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Abstract

In this article a simple performance index for proper ma-
nipulator motion planning is presented. This index is de-
rived by establishing a simple upper bound for a stan-
dard condition number of the Jacobian matrix. Here the
proposed index behaviour is analyzed/tested on a planar
redundant manipulator executing tasks under various sce-
narios.

1 Introduction

In the past decade several studies on (redundant) manipu-
lators design have been performed for the kinematic eval-
uation of some designs [2], [4], and [9]. The main ob-
jective of these studies is to develop a dexterity measure
(with respect to distance to singularities) by establishing
a performance index: derived from the singular value de-
composition of the Jacobian matrix [2], [4]; or form the
square root of the determinant of the Jacobian matrix by
its transpose [9]. These approaches for some particular
cases can provide local performance (on neighbor or dis-
tant singularities regions) information [5]. However, they
are not suitable for a simple global design analysis, nei-
ther a useful for the comparison of di�erent designs [6].
Also, in the general case they can not be utilized to mea-
sure manipulator performance invariant to frame reference
selection and/or scaling [6]. Furthermore, most of these
studies have been focused on a kinematic design optimiza-
tion, neglecting the analysis/test behaviour of the perfor-
mance indices in the entire manipulator task/performance
space.

Recently in [6] a simple kinematic criterion has been de-
veloped for simple manipulator design optimization (with
respect to Jacobian matrix well-conditioning). Here, as in
[6] an upper bound for the standard condition number of
the Jacobian matrix at a given joint con�guration �(ti) at
instant ti is established. It can be easily shown [6] that
this upper bound constitutes a su�ciency condition for the
preservation of the rank of the Jacobian matrix at �(ti+1);

and that also constitutes an upper bound for a standard
condition number of the Jacobian matrix at �(ti+1).
It also has been demonstrated in [6] that the established

bound can serve as a performance criterion. From its ex-
plicit form a simple constrained optimization problem can
be easily formulated to obtain some optimal manipulator
parameters, as well as the best posture. Notice that, unlike
other performance indices that require extensive simula-
tions, the proposed simple criterion [6] can be easily used
for general cases.
Here, the proposed criteria [6] behaviour is ana-

lyzed/tested, and compared with other criteria, on the
motion planning of a planar redundant manipulator per-
forming several tasks in the entire space.

2 Kinematic performance indices

It is a well known fact that the generation of smooth
and bounded joint velocities greatly depends on the rank
preservation and conditioning of the Jacobian matrix
J(�)�<(mxn) [7]. In general, current indices/measures
of manipulator performance conceptually represent a dis-
tance to singular con�gurations [9], [3]; or a well condi-
tioned Jacobian matrix [5], [3]. They are based on the
singular value decomposition of the Jacobian matrix [9];
that is

J(�) = U(�)�(�)V T (�); (1)

where U�<(mxm), and V �<(nxn), are orthogonal matri-
ces and ��<(mxn), contains the singular values �1(�) �
�2(�) � ::: � �m(�) as its jj element; j = 1; 2; :::;m; and
all the other elements equal to zero. By considering these
values, the following measures can be de�ned:

� (a) based on a determinant (T. Yoshikawa [9]),

p(�) = (detJ(�)JT (�))1=2 = �1(�)�2(�):::�m(�); (2)

� (b) base on the smallest singular value (C.A. Klein
[3]),

p(�) = �m(�); (3)
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� (c) based on the condition number (C.A. Klein [3]);

p(�) = �1(�)=�m(�); (4)

Notice that these measures depend on the singular val-
ues, which are di�cult to express explicitly in terms of
the joint con�guration. Consequently, they can be used
mainly for particular cases. Although they are useful to
determine a best con�guration/posture and an appropri-
ate operation subspace of a particular manipulator [2];
their application for general manipulators can be very
complex [6]. A somewhat simpler criterion, based on an
isotropy criterion, that can be used for general manip-
ulators has been recently presented in [1]. However, in
general, all these measures are not invariant to frame ref-
erence selection and/or scaling [6].
The indices provided by Eqs.(3), and (4), [2],[3], [4] have

also been utilized for the motion planning of a particular
manipulator [5]. However, their implementation for the
real-time motion planning of general manipulators is still
cumbersome.
Recently in [6] a simple kinematic criterion has been

developed for the kinematic design optimization, with re-
spect to a standard condition number, of general manipu-
lators.

