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Abstract. This paper addresses the problem of color correction of un-
derwater images using statistical priors. Underwater images present a
challenge when trying to correct the blue-green monochrome shift to
bring out the color visible under full spectrum illumination in a trans-
parent medium. We propose a learning-based Markov Random Field
(MRF) model based on training from examples. Training images are
small patches of color depleted and color images. The most probable color
assignment to each pixel in the given color depleted image is inferred by
using a non-parametric sampling procedure. Experimental results on a
variety of underwater scenes demonstrate the feasibility of our method.

1 Introduction

Image restoration in general, involves the correction of several types of degra-
dation in an image. The restored image must be more suitable than the origi-
nal image for a specific application. Traditionally, the most common sources of
degradation are due to imperfections of the sensors, or in transmission. We are
interested in restoring the color of underwater images. High quality image data
is desirable for many underwater inspection and observation tasks. Particularly,
vision systems for aquatic robots [2, 4, 7] must cope with a host of geometrical
distortions: color distortions, dynamic lighting conditions and suspended parti-
cles (known as ’marine snow’) that are due to inherent physical properties of
the marine environment. All these distortions cause poor visibility and hinder
computer vision tasks, e.g., those based on stereo triangulation or on structure
from motion.

Underwater vision is plagued by poor visibility [10, 9] (even in the cleanest
water). Additional factors are the ambient light, and frequency-dependent scat-
tering and absorption, both between the camera and the environment, and also
between the light source (the sun) and the local environment (i.e. this varies with
both depth and local water conditions). The light undergoes scattering along the
line of sight. The result is an image that is color depleted (typically appearing
bluish), blurry and out of focus. In this paper, we focus on the specific problem
of restoring/enhancing the color of underwater images. The term color refers to



the red, green and blue values (often called the color channels) for each pixel in
an image.

Prominent blue color of clear ocean water, apart from sky reflection, is due
to selective absorption by water molecules. The quality of the water determines
its filtering properties. The greater the dissolved and suspended matter, the
greener (or browner) the water becomes. The time of day and cloudiness of the
sky also have a great effect on the nature of the light available. Another factor
is depth, once at sufficient depth, no amount of filtration can effectively restore
color loss. Due to the nature of underwater optics, red light diminishes when the
depth increases, thus producing blue to grey like images. By 3m in depth there is
almost no red light left from the sun. By 5m, orange light is gone, by 10m most
yellow is also gone. By the time one reaches 25m only blue light remains [3].
Since many (if not all) of the above factors are constantly changing, we cannot
really know all the effects of water.

Color recovery is not a simple linear transform since it depends on distance
and it is also affected by quantization and even light source variations. We pro-
pose a learning based Markov Random Field model for color correction based
on training from examples. This allows the system to adapt the algorithm to
the current environmental conditions and also to the task requirements. As pro-
posed in[5], our approach is based on learning the statistics from training image
pairs. Specifically, our MRF model learns the relationships between each of the
color training images with its corresponding color depleted image. Training im-
ages are small patches of regions of interest that capture the maximum of the
intensity variations from the image to be restored. In the process it is important
not to lose resolution or details which will create even a worse problem. To our
knowledge this is the first formulation of using MRFs for the context of color
correction of underwater images.

This paper is structured as follows. Section 2 briefly consider some of the
related prior work. Section 3 describes our Markov Random Field model for
color correction. Section 4 tests the proposed algorithm on two different scenarios
with several types of experimental data each. Finally, in Section 5, we give some
conclusions and future directions.

2 Related Work

There are numerous image retouching programs available that have easy-to-
use, semi-automated image enhancement features. But since they are directed
at land-based photography, these features do not always work with underwater
images. Learning to manipulate the colors in underwater images with computer
editing programs requires patience. Automated methods are essential, specially
for real-time applications (such as aquatic inspection). Most prior work on im-
age enhancement tend to approximate the lighting and color processes by ideal-
ized mathematical models. Such approaches are often elegant, but may not be
well suited to the particular phenomena in any specific real environment. Color
restoration is an ill-posed problem since there is not enough information in the



poor colored image alone to determine the original image without ambiguity. In
their work, Ahlen et al. [1] estimate a diffuse attenuation coefficient for three
wavelengths using known reflectance values of a reference gray target that is
present on all tested images. To calculate new intensity values they use Beer’s
Law, where the depth parameter is derived from images that are taken at differ-
ent depths. Additional parameters needed are the image enhancements functions
built into the camera. In general, their results are good, but the method’s effi-
ciency depends highly on the previously noted parameters. In [11] a method that
eliminates the backscatter effect and improves the acquisition of underwater im-
ages with very good results is presented. Their method combines a mathematical
formula with a physical filter normally used for land photography. Although the
method does not perform color correction, the clarity achieved on the underwater
images may allow for color correction.

