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Abstract

This paper presents a statistical learning method
for computing range data as an initial solution to
the environment modeling problem in the context
of mobile robotics. Unlike other methods that are
based on a set of geometric primitives, our method
computes dense range maps of locations in the en-
vironment using only intensity images and very
limited amount of range data as an input. This is
achieved by exploiting the following assumptions:
1) the observed range and intensity images are cor-
related and, 2) variations of pixels in the range and
intensity images are related to the values elsewhere
in the image(s). These variations can be efficiently
captured by the neighborhood system of a Markov
Random Field (MRF). Experimental results show
the feasibility of our method.

1 Introduction
Knowledge of its surrounding environment is crucial for a
mobile robot to accomplish even the simplest task. The use
of range data for navigation and mapping has become a key
methodology, but the acquisition of complete range maps (i.e.
volume scans) from a single view point remains prohibitive
for many real systems (such as range scans from a single
viewpoint are sometimes known as two-and-a-half dimen-
sional representations). Stereo cameras can produce volumet-
ric scans that are economical, but they often require calibra-
tion or produce range maps that are either sparse or of limited
resolution. Volumetric laser scanners tend to be costly and
physically demanding or slow. In robotics, a particular com-
mon simplifying assumption is to represent 3D structure as a
2D “slice” through the world. However, in practice this is not
sufficient to capture structures of interest. In this paper, we
bypass this assumption and propose a novel method to esti-
mate 3D data from a combination of a single video intensity
image and a limited amount of observed range data.

By using a limited amount of range data, the complexity
of the data acquisition system is reduced, while still being
able to make estimates over a full range map (from a sin-
gle viewpoint at a time). This should allow a robotic system
to rapidly collect a small amount of range data and a video
image, and then infer the rest of the range map it does not

capture directly. It is important to highlight that we are not
simply inferring a few missing pixels, but synthesizing a com-
plete range map from as little as few laser line-striping scans
across the environment. This paper examines our ability to
extrapolate range data given initial data in various configura-
tions. For this study we do not use data collected from our
own laboratory, but rather have elected to use widely avail-
able ground-truth data from Oak Ridge National Labs. As
such, while our target application is mobile robotics, this pa-
per does not explicitly address the issues of navigation and
data acquisition.

Our methodology is to statistically learn the relationship
between the observed range data and the variations in the
intensity image and use this to compute the unknown range
data. This can be regarded as a form of shape-from-shading
based on statistical learning, although traditional shape-from-
shading is quite different from this approach in its technical
details. In our approach, we approximate the composite of
range and intensity at each point as a Markov process. Un-
known range data is then inferred by using the statistics of the
observed range data to determine the behavior of the Markov
process. The presence of intensity where range data is being
inferred is crucial since intensity data provides knowledge of
surface smoothness and variations in depth. Our approach
learns that knowledge from the observed data, without hav-
ing to hypothesize constraints that might be inapplicable to a
particular environment.

We base our range estimation process on the assumption
that the pixels constituting both the range and intensity im-
ages acquired in an environment, can be regarded as the re-
sults of pseudo-random processes, but that these random pro-
cesses exhibit useful structure. In particular, we exploit the
assumption that range and intensity images are correlated, al-
beit in potentially complicated ways. Secondly, we assume
that the variations of pixels in the range and intensity images
are related to the values elsewhere in the image(s) and that
these variations can be efficiently captured by the neighbor-
hood system of a Markov Random Field. Both these assump-
tions have been considered before [Geman and Geman, 1984;
Efros and Leung, 1999; Wei and Levoy, 2000; Efros and Free-
man, 2001; Hertzmann et al., 2001], but they have never been
exploited in tandem.

This paper is structured as follows. Section 2 briefly con-
sider some of the related prior work. Section 3 describes our



method to infer range data. Section 4 tests the proposed al-
gorithm on several types of experimental data. Finally, in
Section 5 we give some conclusions and future directions.

2 Previous work
The inference of 3D models of a scene is a problem that sub-
sumes a large part of robotics and computer vision research
over the last 30 years. In the context of this paper we will
consider only a few representative solutions.

