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Abstract

This paper developed prior work which incrementally
completes a sparse depth map based on inter-image statis-
tics information. In that prior work, we have observed that
pixel ordering of the incremental recovery is critical to the
quality of the final results. In this paper we demonstrate im-
proved performance using an information-driven recovery
policy to determine this ordering. We have also observed
that the reconstruction across depth discontinuities was of-
ten problematic as there was comparatively little constraint
for probabilistic inference at those locations. Further, such
locations are often identified with edges in both the range
and intensity maps. We address this problem by deferring
the reconstruction of voxels close to intensity or depth dis-
continuities, leading to improved results. We also show that
color information can improve reconstruction quality. Ex-
perimental results are presented to demonstrate the quality
of the recover and to illustrate some new application do-
mains such as deblurring and underwater scattering com-
pensation.

1. Introduction

In this paper we consider the use of statistical models
to transfer information between different scene representa-
tions. In particular, we consider a collection of intrinsic im-
ages of a scene [2] in terms of their joint statistics (by intrin-
sic images, we mean retinotopic maps of scene properties,
such as irradiance and depth). We make the assumption that
this join space obeys the Markov property and can be mod-
eled using a Markov Random Field. In particular, in this
paper we consider the joint space composed of image in-
tensity and depth. While the intensity map for a scene does
not strictly obey the Markov property, this assumption that
it does, seems acceptable and has been used extensively.

Given that we can compute the statistical properties of
the Markov Random Field over range and intensity, we can
then use it to make various estimates. In particular, in the

absence of complete observations, we can fill in the missing
data by making probabilistic guesses based on the statistics
of the joint space and the partial data we do have.

In this paper we use such an approach to infer a dense
range map given only sparse initial estimates. This is a
problem of substantial practical importance since the ac-
quisition of accurate range data can be slow or impracti-
cal. Stereo cameras can produce volumetric scans that are
economical, but they often require calibration or produce
range maps that are either incomplete or of limited reso-
lution. Specifically, in many robotics applications sparse
range data can be obtained by sweeping a laser range scan-
ner over the surfaces of interest while dense range data may
take too long to measure. In such an instance, the partial
data allows us to compute the required statistics which can
then be used to infer the missing data. In this process, the
availability of ubiquitous image data constrains the recon-
struction process and makes it feasible.

The same approach also seems applicable to several re-
lated problems. In the latter part of this paper we demon-
strate its feasibility to image deblurring to compensation for
scattering in underwater images (another domain in which
we are actively conducting experiments).

2. Background

Our work is an instance of the 3D environment modeling
problem. Over the last 30 years, this problem has received
considerable attention in the computer vision and computer
graphics communities and more recently in robotics. In the
context of this paper we will consider only a few represen-
tative solutions.

It is our belief that at least two types of data are essential
to facilitate the reconstruction of a 3D model of an object
or scene. One is photometric data that can provide high
accuracy on features and edges. The other is range data that
provides the geometric information. Intensity images alone,
cannot provide complete or accurate 3D measurements on
unmarked continuous surfaces, therefore both types of data
should be integrated.



In the literature, however, much of the previous work
create 3D models directly from photometric data. Some
of these methods are based on projective calibration and
reconstruction techniques [7, 15, 11, 19]. For example,
Fitzgibbon and Zisserman [11] proposed a method that se-
quentially retrieves the projective calibration of a complete
image sequence based on tracking corner and/or line fea-
tures over two or more images, and reconstructs each fea-
ture independently in 3D. Their method solves the feature
correspondence problem based on the fundamental matrix
and trifocal tensor, which encode precisely the geometric
constraints available from two or more images of the same
scene from different viewpoints. Related work includes that
of Pollefeys et. al. [19]; they obtain a 3D model of an scene
from image sequences acquired from a freely moving cam-
era. The camera motion and its settings are unknown and
there is no prior knowledge about the scene. Their method
is based on a combination of the projective reconstruction,
self calibration and dense depth estimation techniques. In
general, these methods derive the epipolar geometry and the
trifocal tensor from point correspondences. However, they
assume that it is possible to run an interest operator such as
a corner detector to extract from one of the images a suf-
ficiently large number of points that can then be reliably
matched in the other images.