3 Proposed Kinematic Criterion

First, consider m � n and let the (mxn) matrix J(�(t))
be the Jacobian matrix at any t�[t0; tf ]. Also, unless oth-
erwise speci�ed, let here k : k stand for the p�norm k : kp,
p = 1; 2;1.
Now let _x = [v; ]T �SE(3) [6]; that is, the vectors v

and  correspond to end-e�ector positions and orientations
respectively. As in [6], let's de�ne a standardized norm in
SE(3) as:

k _x ks� ( _xTZ _x)1=2 =k Z1=2 _x k2; (5)

where the positive de�nite symmetric matrix Z acts as
a metric to allow invariance to frame selection and/or
scaling [6]. Now, also without losing generality consider
_� = [r; p] belonging to the joint space composed of rev-
olute and prismatic joints; that is, the vectors r and p
correspond to revolute and prismatic joints respectively.
Also as in [6], let's de�ne a standardized norm in the joint
space as:

k _� ks� ( _�TW _�)1=2 =kW 1=2 _� k2; (6)

where the positive de�nite symmetric matrix W acts as a
metric to homogenize dimensions [6].
From the previous de�nitions a standardized condition

number in SE(3) can be established. As shown next, this
condition number serves to develop a kinematic criterion
to measure manipulator performance [6].

Proposition 1 Let ~�1 � �1Z
1=2JW�(1=2), and ~�m �

�mZ
1=2JW�(1=2), be the largest and smallest singular val-

ues of the matrix [Z1=2JW�(1=2)] respectively. Then, a
standard condition number can be given by:

ks �k J ksk J
+ ks= ~�1=~�m: (7)

Now, let's de�ne

�J(�(ti);
_

�(ti); ��(ti)) � _J(�(ti); _�(ti))�t+

(1/2) �J(�(ti); _�(ti); ��(ti))�t2 +O(�t3); (8)
where

�J(�(ti); �(ti)) = d[J(�(ti))]=dt; (9)

and O(�t3) is an (mxn) matrix of third order terms. No-
tice that for ti�[t0; tf ]

J(�(ti+1)) = J(�(ti)) + �J(�(ti); _�(ti); ��(ti)): (10)

Now for convenience, let's drop the index ti in the sub-
sequent expressions. It can be easily shown that an upper
bound for �J(�(ti); _�(ti); ��(ti)) is given by:

k �J(�; _�; ��) ks� l(�+ �) (11)

where

� � �t

nX
j=1

k Ĵj ks +�t(la=2l) ks (12)

� � (l�t2)

nX
j=1

nX
k=1

k �Jjk ks + k O(�t3) ks : (13)

where Ĵj � Ĵj(�) � @J(�)=@�j ; �Jjk � @Ĵj=@�k; j; k =

1; 2; :::; n; and l = max j _�j j; j = 1; 2; :::; n; and la =

max j ��k j; k = 1; 2; :::; n. Notice that l can be considered
arbitrarily, and that l�t � ��max � max j ��j j; j =
1; 2; :::; n. Also notice that the �, and � are dimensionless.
Now, let's consider an upper bound (in terms of �, and

�) for the condition number of the Jacobian matrix at a
given joint con�guration �(ti) as follows:

�(�(ti)) �k J(�(ti)) ks =l(�+ �) (14)

The next Theorem states that such an upper bound con-
stitutes a su�ciency condition for the preservation of the
rank of the Jacobian matrix at �(ti+1) [6].

Theorem 1 Let m � n, p = 2; �, and � as in Eqs.(12),
and (13); and � as in Eq.(14). Also, suppose that at
ti�[t0; tf ], RankJ(�(ti)) = m. If the condition number
ks is bounded as follows

ks(�(ti)) � �(�(ti)) (15)
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Then, RankJ(�(ti+1)) = m.

Moreover, the following Theorem can also be easily
shown [6].