Over the last decade laser rangefinders have become af-
fordable and available but their application to building full 3D
environment models, even from a single viewpoint, remains
costly or difficult in practice. In particular, while laser line
scanners based on either triangulation and/or time-of-flight
are ubiquitous, full volume scanners tend to be much more
complicated and physically sensitive. As a result, the acqui-
sition of dense, complete 3D range maps is still a pragmatic
challenge even if the availability of laser range scanners is
presupposed.

Much of the previous work on environment modeling uses
one of either photometric data or geometric data [Debevec
et al., 1996; Hilton, 1996; Fitzgibbon and Zisserman, 1998;
Pollefeys et al., 2000] to reconstruct a 3D model of an
scene. For example, Fitzgibbon and Zisserman [Fitzgibbon
and Zisserman, 1998] proposed a method that sequentially
retrieves the projective calibration of a complete image se-
quence based on tracking corner and/or line features over
two or more images, and reconstructs each feature indepen-
dently in 3D. Their method solves the feature correspondence
problem based on the fundamental matrix and trifocal ten-
sor, which encode precisely the geometric constraints avail-
able from two or more images of the same scene from dif-
ferent viewpoints. Related work includes that of Pollefeys et.
al. [Pollefeys et al., 2000]; they obtain a 3D model of an scene
from image sequences acquired from a freely moving camera.
The camera motion and its settings are unknown and there is
no prior knowledge about the scene. Their method is based
on a combination of the projective reconstruction, self cali-
bration and dense depth estimation techniques. In general,
these methods derive the epipolar geometry and the trifocal
tensor from point correspondences. However, they assume
that it is possible to run an interest operator such as a cor-
ner detector to extract from one of the images a sufficiently
large number of points that can then be reliably matched in
the other images.

Shape-from-shading is related in spirit to what we are do-
ing, but is based on a rather different set of assumptions
and methodologies. Such method [Horn and Brooks, 1989;
Oliensis, 1991] reconstruct a 3D scene by inferring depth
from a 2D image; in general, this task is difficult, requir-
ing strong assumptions regarding surface smoothness and
surface reflectance properties. Recent work has considered
the use of both intensity data as well as range measure-
ments. Several authors [Pulli et al., 1997; El-Hakim, 1998;
Sequeira et al., 1999; Levoy et al., 2000; Stamos and Allen,
2000] have obtained promising results. Pulli et al. [Pulli et
al., 1997] address the problem of surface reconstruction by
measuring both color and geometry of real objects and dis-

playing realistic images of objects from arbitrary viewpoints.
They use a stereo camera system with active lighting to ob-
tain range and intensity images as visible from one point of
view. The integration of the range data into a surface model
is done by using a robust hierarchical space carving method.
The integration of intensity data with range data has been pro-
posed [Sequeira et al., 1999] to help define the boundaries of
surfaces extracted from the 3D data, and then a set of heuris-
tics are used to decide what surfaces should be joined. For
this application, it becomes necessary to develop algorithms
that can hypothesize the existence of surface continuity and
intersections among surfaces, and the formation of composite
features from the surfaces.

However, one of the main issues in using the above config-
urations is that the acquisition process is very expensive be-
cause dense and complete intensity and range data are needed
in order to obtain a good 3D model. As far as we know, there
is no method that bases its reconstruction process on having
a small amount of range data and synthetically estimating the
areas of missing range by using the current available data.
In particular, such a method is feasible in man-made environ-
ments, which, in general, have inherent geometric constraints,
such as planar surfaces.

3 Methodology
As noted above our objective is to compute range values
where only intensity is known. In the current presentation,
we assume that the resolution of the intensity and range data
is the same and that they are already registered.

We solve the range data inference problem as an extrapo-
lation problem by approximating the composite of range and
intensity at each point as a Markov process. Unknown range
data is then inferred by using the statistics of the observed
range data to determine the behavior of the Markov process.
Critical to the processes is the presence of intensity data at
each point where range is being inferred. Intuitively, this in-
tensity data provides at least to kinds of information: knowl-
edge of when the surface is smooth, and knowledge of when
there is a high probability of a variation in depth. Our ap-
proach learns that information from the observed data, with-
out having to fabricate or hypothesize constraints that might
be inapplicable to a particular environment.