3 Our MRF Approach for Color Correction

The solution of the color correction problem can be defined as the minimum of an
energy function. The first idea on which our approach is based, is that an image
can be modeled as a sample function of a stochastic process based on the Gibbs
distribution, that is, as a Markov Random Field (MRF) [6]. We consider the
color correction a task of assigning a color value to each pixel of the input image
that best describes its surrounding structure using the training image pairs. The
MRF model has the ability to capture the characteristics between the training
sets and then used them to learn a marginal probability distribution that is to
be used on the input images. This model uses multi-scale representations of the
color corrected and color depleted (bluish) images to construct a probabilistic
algorithm that improves the color of underwater images. The power of our tech-
nique is evident in that only a small set of training patches is required to color
correct representative examples of color depleted underwater images, even when
the image contains literally no color information. Each pair of the training set is
composed by a color-corrected image patch with its corresponding color-depleted
image patch. Statistical relationships are learned directly from the training data,
without having to consider any lighting conditions of specific nature, location or
environment type that would be inappropiate to a particular underwater scene.

3.1 The MRF Model

Denote the input color depleted image by B = {bi}, i = 1, ..., N , where N ∈ Z
is the total number of pixels in the image and bi is a triplet containing the
RGB channels of pixel location i. We wish to estimate the color-corrected image
C = {ci}, i = 1, ..., N , where ci replaces the value of pixel bi with a color value.
The images in the training set are pairs of color depleted and color corrected
regions of interest that capture the maximum of the intensity variations of the
image to be restored. They are defined in a similar manner, let Bt

p = {bt
i} ,

i = 1, ..., N t
p be the color depleted training image p and Ct

p = {ct
i}, i = 1, ..., N t

p,



the corresponding color corrected image. N t
p ∈ Z represents the total number of

pixels in the training image p.

The color correction problem can be posed as a labeling problem. A labeling
is specified in terms of a set of sites and a set of labels. Sites often represent image
pixels or regions in the Euclidean space. Let S index a discrete set of N sites
S = {s1, s2, ..., sN}, and L be the set of corresponding labels L = {l1, l2, ..., lN},
where each li takes a color value. The inter-relationship between sites define the
neighborhood system N = {Ns | ∀s ∈ S}, meaning any collection of subsets of
S for which 1)s 6∈ Ns, and 2)s ∈ Nr ⇐⇒ r ∈ Ns. Ns is the set of neighbors
of s and the pair {S,N} is a graph in the usual way. Each site si is associated
with a random variable Fi. Formally, let F = {F1, ..., FN} be a random field
defined on S, in which a random variable Fi takes a value fi in L. A realization
f = f1, ..., fN , is called a configuration of F, corresponding to a realization of the
field. The random variables F defined on S are related to one another via the
neighborhood system N .

F is said to be an MRF on S with respect to N if and only if the following
two conditions are satisfied [8]:

P (f ) > 0 (positivity), and

P (fi | fS−{i}) = P (fi | fNi
) (Markovianity).

where S − {i} is the set difference, fS−{i} denotes the set of labels at the sites
in S − {i} and fNi = {f ′i | i′ ∈ Ni} stands for the set of labels at the sites
neighboring i. The Markovianity condition depicts the local characteristics of F.

The choice of N together with the conditional probability distribution of
P (fi | fS−{i}), provides a powerful mechanism for modeling spatial continuity
and other scene features. On one hand, we choose to model a neighborhood Ni as
a square mask of size n×n centered at pixel location i. On the other hand, calcu-
lating the conditional probabilities in an explicit form to infer the exact MAP in
MRF models is intractable. We cannot efficiently represent or determine all the
possible combinations between pixels with its associated neighborhoods. There-
fore, we avoid the usual computational expense of sampling from a probability
distribution (Gibbs sampling, for example) and color correct a pixel value bi with
neighboorhood Ni by using a non-parametric sampling strategy that is easy to
implement, generates good results and is fast to execute.

To compute the MAP estimate for a color value, one first need to construct
an approximation to the conditional probability distribution P (fi | fNi) and
then sample from it. For each new color depleted value ci ∈ C to estimate, the
samples (A), which correspond to the set of small image patches in the training
set, are queried and the distribution of Ci is constructed as a histogram of all
possible values that occurred in the samples. A is a subset of the real infinite set
of all color images, denoted by Nreal.