Shape-from-shading is related in spirit to what we are
doing, but it is based on a rather different set of assumptions
and methodologies. Such method [16, 18] reconstructs a
3D scene by inferring depth from a 2D image; in general,
this task is difficult, requiring strong assumptions regarding
surface smoothness and surface reflectance properties.

Recent work has considered the use of both intensity data
as well as range measurements with promising results [20,
10, 21, 17, 22]. In their approach, Pulli et al. [20] measure
both color and geometry of real objects, and display realistic
images of objects from arbitrary viewpoints. They use a
stereo camera system with active lighting to obtain range
and intensity images as visible from one point of view. One
of the main issues in using the above configurations is that
the acquisition process is very expensive because dense and
complete intensity and range data are needed in order to
obtain a good 3D model.

We base our range estimation process on the assump-
tion that the pixels constituting both the range and inten-
sity images acquired in an environment, can be regarded as
the results of pseudo-random processes, but that these ran-
dom processes exhibit useful structure. In particular, we
exploit the assumption that range and intensity images are
correlated, albeit potentially complicated ways. Secondly,
we assume that the variations of pixels in the range and
intensity images are related to the values elsewhere in the
image(s) and that these variations can be efficiently cap-
tured by the neighborhood system of a Markov Random

Field. Both these assumptions have been considered be-
fore [13, 9, 26, 8, 14], but they have never been exploited in
tandem.

Digital inpainting [3, 4, 6] is quite similar to our
problem, although our domain and approach are quite dif-
ferent. Baker and Kanade [1] used a learned representa-
tion of pixel variation for perform resolution enhancement
of face images. The processes employed to interpolate new
high-resolution pixel data is quite similar in spirit to what
we describe here, although the application and technical de-
tails differ significantly. The work by Freeman [23, 12] on
learning the relationships between intrinsic images is also
related.

Our method bases its reconstruction process on having a
small amount of range data and synthetically estimating the
areas of missing range by using the current available data.
Except for our earlier work [24, 25], we have not found pub-
lished work dealing specifically with the approach we are
taking. In particular, such a method is feasible in man-made
environments, which, in general, have inherent geometric
constraints, such as planar surfaces.

3. Our Statistical Approach for Inferring
Depth

We based our approach on earlier work described by
Torres-Mendez and Dudek [24]. In that work, the pixel or-
dering of reconstruction (the order in which we choose the
next depth value to synthesize) was determined using a pre-
determined schedule over space, essentially walking a spiral
from the perimeter of a region towards the center. One of
the problem with the spiral-scan ordering was the strong de-
pendence on the previously estimated pixel. In the present
work, we use an information-driven approach, in which the
order of reconstruction is to first recover the depth values
of those locations for which we can make the most reliable
inferences, so that as we reconstruct we select those pixels
for reconstruction that have the largest degree of boundary
constraint. We also have observed that the reconstruction
across depth discontinuities is often problematic as there is
comparatively little constraint for probabilistic inference at
these locations. Further, such locations are often identified
with edges in both the range and intensity maps. This ob-
servation leads to another modification in our reconstruction
sequence: as we recover depth values, we defer the recon-
struction of those pixels close to intensity or depth discon-
tinuities as much as possible.

The images used in the reconstruction process can be
achromatic (black and white) or color. In this paper we
compare the reconstructions using these two types of in-
put. It appears that color information improves the recon-
struction accuracy. This may be due to the fact that the
color data provides tighter constraint over where and how



the interpolation process should be applied. At the same
time, the higher dimensionality of the Markov Random
Field model for color images may make the reconstruction
problem more difficult in some cases.

4. Algorithm description

Our objective is to compute depth values where only in-
tensity is known. We will do this by incrementally com-
puting a single depth value at a time by using neighboring
locations where both range and intensity is available. At the
outset, we assume that resolution of the intensity and range
data is the same and that they are already registered.