3.1 Markov Random Fields (MRF) for range
synthesis

We focus on our development of a set of augmented
voxels � that contain intensity and range information (where
the range is initially unknown for some of them). Thus,
���������
	�� , where � is the matrix of known pixel intensities
and 	 denotes the matrix of incomplete pixel depths. We
are interested only in a set of such augmented voxels such
that one augmented voxel lies on each ray that intersects each
pixel of the input image � , thus giving us a registered range
image 	 and intensity image � .

Let 
�������������������������� ��! denote the !#"$! in-
teger lattice (over which the images are described); then
���&%('*),+ -/. , �������0�21&
 � , denotes the gray levels of the in-
put image, and 	3�4%65�),+ -/. , �������0�217
 � denotes the depth



values. We model � as an MRF. Thus, we regard � and
	 as a random variables. For example, %6	$��� . stands
for %(5 ) + - ��� ),+ - �6�������0�21&
 � . . Given a neighborhood
system

� �&% � ),+ - 17
 � . , where
� ) + -�� 
 � de-

notes the neighbors of �������0� , such that, � �(� �����������1 � ) + - ,
and �	�/� �������0�21 ��
 + ��
�� �	� ��� � 1 � ),+ - . An MRF over
� 
�� � � � is a stochastic process indexed by 
 � for which,
for every ��������� and every � � ���
���,� (i.e. each augmented
voxel depends only on its immediate neighbors),� �	� ) + - ��� ) + -�� � 
 + � ��� 
 + � �6�	� ��� ����������������

� � �	��),+ - ��� ) + - � � 
 + ����� 
 + ��� ��� ��� � 1 � ) + -,��� (1)

The choice of
�

together with the conditional probability dis-
tribution of

� ��� � � � and
� ��	 �!�,� , provides a powerful

mechanism for modeling spatial continuity and other scene
features. On one hand, we choose to model a neighborhood� ),+ - as a square mask of size " "�" centered at the augmented
voxel location �������0� . This neighborhood is causal, meaning
that only those augmented voxels already containing both, in-
tensity and range information are considered for the synthe-
sis process. On the other hand, calculating the conditional
probabilities in an explicit form is an infeasible task since
we cannot efficiently represent or determine all the possible
combinations between augmented voxels with its associated
neighborhoods. Therefore, we avoid the usual computational
expense of sampling from a probability distribution (Gibbs
sampling, for example), and synthesize a depth value 5 ),+ -
deterministically by selecting the range value 5 
 + � from the
augmented voxel whose neighborhood most resembles the re-
gion being filled in, i.e.,

�$#&%�'&( � argmin )�� ),+ -+* � 
 + � ) ,
�	� ��� � 1-, (2)

where ,��&%., 
 + �/� � . is the set of local neighborhoods,
such that ����0 �	� * � ��1�23�	� * �0��16� �43 . For each succes-
sive augmented voxel this approximates the maximum a pos-
teriori estimate; 5 ��� ��� � is then used to specify 5 �������0� . The
similarity measure )65�) is described over the partial data
about locations ��������� and �	� ��� � and is calculated as follows,7

89;:=<?>A@ �CB �EDF * DF;G ��H � ' 89 * 'JI89 � 1 2 ��5 89 * 5KI 89 � 1ML � (3)

where DF G is the augmented voxel located at the center of the
neighborhood

�ON
, DF is a neighboring voxel of DFEG . ' and 5 are

the intensity and range values of the neighboring augmented
voxels of the depth value 5 ) + - 14DF G to synthesize, and ' I and
5 I are the intensity and range values to be compared with and
in which, the center voxel DFPG has already assigned a depth
value. @ is a 2-D Gaussian kernel that gives more weight
to those voxels near the center than those at the edge of the
window.

In our algorithm we synthesize one depth value 5 �������0� at
a time. The order in which we choose the next depth value
to synthesize will influence the final result. In our first exper-
iments, depth values are assigned in a spiral-scan ordering,
either growing inwards or outwards, depending on the shape
of the area to synthesize.

4 Experimental Results
Experiments were conducted on data acquired in a real-world
environment. The real intensity (reflectance) and range im-
ages of indoor scenes were acquired by an Odetics laser range
finder mounted on a mobile platform. Images are �Q�ER " �Q�PR
pixels and encompass a SUTJV "WSUTUV field of view. We start with
the complete range data set as ground truth and then hold back
most of the data to simulate the sparse sample of a real scan-
ner and to provide input to our algorithm. This allows us to
compare the quality of our reconstruction with what is actu-
ally in the scene. In the following, we will consider several
strategies for subsampling the range data.