Based on our MRF model, we assume that the color-depleted value ci depends
only of its immediate neighbors, i.e. of Ni. If we define a set

Γ (ci) = {N? ⊂ Nreal : ‖ Ni −N? ‖= 0} (1)

containing all occurrences of Ni in Nreal, then the conditional probability distri-
bution of ci can be estimated with a histogram of all center color values in Γ (ci).
Unfortunately, we are only given A, i.e., a finite sample from Nreal, which means
there might not be any neigbhorhood containing exactly the same characteristics
in intensity and range as Ni in A. Thus, we must use a heuristic which let us
find a plausible Γ ′(ci) ≈ Γ (ci) to sample from.

In the non-parametric approach, a color value cp with neighborhood Np, is
synthesized by first selecting the most similar neighborhood (Nbest) to Np, i.e.,
the closest match to the region being filled in,

Nbest = argmin ‖ Np −Aq ‖,
Aq ∈ A

(2)

Second, the k neighborhoods Aq in A that are similar (up to a given threshold
ε) to this Nbest are included in Γ ′(cp), as follows

‖ Np −Aq ‖< (1 + ε) ‖ Np −Nbest ‖ (3)

The similarity measure ‖ . ‖ between two generic neighborhoods Na and
Nb is defined as the weighted sum of squared differences (WSSD) over the two
neighborhoods. The ”weighted” part refers to applying a 2-D Gaussian kernel to
each neighborhood, such that those pixels near the center are given more weight
than those at the edge of the window. We can now construct a histogram from
the color values cp in the center of each neighborhood in Γ ′(cp), and randomly
sample from it. cq is then used to specify cp. For each successive augmented voxel
this approximates the maximum a posteriori estimate.

Measuring the dissimilarity between image neighborhoods is crucial for ob-
taining quality results, especially when there is a prominent color (blue or green)
as in underwater images. Color information can be specified, created and visual-
ized by different color spaces (see [12] for more information about color spaces).
For example, the RGB color space, can be visualized as a cube with red, green
and blue axes. Color distance is a metric of proximity between colors (e.g. Eu-
clidean distance) measured in a color space. However, color distance does not
necessarily correlate with perceived color similarity. Different applications have
different needs which can be handled better using different color spaces. For our
needs it is important to be able to measure differences between colors in a way
that matches perceptual similarity as good as possible. This task is simplified
by the use of perceptually uniform color spaces. A color space is perceptually
uniform if a small change of a color will produce the same change in perception
anywhere in the color space. Neither RGB, HLS or CIE XYZ is perceptually
uniform. We use the CIE Lab space, which was designed such that the equal
distances in the color space represent equal perceived differences in appearance.



(a) (b)

Fig. 1. (a) The ground truth (color) image. (b) The simulated color depleted image
(this is the test image to be color corrected by our algorithm).

4 Experimental results

We test the proposed approach in two different scenarios. In the first scenario,
we use color underwater images available on the web 1 as our ground truth
data. These images were taken with a professional camera. The second scenario,
involves the acquisition of underwater video by our aquatic robot. Sections 4.1
and 4.2 describe these scenarios with the experimental results.

4.1 Scenario 1

In order to simulate the effects of water, an attenuation filter were applied to
each of the color underwater image. Figure 1a shows the ground truth (color)
image and Figure 1b, the simulated (color depleted) image after applying the at-
tenuation filter. The images in the training set correspond to small image regions
extracted from the ground truth image and the color depleted image (see Figure
2). These images correspond to regions of interest in terms of the variations in
pixel color values, thus the intention is that they capture the intrinsic statistical
dependencies between the color depleted and ground truth pixel values. The size
of the neighborhoods in all experiments were 5 × 5 pixels, and the number of
possible candidates k, was fixed to be 10. Figure 3a shows the training image
1 http://www.pbase.com/imagine (used with the kindly permission of Ellen Muller.)

Fig. 2. Diagram showing how the training image pairs are acquired for the Scenario 1.



(a) (b)

Fig. 3. (a) The training image patches. (b) The color corrected image.

patches from where our algorithm learns the compatibility functions and Fig-
ure 3b shows the resulted image after running our learning-based method. The
color-corrected image looks good, the discontinuities and edges are preserved
since our method assign colors pixel by pixel, thus avoiding over-smoothing.
Also, there are no sudden changes in color which are typically both unrealistic
and perceptually unappealing. To evaluate the performance of our algorithm,
we compute the mean absolute residual (MAR) error between the ground truth
and the color corrected images. For this case, the MAR error is 4.4. Note that
while our objective is perceptual similarity, this is difficult to evaluate and we use
this objective measure to obtain quantitative performance data. For comparison
purposes, we calculate the MAR error between the input (color depleted) image
and the ground truth image, this is 28.85.