We solve the range data inference problem as an extrap-
olation problem by approximating the composite of range
and intensity at each point as a Markov process. Unknown
range data is then inferred by using the statistics of the ob-
served range data to determine the behavior of the Markov
process. Critical to the processes is the presence of inten-
sity data at each point where range is being inferred. Intu-
itively, this intensity data provides regarding two kinds of
scene phenomenon: (1) knowledge of when the surface is
smooth, and (2) knowledge of when there is a high proba-
bility of a variation in depth. In reality, the statistical infor-
mation implicit in the data may be much more subtle than
simply these two types of event, but they illustrate the con-
cept. Our approach learns the required relationships from
the observed data, without having to fabricate or hypoth-
esize constraints that might be inapplicable to a particular
environment.

4.1. The Modified MRF Model

Markov Random Fields (MRFs) are used here as a model
to synthesize range. We focus on our development of a
set of augmented voxels � that contain intensity (either
from grayscale or color images), edge (from the intensity
image) and range information (where the range is initially
unknown for some of them). Thus, ���������
	����� , where �
is the matrix of known pixel intensities, 	 is a binary ma-
trix ( � if an edge exists and � otherwise) and � denotes the
matrix of incomplete pixel depths. We are interested only
in a set of such augmented voxels such that one augmented
voxel lies on each ray that intersects each pixel of the in-
put image � , thus giving us a registered range image � and
intensity image � . Let ������������������� �!�"���#�%$ denote
the $ integer lattice (over which the images are described);
then ���'&)(+*-, .0/ , ���������#12�3� , denotes the gray levels of
the input image, and �4�5&76 *8, .9/ , ���"�����#12��� denotes the
depth values. We model � as an MRF. Thus, we regard �
and � as a random variables. For example, &)�:�5;0/ stands
for &76<*8, . �2;=*-, .>�?���"�����#12���@/ . Given a neighborhood
system AB�5&AC*-, .D15���E/ , where AC*8, .GFH��� de-
notes the neighbors of ��������� , such that, ���7�I���"�
���<J1�AK*8, . ,

and �ML9�N���"�����#1%APO , QSRUT �MVW�XM�Y1%A *8, . . An MRF over
�Z���[�ZA4� is a stochastic process indexed by �N� for which,
for every ��������� and every \G���=]�^;8� (i.e. each augmented
voxel depends only on its immediate neighbors),

_ �Z`a*-, . �5\*-, .cb�` O , Q"�2\ O , Q��7�MVW�XM��J�����"�
�����
� _ �M`S*8, .E��\*-, .db
` O , Q��2\ O , Q=�?�ZVW�
XZ�#1%AC*8, .e��� (1)

The choice of A together with the conditional probabil-
ity distribution of

_ �����5]f� and
_ ���4��;8� , provides a pow-

erful mechanism for modeling spatial continuity and other
scene features. On one hand, we choose to model a neigh-
borhood A *-, . as a square mask of size g%hig centered at
the augmented voxel location ��������� . This neighborhood is
causal, meaning that only those augmented voxels already
containing information (either intensity, range or both) are
considered for the synthesis process. On the other hand,
calculating the conditional probabilities in an explicit form
is an infeasible task since we cannot efficiently represent
or determine all the possible combinations between aug-
mented voxels with its associated neighborhoods. There-
fore, we avoid the usual computational expense of sampling
from a probability distribution (Gibbs sampling, for exam-
ple), and synthesize a depth value from the augmented voxel
`a*-, . with neighborhood AC*-, . , by selecting the range value
from the augmented voxel whose neighborhood AjO , Q most
resembles the region being filled in, i.e.,

ACkml=nmo�� argmin pqA *8, .sr ACO , Q p ,
�MVt�
XM�d1Pu

(2)

where u��'&)u[O , Q FDA'/ is the set of local neighborhoods,
in which the center voxel has already assigned a depth
value, such that � �2v �MV r �w�=x�y4�MX r ����x?���!z . For each
successive augmented voxel this approximates the maxi-
mum a posteriori estimate; 6U�ZVW�
XZ� is then used to specify
6U���"�
��� . The similarity measure pE{|p between two generic
neighborhoods AP} and A k is defined as the weighted sum of
squared differences (WSSD) over the partial data in the two
neighborhoods. The ”weighted” part refers to applying a
2-D Gaussian kernel to each neighborhood, such that those
voxels near the center are given more weight than those at
the edge of the window.