4.1 Range measurements with variable width
along the XZY and [\Y axis

This type of experiment involves the range synthesis when
the initial range data is a set of stripes with variable width
along the � * and � * axis of the intensity image. In the fol-
lowing cases, we tested our algorithm with the same intensity
image in order to compare the results. Figure 1 shows the in-
put intensity image (left) of size �Q�ER "��Q�PR and for purpose
of comparison we show the ground truth range image (right)
from where we hold back the data to simulate the samples.

Figure 1: The input intensity image and the associated ground
truth range. Since the unknown data are withheld from gen-
uine ground truth data, we can estimate our performance.

Five cases of subsampling are shown in Figure 2. The ini-
tial range data, shown in the left column, goes from dense to
very sparse. The width of the input stripes ];^ and the width
of the area with missing range data �_^ are indicated below
each image. For the first 4 cases the size of the neighborhood
is set to be ` "4` pixels and for the last case a "4a . The
right column shows the synthesized range data obtained after
running our algorithm.

The first two cases have the same amount of missing range,
however the synthesized range for the second case is much
better. Intuitively, this is because the sample spans a broader
distribution of range-intensity combinations.

The Odetics LRF uses perspective projection, thus the im-
age coordinate system is spherical. The absolute value of
each error is taken and the mean of those values is computed
to arrive at the mean absolute residual (MAR) error. To cal-
culate the absolute residual errors, we first convert the range
images to the Cartesian coordinate system (range units) by
using the equations in [Storjohann, 1990] and then we con-
vert the range units to centimeters. Table 1 shows the MAR



Figure 2: Results on real data. The left column shows the
initial range data and to their right is the synthesized result
(the white squares represent unknown data to be estimated).

errors (calculated only on the unknown areas) of the exam-
ples shown in Figure 2. The approximated depth size of the
input scene is `E`ET centimeters.

For each case, we show the histogram of the pixels based
on the absolute residual errors in Figure 3. Each class in the
histogram covers a range of aA5 SUS centimeters. We do this be-
cause the MAR error does not accurately represents the per-
formance of our algorithm in cases where there are very few
pixels (it may be only one) with high absolute residual er-
ror. From the histograms we can see that (except for the first

case) there is a high concentration of pixels with residual er-
rors � �QT�5 �ER centimeters.

Input range % of area with MAR Error��� ��� missing range (in centimeters)
24 80 39 36.36
10 20 39 5.76
8 32 56 12.07
5 25 61 8.86
3 28 76 9.99

Table 1: MAR errors for the cases shown in Figure 2.

Figure 3: Histograms of pixels based on the absolute residual
errors for the cases shown in Fig. 2. Note that the concentra-
tion of pixels is with residual errors between � �=TA5 �UR cms.

In general, the results are surprinsingly good in all cases,
except for the first. Our algorithm was capable of recover-
ing the whole range of the image. For the case with ] ^ � `
and � ^ � �U` , Figure 4 displays two different views using the
synthesized range and ground truth for comparison purposes.

Figure 4: Results in 3D. Two views of the real range (left
column) and the synthesized results (right column) of case
where ] ^ �6` and � ^ �6�E` .



It is important to note that we do not assume that the range
and intensity images are correlated (i.e. dark regions tend to
be further). In the previous example, the correlation coeffi-
cient is TA5 S�� . We will show examples where this coefficient
is low and still good results are obtained.

From the previous experiments, the case of subsampling
with ] ^ � ` and � ^ � �U` , is of our interest. The input range
measurements are very sparse and the obtained results were
very satisfactory. We conducted experiments on aUT images
of common scenes found in a general indoor man-made en-
vironment using this case of subsampling. Due to space lim-
itations, we are only showing � more examples in Figure 5.
The MAR errors from top to bottom are shown in Table 2.
The approximated depth size of each scene and the correla-
tion coefficient are also given. We can normalize the MAR
error by dividing the average residual error by the depth size
of the scene.