Using the same input image (Figure 3b), we now show how the final result
varies depending on the training data. In Figure 4, 4 examples when using dif-
ferent training pairs are shown. For example, Figure 4a shows a color-corrected
image when using training pairs (1) and (3) (see Figure 3a). The MAR errors
are 5.43, 6.7, 8.54 and 25.8, respectively. It can be seen that the resulting images
are limited to the statistical dependencies captured by the training pairs.

(a) (b) (c) (d)

Fig. 4. Color correction results using different training sets. The input image is shown
in Figure 1b. The training pairs (labeled) are shown in Figure 3a. Results using training
pair (a) (1), (2) and (3); (b) (1) and (2); (c) , and (d) (1).



Fig. 5. The training pairs are indicated by the squares in the original and input images.

Three more examples of underwater scenes are shown in Figure 5. Each row
shows from left to right, the ground truth color image, the input bluish image
and the color corrected image after running our algorithm. The training image
regions are shown by squares in the corresponding color and bluish images. In
general the results looks very good. For the last two examples, the size of the
image patches in the training set is very small and enough to capture all the
statistical dependencies between bluish and color information, as a result, the
number of total comparisons in our algorithm is reduced and speed is achieved.
The average computation time for an input image of 300×400 pixels with small
number of training pairs (4 or less) of size 50× 50 is 40 seconds on generic PC’s.

4.2 Scenario 2

The following scenario is of special interest as it can be applied to color correct
underwater images in real-time with no user intervention. Our application is
specifically for aquatic robot inspection. As our aquatic robot [7] swims through
the ocean, it takes video images. In order to be able to correct the color of the
images, training data from the environment that the robot is currently seeing
needs to be gathered. How can better images be acquired? As light is absorbed
selectively by water, not only does it get darker as you go deeper, but there is
a marked shift in the light source color. In addition, there are non-uniformities
in the source amplitude. Therefore, the aquatic robot needs to bring its own
source of white light on it. However, due to power consumption, the light cannot
be left turned on. Therefore, only at certain time intervals, the robot stops,
turns its light on and take an image. These images are certainly much better,
in terms of color and clarity, than the previous ones, and they can be used to
train our algorithm to color correct neighboring frames (under the assumption
that neighboring frames are similar). Figure 6 shows this scenario, here frame t3
represents the image pair to be used to train our model for color correction.
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Fig. 6. The scenario 2.

Now we show an example. Figures 7a,b show the training image pair captured
at time t. The robot moves around and then at time t + δ takes an image
(Figure 7c), which is input to our algorithm. The resulting color-corrected image
is shown in Figure 7d. Since we do not have ground truth data for this scenario,
we cannot measure the performance of our algorithm, however it can be seen
that the resulting image looks visually good.

Additional results on images, using the same training pair of previous exam-
ple, are shown next. Figures 8a,c show the color depleted frames and Figures 8b,d,
the color corrected images. Our algorithm performs very well in both examples.
Note that the size of the training image pair is considerably bigger than those
considered in previous section. The computation time is increased for the search-
ing of best matching candidates in the training data. We have implemented a
kd−tree structure on the training data, thus significantly decreasing computa-
tional burden, taking on average one minute for an image of 400 × 300 pixels.
Details on this implementation are skip due to space limitations.

5 Concluding remarks

Color restoration and image enhancement are ubiquitous problems. In particular,
underwater images contain distortions that arise from multiple factors making
them difficult to correct using simple methods. In this paper, we show how to
formulate color recovery based on using statistical learning constraints. This ap-
proach’s novelty lies in using a pair of images to constrain the reconstruction.
There are some factors that influence the quality of the results, such as the ade-

(a) (b) (c) (d)

Fig. 7. (a)-(b) The training image pair captured at frame t. (c) Image taken at frame
t + δ and input to our algorithm. (d) The color corrected image.



(a) (b) (c) (d)

Fig. 8. (a)-(b) The training image pair captured at frame t. (c) Image taken at frame
t + δ and input to our algorithm. (d) The color corrected image.

quate amount of reliable information as an input and the statistical consistency
of the images in the training set. In some cases, ambiguities on local information
is obtained, this is due to the fact that both the color corrected and the color
depleted classifiers look only at a small image patches. Therefore, propagating
information between regions can be used to resolve the ambiguity. More specif-
ically, the marginal probability of the MRF model can be calculated by using
belief propagation (BP) [13]. Results in this direction will be reported elsewhere.
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