Theorem 2 Let the Assumptions of the Proposition 1,
and the Ineq.(15) be satis�ed. Then, the condition number
of the matrix J(�(t)) at ti+1 can be expressed as

ks(ti+1 � 2�(ti)~�1(ti+1=[~�m(ti)� [l(�+ �)]]: (16)

In [6] the upper bound is utilized as a criteria for manip-
ulator design optimization, and to indicate a best posture.
From Eq.(16) it can be observed that this upper bound
can have a signi�cant e�ect on the condition number (and
consequently on manipulator motion planning) in the en-
tire space. The criteria behaviour for manipulator motion
planning under various Task scenarios is analyzed in the
next section.

4 Criteria behaviour

Here, the behaviour of the proposed criterion is ana-
lyzed/tested on the motions of a planar redundant ma-
nipulator (resulting from the forward or inverse kinematic
equations) performing several tasks in the entire space.
The behaviour and results obtained are compared with
the ones obtained using other criteria/measures [1], [2],
[9]. As previously mentioned, these criteria have been
devised to determine a measure of ill-conditioning of the
Jacobian matrix, or a distance to its singular con�gura-
tions. The singular con�gurations are undesirable joint
con�gurations characterized by the Jacobian matrix los-
ing its rank, and inducing extremely large joint velocities
for small end-e�ector changes. Consequently, a throughly
simulation of manipulator motions and analysis of the per-
formance criteria should focus on the motions near and far
from those undesirable singular con�gurations.
Notice that from Eq.(4) it is relatively easy to show that

an upper bound for the condition number is given by:

k2 � �1(�)=�m(�) �k J(�) k
m
F =�1=2(�); (17)

where, �(�) = det[J(�)JT (�)]. Also, it is easy to show that
(for m � n) the isotropy condition implies:

�(�) = [(1=m) k J(�) k2F ]
m; (18)

and also [1]:
J(�)JT (�) = �I ; (19)

where, � � 1.
Here, the considered performance measures are:

? C1. Manipulability, [9] :

�(�) = detJ(�)JT (�) (20)

? C2. Upper bound on the condition number :

k2 �k J k
m
F =�1=2(�): (21)

? C3. Based on isotropy condition :

� (a) I1(�) = �(�) � [(1=m) k J k2F ]
m;

� (b) I2(�) = [k J(�)JT (�))� 2 � I kF .

? C4. Proposed upper bound conditioning :

� (a) �a �k J(�) ks =(l ��t k bJT (�) ks) ;
� (b) �b �k J(�) ks = k bJT (�) ks ;

where, k bJT (�) ks= [
Pn

j=1 k
bJj(�)] ks; and l = max( _�).

Here, the following Task scenarios are considered:

Task scenarios

I. Manipulator in a initial con�guration far from singu-
larities is required to move to a �nal con�guration
also far from singularities, by means of the forward
kinematics equation with constant joint velocities.

II. Manipulator in a initial con�guration far from singu-
larities is required to move to a �nal con�guration
near to singularities, by means of the forward kine-
matics equation with constant joint velocities.

III. Manipulator in a initial con�guration far from sin-
gularities is required to move to a �nal end-e�ector
position (with a con�guration near to singularities)
along a straight line, by means of an inverse kinemat-
ics equation with constant end-e�ector velocities.

IV. Manipulator in a initial con�guration near to singu-
larities is required to move slightly to a �nal end-
e�ector position along a straight line, by means of
an inverse kinematics equation with constant end-
e�ector velocities.

4.1 Cases of study and results

In order to compare several proposed criteria for simplicity
a 3 DOF planar redundant manipulator [9] is considered.
In this case Z = I2; W = I3, and the de�ned standard
norm reduces to the usual norm. Here for convenience
the 1-norm is considered. For all cases the task interval
considered was 10 seconds with a step size of 0.1 seconds.
For Cases I-III the length of the links is: l1 = l2 = l3 = 1:0;
whereas, for Case IV l1 = 0:60, l2 = 0:85, l3 = 0:20.
The simulation of the Forward and Inverse Kinematics
were implemented by means of the Simulink/MATLAB
package. For the Cases III and IV the Inverse Kinematics
method presented in [8] is utilized.
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Case I

-Motions from Forward Kinematics. The initial and �nal
values are speci�ed as follows:

t �1 �2 �3 x1 x2
t0 0.43 0.35 0.43 2.0558 1.9729
tf 1.07 1.047 2.096 - -

Figure 1: Case I.