We based our reconstruction sequence on the amount
of reliable information surrounding the augmented voxel
whose depth value is to be estimated, and also on the edge
information. We use the Canny edge detector [5] for ex-
tracting the edges from the intensity images. Let `�~ be an
augmented voxel with unknown range and A#~ be a �PhD�
square window centered at `�~ (i.e. we are considering
just the 8-closest neighbors). Then, for each augmented
voxel `�~ , we count the number of neighbor voxels with al-
ready assigned range and intensity. We start by synthesiz-
ing those augmented voxels with the maximum number of



Figure 1. Comparison of the reconstruction performance using the deterministic and information-
driven methods. The first two columns display the input intensity and the input range data where 61%
of the total is unknown (the white squares), respectively. The third column shows the ground truth
range for comparison results. In the fourth column, the synthesized results using the deterministic
method are shown, and the last two columns show the synthesized results using the information
driven method and the detected edges from the intensity input images, respectively.

filled neighbors, leaving to the end those with an edge pass-
ing through them. After a depth value is estimated, we up-
date each of its neighbors by adding � to their own neighbor
counters. We then proceed to the next group of augmented
voxels to synthesize until no more augmented voxels exist.

5. Experimental Results

We run our improved algorithm on data acquired in a
real-world environment. As we did in our earlier work, we
use ground truth data from two widely available databases.
The first database 1 provides real intensity (reflectance) and
range images of indoor scenes acquired by an Odetics laser

1http://marathon.csee.usf.edu/range/Database.html

range finder mounted on a mobile platform. The second
database 2 provides color images with complex geometry
and pixel-accurate ground-truth disparity data. We start
with the complete range data set as ground truth and then
hold back most of the data to simulate the sparse sample of
a real scanner and to provide input to our algorithm. This
allows us to compare the quality of our reconstruction with
what is actually in the scene.

In Figure 1, we compare the synthesized results over 4
images using the deterministic (spiral-scan ordering) versus
the information-driven approach. The three left columns
are, from left to right, the input intensity image, the input
range data and the ground truth range (for comparison pur-
poses). The percentage of the unknown range (shown in

2http://cat.middlebury.edu/stereo/newdata.html



white) of all input range images is 61%. The fourth column
shows the synthesized results using the deterministic ver-
sion of our algorithm. Note how the algorithm performed
poorly near object edges, where high discontinuities exist,
specially in the last image, the synthesis started to be wrong
and continue in a spiral fashion because of the order of the
reconstruction used. The last two columns show the synthe-
sized results after running our information-driven version
of the algorithm and the detected edges from the input in-
tensity images that were used, respectively. Note how our
algorithm was able to recover well the geometry of the ob-
jects in the scenes. Quantitative results of these experiments
are given in Table 1. The absolute value of each error is
taken and the mean of those values is computed to arrive at
the mean absolute residual (MAR) error. The approximated
scene size of each scene is also given.

MAR Errors (in cms) Approx. scene
Deterministic Information-driven size (in cms)

10.40 8.58 600
16.58 13.48 800
12.16 11.39 500
19.17 7.12 400

Table 1. The input information and MAR errors
of the cases shown in Figure 1.

We now show how color information can improve the
synthesized results. Figure 2 displays in the first row, the
input images (achromatic and color) and to their right the
input range data. The percentage of missing range is 61%.
The size of the neighborhood is set to be � h�� pixels.The
synthesized results after running our algorithm is shown in
the second row together with the ground truth data for com-
parison purposes. It can be seen that there are some regions
where color information may help in the synthesis process.
For example, the chimney in the center of the image is sepa-
rated from the background since they have different colors.
This is hardly noticeable in the grayscale image. The MAR
errors are 7.71 when using grayscale and 6.39 when using
color information.