Figure 5: Examples on real data for the case of subsampling
with ]Q^ � ` and �$^ � �U` . The first and second columns
are the input intensity and range data, respectively. White
regions in the input data are unknown data to be inferred by
the algorithm. The synthesized results are shown in the third
column and, the real range images are displayed in the last
column for visual comparison.

It can be seen that the synthesized range images are very
similar to the real range images. However, it can be noted also
(especially in the last example) that our algorithm performs
poorly when high variations in depth are not captured by the
intensity-range combinations. These variations can be cap-
tured by incorporating edge information to the Markov Ran-
dom Field model. In the next section, we explain in more
detail how we solve this problem.

MAR Error Approx. depth MAR/Depth Correlation
(in cms) size (in cms) coefficient

10.40 600 0.017 0.47
16.58 800 0.021 0.63
12.16 500 0.024 0.32
19.17 400 0.048 0.62

Table 2: The input information and MAR errors of the cases
shown in Figure 5.

4.2 Using Edge Information

From the experimental results previously shown, we noted
that our algorithm sometimes is not effective for inferring
depth near object edge, where high discontinuities exist. Edge
detection from intensity images is useful to solve this prob-
lem. Strong edges from the object or grey levels boundaries
act to prevent the range estimation beyond that point. Thus,
our algorithm synthesizes first depth in voxels located “in-
side” of a detected edge. The estimation of those points hav-
ing an edge are estimated at the end, when all other points
with unknown range are already synthesized.

We use the Canny edge detector [Canny, 1986] for extract-
ing the edges from the intensity images. The incorporation
of edge information to our Markov Random Field model is
very simple, we just add that information such that each aug-
mented voxel now contains intensity, range (if known), and
edge information ( � is there exist an edge, T otherwise).

We also noticed that the order in which we choose the next
depth value to synthesize will reflect the final result. With the
spiral-scan ordering there is a strong dependence from the
previous assigned voxel. A better scan ordering would be to
synthesize first those voxels having the maximum number of
neighbors voxels with available range and intensity informa-
tion. For future reference, we call this ordering the mnn-scan
ordering. In sum, the following outlines the mnn-scan order-
ing process including the edge information:

Step 1: For each augmented voxel with unknown range, cal-
culate the number of neighbors with already assigned
intensity and range except, for those where an edge ex-
ists.

Step 2: Add the location of each augmented voxel to the cor-
responding list according to its number of neighbors.

Step 3: From the list of augmented voxels with the maxi-
mum number of neighbors, randomly choose the voxel
to be synthesized and erase it from the list.

Step 4: Add 1 to the number of neighbors of each neighbor-
ing voxel of the voxel being synthesized. If an edge ex-
ists in any of the neighboring pixels, do nothing.

Step 5: Go to Step 3 until there are no more voxels in the list
to synthesize.

Step 6: Select the next list with the maximum number of
neighbors, and go to Step 3 until all lists are selected.

Step 7: Randomly synthesize all the augmented voxels hav-
ing an edge.



We implemented the mnn-scan ordering and incorporate
the edge information to our method. Our algorithm was tested
again on the aUT images. The smoothing parameter for edge
detection was set to T�5 R in all examples. For purpose of com-
parison, Figure 6 shows the results obtained (upper row) for
the input images in Figure 5. The lower row shows the corre-
sponding edge information. The MAR errors are now, from
left ot right, R�5 `PR , �Qa�5 �UR , �/�E5 a � and � 5 �Q� , respectively 1.

Figure 6: Range synthesis using the mnn-scan ordering and
edge information. The left column shows the edges detected
in the input intensity image and to their right is the synthe-
sized result. For purposes of comparison, the input images
are the same shown in the first two columns of Figure 5.

4.3 Range measurements with variable width
along the XZY axis.

We now show experimental results where the initial range
data is a set of stripes only along the � * axis. This type of
experiment is interesting since it resembles what is obtained
by sweeping a one-dimensional LIDAR sensor. We have se-
lected the same intensity image shown at the top of Figure 5
in order to compare the results. Figure 7 displays this input
intensity image(left) and the ground truth range image from
where we hold back the data to simulate the samples. The
edge information used is shown at the top of Figure 6.

1Computation time for these results using non-optimized code,
is on the order of minutes on generic PC’s.

