.

A genetic classifier system, able to correctly classify all the letterd12]
of the alphabet, has been proposed by McAwawl. [14]. This clas-
sifier system has only scaling and translation-invariant properties and
some robustness against certain distortions and noise. Finding an effis]
cient mapping of the 2-D image into the classifier system rules is one of
the main difficulties of this approach. Watanabe [23] proposed a direct
coding using four strings representing projected views in four direc
tions: horizontal, vertical, ordinary diagonal, and auxiliary diagonal.
These strings are formed considering the number of runs of blacks if5]
each row in the corresponding direction string and are compressed to
show variations only. This coding is an efficient way to extract topo-

. - L ; . . . [16]
logical characteristics, but it is only invariant to scaling and translation,
not to rotation.

[17]

VI. CONCLUSION [18]
In this work, a novel method to recognize 2-D objects invariant to
size, translation, and rotation is reported. This method takes advantafleg]

of the properties of the normalized central moment of inertia and
coding scheme that extracts invariant topological characteristics of 2-D
objects. The method is easy to understand and implement, and cori20]
pared to other methods, computer requirements are negligible.

Recognition is made by means of a holographic NN algorithm. In théﬂ]
work reported here, only 104 patterns representing 26 letters are usgsgh)
for training. Regardless of its position, the HNN is able to correctly
recognize orientation, size, and any upper-case letter with 17 different
sizes and 14 different rotations, including some noise added random[§3]
or to the boundary. The method is extended to handle multilevel images
and applied for character recognition in images of car plates.

In summary, we have described an IOR model that is robust, com-
putationally fast, and easy to implement.

Future work will be done in testing the model with different 2-D
objects and in using other classification techniques in the recognition
stage.
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