Another example is displayed in Figure 3. As the first
example, the first row shows the input images (achromatic
and color) and to their right is the input range. For this case,
71% of the total range map is unknown. The left image of
second row displays the synthesized result and to its right is
the ground truth range for comparison purposes. The MAR
errors are 9.41 when using grayscale and 7.14 when using
color information. In this case, color was useful in the re-
construction of the cones. It is important to note that this is
a difficult scene, in particular because of the many features
present on it and the limited input range that is given.

Figure 2. Results on achromatic and color
images. The MAR error is 7.71 when using
grayscale and 6.39 when using color infor-
mation.

Figure 3. Results on grayscale and color im-
ages. 71% of the total range map is unknown
(shown in white). The MAR error when using
color is 7.14 compared to 9.41 when using
grayscale information.

5.1. Another application: Image Deblurring of
Underwater Scenes

Markov Random Fields are commonly used for image
restoration. We are currently using our method in the re-
moval of hazing due to optical scattering underwater. In
this application, our algorithm learns the statistical relation-
ships between blurred and deblurred pixels in small patches
or neighborhoods (usually �Gh#� or �@h�� pixels) on images



Figure 4. Results on image deblurring. (a) The blurred and deblurred images to train our algorithm.
(b) The left image is the test blurred image and to its right is the resulting deblurred image.

of the same underwater scene. These images are the train-
ing images, then when a new blurred image is input to the
algorithm, the underlying statistics already captured in the
training sets, are used to estimate what a corresponding de-
blurred pixel should look like. Given the neighborhood �G~
of the pixel � from image � to deblurr, whose neighboring
pixels may contain blurred and deblurred pixels, we find
the most similar neighborhood ��� of the pixel � from the
training images. For the first pixel to deblurr, its neighbor-
ing pixels contain only blurred pixels, but as the synthesis
progresses, more deblurred pixels are taking into account
helping in the quality of the result. The deblurred value of
pixel � is assigned to the deblurred value of pixel � .

In Figure 4 we show an example. Given the pair of
images of a coral reef scene shown in Figure 4a, where the
left image is a blurred version of the right image, our algo-

rithm computes their joint statistics for deblurring the left
image shown in Figure 4b. The right image of Figure 4b
is the resulting deblurred image. We can see that most of
the tiny features of the coral reef in the blurred image were
efficiently deblurred.

5.2. Conclusions

This paper has sumarized and approach to scene recon-
struction and range map inference using intensity data. The
method is based on learning the statistical relationship be-
tween range and intensity using sample data from the im-
age pair to be recovered. It also appears that the method
can work well using images pairs from one part of a scene
to reconstruct range data from another part of the scene, al-
though those depends critically on the statistical similarity



between these regions (i.e. they need to “look similar”).
We have observed that this process can take place using

either color or achromatic images, but that slightly better re-
sults are obtained for color images. Superficially we can ex-
plain this by observing that color images have “more infor-
mation” in them. More specifically, color images typically
contain supplementary subtle cues regarding the distinction
between marking and surface boundaries, which are key to
the reconstruction process. We have also demonstrated that
the use of edge image to alter the reconstruction sequence
can substantially improve the quality for the results. Again,
this relates to the treatment of surface boundaries, where the
reconstruction process is particularly difficult.

Finally, we have observed that the same type of pro-
cess can also be used for image deblurring. A similar ap-
plication is the removal of hazing due to optical scatter-
ing underwater. This latter application appears especially
important for underwater applications. It is also likely
that the depth reconstruction process will operate well for
underwater images, but our promising preliminary results
are difficult to evaluate due to a lack of ground truth images.
In the underwater domain, the scattering can assist the infer-
ence of depth from intensity, but the complexity of the nat-
urally occurring scene geometry makes the problem chal-
lenging.
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