By feeding the values of the angles at time t to a special
purpose graphics package, the entire manipulator motion
can be depicted graphically as in Figure 1a. Figure 1b
plots the behaviour of the variable k _x k1 and Figure 1c.
shows the graphs obtained for the di�erent criteria along
the joint trajectory.

Case II

- Motions from Forward Kinematics
The length of the links are as in the Case I. However, now
the initial and �nal values are speci�ed as follows:

t �1 �2 �3 x1 x2
t0 1.7 1.047 2.096 0.3846 -0.9218
tf -3.1416 0 0.05 - -

Figure 2a depicts the entire manipulator motion; Figure
2b plots the behaviour of the variable k _x k1; and Fig-
ure 2c shows the graphs obtained from MATLAB for the
di�erent criteria along the joint trajectory.

Figure 2: Case II.

Case III

- Motions from Inverse Kinematics In this case the length
links and initial values are the same as in case II. However,
now the �nal end-e�ector position is speci�ed as follows:

t �1 �2 �3 x1 x2
t0 1.7 1.047 2.096 0.3846 -0.9218
tf - - - -0.0448 -2.990

The �nal joint con�guration obtained is:

�1 �2 �3
3.2375 -0.0735 -0.0954

Figure 3a depicts the entire manipulator motion; Figure
3b plots the behaviour of the variable k _� k1 and Figure 3c
shows the graphs obtained for the di�erent criteria along
the joint trajectory.

Case IV

- Motions from Inverse Kinematics
The initial and �nal values are speci�ed as:

t �1 �2 �3 x1 x2
t0 -1.5708 3.0543 0.0 0.4460 0.7915
tf - - - -0.4460 0.6915
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Figure 3: Case III.

For v = 0; the Figure 4a shows the entire manipulator
motion. The resultant �nal joint con�gurations are:

�1 �2 �3
-1.6494 3.135 0.2522

The behaviour of the variable k _� k1 and the criteria are
shown in �gures 4b and 4c, respectively.
For the case v 6= 0; the Figure 5a depicts the entire ma-
nipulator motion. The resultant �nal joint con�gurations
are:

�1 �2 �3
-0.4750 2.4697 1.4222

Figures 5b and 5c plot the behaviour of the variable k _� k1
and the criteria, respectively.

4.2 Analysis and Interpretation

From the obtained simulation results the following obser-
vations can be made:

� Case I. The Figures 1a and 1b, con�rm a successful
simulation. From the Figure 1c, it can be observed
that the criteria C2 to C4b, behave similarly as the
manipulator approaches a con�guration which is the
most distant from singularities. Whereas, the crite-
rion C1 yields a maximum around mid task, and an
incongruently small value at the end of the task.

Figure 4: Case IV with v = 0.

� Case II. The Figures 2a and 2b, also con�rm a suc-
cessful simulation. From the Figure 3c it can be ob-
served that the criteria C2 to C4b, behave similarly
as the manipulator approaches a con�guration that
is near singularities. Whereas, the criterion C1 yields
again a maximum around mid task, in this case it
does yield an expected very small value at the end of
the task.

� Case III. The Figure 3a also con�rms a successful
simulation. From the Figure 3b it can be observed
that the norm of the joint velocities becomes very
large as the manipulator approaches a singular con-
�guration. From the Figure 3c it can be observed
that the criteria C2 to C4b, behave similarly as the
manipulator approaches a con�guration that is near
singularities. Whereas, the criterion C1 yields again a
maximum around mid task, in this case it does yield
an expected very small value at the end of the task.

� Case IV. The Figures 4a, 4b and 5a, 5b also con�rm
a successful simulation.