Figure 7: The input intensity image and the associated ground
truth range. Since the unknown data are withheld from gen-
uine ground truth data, we can estimate our performance.

Figure 8 shows three experiments. The initial range data
is shown in the left column. The width of the input stripes] ^ and the width of the area with missing range data � ^ are
indicated below each image. The right column shows the syn-
thesized range data obtained after running our algorithm.

Figure 8: Results on real data. The left column shows the
initial range data and to their right is the synthesized result
(the white squares represent unknown data to be estimated).

The MAR errors for the experiments are shown in Table 3.
The approximated depth size of the scene is SETUT centimeters.
It can be seen that the MAR errors are a bit high. How-
ever, the histograms of the pixels based on the residual errors
for each case show that the most frequent residual error (the
mode) is � 5 aJ� cms.



Input range % of area with MAR Error��� ��� missing range (in centimeters)
10 20 62.5 20.72
8 32 75 18.98
5 25 78 20.23

Table 3: MAR errors for the cases shown in Figure 8.

Figure 9: Histograms of pixels based on the absolute residual
errors for the cases shown in Figure 8. Note that the most
frequent residual error (the mode) is � 5 aU� centimeters.

In general, the synthesized range images are good in all
cases. The very limited amount of input range was enough to
capture the underlying structure of the scene. In Figure 10,
4 more examples are given for the case of subsampling with] ^ � R and � ^ � aU� . Table 4 displays their respective MAR
errors (from top to bottom).

MAR Error Approx. depth MAR/Depth Correlation
(in cms) size (in cms) coefficient

17.22 600 0.029 0.57
16.16 650 0.025 0.09
17.17 440 0.039 0.46
20.25 670 0.030 0.54

Table 4: The input information and MAR errors of the cases
shown in Figure 10.

It is important to note, that depending on the scene, the ini-
tial range data given as an input is crucial to the quality of the
synthesis, that is, if no interesting changes exist in the range
and intensity, then the task becomes difficult. However, the
results presented here demonstrate that this is a viable option
to facilitate environment modeling.

5 Conclusions and Future Work
We have presented a novel method for inferring range data
given an intensity image with little associated range data. The
method is proposed as an initial solution for the environment
modeling problem in the context of mobile robotics.

Our approach is based on Markov Random Fields to model
the relationship between the observed range data and the
variations in the intensity image, and use this to extrapo-

Figure 10: Examples on real data for the case of subsampling
with ] ^ � R and � ^ � aU� . The first two columns show
the input intensity and range data, respectively. The last two
columns show the synthesized results and the real range im-
ages for visual comparison.

late/interpolate new range values. This approach was tested
using data from a real environment with promising results.

There are a number of parameters that can greatly influence
the quality of the results: the size of the neighborhood used
in computing correlations, the amount of initial range and the
characteristics captured in that initial range. The characteri-
zation of how these parameters effect the results is the subject
of ongoing work.

Our approach as described in this paper exploits the sta-
tistically observed relationship between the intensities in a
neighborhood and range data to interpolate (or extrapolate)
the range. While this formalism can explicitly capture local
differential geometry, we do not explicitly compute local sur-
face properties, nor does this approach make substantive as-
sumptions regarding surface reflectance functions of surface
geometry such as smoothness. The approach does assume
that the relationship between intensity and range can be ex-
pressed by a stationary distribution; an assumption that could
be relaxed. While avoiding strong assumptions about the sur-
faces in the scene allows greater generality, it also means we
do not exploit potentially useful constraint information. In
ongoing work, we are examining the incorporation of more
elaborate priors and geometric inferences.

An interesting problem we are currently working on, is as
follows: Having as an input the intensity image '�� and its as-
sociated range map 5 � , taken from viewpoint

�
. And a sec-

ond intensity image '�� , taken from viewpoint � , such that
viewpoints

�
and � are spatially close to each other. Our

objective is to infer the complete range map 5 � associated



(a)

(b)

Figure 11: The input data to our algorithm is shown in (a).
(b) shows the synthesized range from viewpoint � and the
ground truth range for comparison purposes.

to ' � . In Figure 11a, we show the input data and Figure 11b
shows the obtained result. In this context, we are also ex-
amining the use of multiple sensors with different resolutions
and viewpoints.
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