For the case in which v = 0 the manipulator remains
near a singular con�guration as shown in Figure 4a.
In this case the joint velocities become very large as
shown in Figure 4b. From the Figure 4c it can be
observed that the criteria C1, C2, C4a, and C4b are
congruent with the theory. It can be observed that
the C1 yields a minimum value that is congruent with
the maximum value yielded by C2. Whereas, C3a and
C3b yield non-meaningful results.
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Figure 5: Case IV with v 6= 0.

For the case in which v 6= 0 the manipulator arranges
itself to a con�guration far from singularities as shown
in Figure 5a. In this case, as shown in Figure 5b, al-
though the joint velocities are initially large, they get
smaller as the manipulator proceeds to con�gurations
distant to a singular con�guration. From Figure 5c it
can be observed that the criteria C1, C2, C3a, C4a,
and C4b are congruent with the theory. It can be
observed that the C1 yields a minimum value that is
congruent with the maximum value yielded by C2. In
this case C4a, and C4b, reach a maximum value that
is not coincident with the maximum yielded by C2;
however, the yielded minimum values are congruent
with the theory. In this case C3a yields decreasing
values as the manipulator moves away from singular-
ities, whereas C3b yields incongruent increasing val-
ues.

The results obtained con�rm the merit of the proposed
criterion. It is worth to mention that unlike criteria C1,
and C2, it is useful for general manipulators. Furthermore,
unlike criterion it can provide insight of manipulator per-
formance near and far singularities.

5 Conclusions

In this article a simple index to evaluate overall manip-
ulator motion planning performance is presented. This
index is derived by developing a standard condition num-
ber of the Jacobian matrix an establishing a simple upper
bound. Here, the behaviour of the proposed criterion is

analyzed/tested on the motions of a planar redundant ma-
nipulator (resulting from the forward or inverse kinematic
equations) performing several tasks in the entire space.
The behaviour and results obtained are compared with the
ones obtained using other criteria/measures proposed in
the literature. Their results obtained, consistently congru-
ent with the theory, show that the index provides valuable
insight of manipulator performance in regions both near
and far from singularities. Furthermore, they demonstrate
that in spite of its simplicity the proposed index compares
favourably with other criteria.

References

[1] Angeles J., Ranjaban F., Patel R. V., On the De-
sign of the Kinematic Structure of Seven-Axes Redun-
dant Manipulators for Maximum Conditioning, IEEE
Int. Conf. on Robotics and Automation, Nice, France,
May 1992.

[2] Klein C. A., Blaho B. E., Dexterity Measures For
The Design and Control of Kinematically Redundant
Manipulators, The Int. Journal of Robotics Research,
Vol. 6, No. 2, 1987, pp. 72-83.

[3] Klein C. A., Use of Redundancy in the Design of
Robotic Systems, The Robotics Research, 2nd. Intl.
Symposium, MIT, pp.207-214, 1985.

[4] Kosuge K., Furuta K., Kinematic and Dynamic Anal-
ysis of Robot Arm, IEEE Int. Conf. on Robotics and
Automation, St. Louis, Missouri, Mar. 1985.

[5] Maciejewski A. A., Klein C. A., The Singular Value
Decomposition: Computation and Applications to
Robotics, The International Journal of Robotics Re-
search, Vol. 8, No. 6, Dec. 1989.

[6] Mayorga R. V., E. D�iaz de Le�on, "Optimal Upper
Bound Conditioning for Manipulator Kinematic De-
sign Optimization", IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems, Grenoble, France, Sept.
7-11, 1997.

[7] Mayorga R. V., Milano N., Wong A. K. C., "A
fast Procedure for Manipulator Inverse Kinematics
Evaluation and Singularities Prevention, Journal of
Robotics Systems, Vol. 10(1), Feb. 1993.

[8] Mayorga R. V., Wong A. K. C., A Singularities
Prevention Approach for Redundant Robot Manipula-
tors, IEEE Int. Conf. On Robotics And Automation,
Cincinnati, Ohio, May 13-18, 1990.

[9] Yoshikawa T. Manipulability of Robotic Mechanisms,
International Journal Of Robotics Research, Vol. 4,
no. 2, 1985. pp. 3 - 9 .

6


