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Autonomous Exploration: Driven by Uncertainty

Peter Whaite and Frank P. Ferrie

Abstract

Passively accepting measurements of the world is not enough, as the data we obtain is
always incomplete, and the inferences made from it uncertain to a degree which is often
unacceptable. If we are to build machines that operate autonomously they will always be
faced with this dilemma, and can only be successful if they play a much more active role.
This paper presents such a machine. It deliberately seeks out those parts of the world
which maximize the �delity of its internal representations, and keeps searching until those
representations are acceptable. We call this paradigm autonomous exploration, and the
machine an autonomous explorer.

This paper has two major contributions. The �rst is a theory that tells us how to
explore, and which con�rms the intuitive ideas we have put forward previously. The second
is an implementation of that theory. In our laboratory we have constructed a working
autonomous explorer and here for the �rst time show it in action. The system is entirely
bottom-up and does not depend on any a priori knowledge of the environment. To our
knowledge it is the �rst to have successfully closed the loop between gaze planning and the
inference of complex 3D models.

R�esum�e

Accepter passivement des mesures du monde est insu�sant �etant donn�e que les donn�ees
obtenues sont toujours incomplêtes, et que les inf�erences qui en d�ecoulent sont incertaines �a
un degr�e tel qu'elles sont souvent inacceptable. Si l'on construit des machines qui op�erent de
fa�con autonome, elles feront toujours face a ce dilemme et ne r�eussiront que si elles jouent un
rôle beaucoup plus actif. Ce papier pr�esente une telle machine. Elle cherche d�elib�er�ement
ces parties du monde qui permettent d'accrô�tre la �d�elit�e de la repr�esentation interne, et
continue cette recherche jusqu'�a ce que cette repr�esentation soit acceptable. On appelle ce
paradigme, l'exploration autonome; et on appelle la machine, l'explorateur autonome.

Ce papier contient deux contributions majeures. La premi�ere est une th�eorie qui nous
dit comment explorer, et qui con�rme les id�ees intuitives que nous avons mentionn�ees
pr�ec�edemment. La deuxi�eme est une impl�ementation de cette th�eorie. Dans notre labora-
toire, nous avons construit un explorateur autonome fonctionnel et ici pour la premi�ere fois,
nous pouvons le montrer en action. Le syst�eme est enti�erement guid�e par les donn�ees et
ne d�epend aucunement de connaissance sur l'environnement acquise a priori. �A notre con-
naissance, c'est la premi�ere fois que la boucle de la plani�cation du regard et de l'inf�erence
de mod�eles complexes tridimensionnels est complêt�ee avec succ�es.
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1. Introduction

One can de�ne active exploration as a process in which an observer can interact
with its surroundings by moving about and collecting information in order to learn
about its environment. This ability is essential for autonomous systems which must
operate in unstructured environments where it is di�cult (if not impossible) to char-
acterise the environment beforehand. Consider, for example, a mobile robot designed
to collect rock samples for planetary exploration [9]. In order to grasp and manipu-
late such samples, information is required about their three-dimensional shape. But
given the wide range of shapes that are possible, it is not feasible to represent each
and every instance. Shape descriptions must be computed from more general purpose
models that can be adapted according to measurements obtained by sensors. In the
context of arti�cial perception, the latter often takes the form of determining the
parameters of some model used to reect the salient properties of the environment
[15, 26].

(a) (b)
Figure 1. (a) Laser range�nder image of a rock pile. (b) Model of
the rock pile using superquadrics.

Figure 1a shows a range map of a rock pile obtained with a laser range-�nding
system. From an analysis of the geometric structure of the acquired surfaces, the
data are partitioned into patches corresponding to the component rocks. An approx-
imation of the position, orientation, and shape of each component is then determined
by �ts to superquadric models (Figure 1b) [8]. While this strategy appears to work
well in the example shown, it is in fact awed. This can be seen in the example in
Figure 2 which shows the same �tting process applied to points sampled from the
surface of a noisy hemisphere. Each of the resulting models (Figure 2b) describes
the data to within the same error of �t [30, 31], yet the models look quite di�erent
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as they move away from the data. The problem is that the data acquired do not
su�ciently constrain the model. This should not be surprising given that only part
of the surface is visible in a given view. The example of Figure 1 worked because
an additional constraint was available, namely the distance from the camera to the
supporting plane.
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(a) (b)
Figure 2. Model uncertainty. (a) Data points sampled from the sur-
face of a noisy hemisphere. (b) Fits to the data using superellipsoid
models. Each of the 5 models shown �ts the data to within the same
tolerance.

Without additional information in the form of such constraints there is no alter-
native but to collect it in the form of additional data. In this respect some data are
better than others, so the system must actively seek out those places in the world
that have the most useful information. In other words, and as stated by Bajcsy with
the introduction of the active perception and exploration paradigms [3, 4], the system
needs to explore its environment and it must keep doing so until there is a su�cient
basis from which to make useful inferences.
The idea of moving a sensor to constrain interpretation has a long history in the

computer vision literature. Many of the methods rely on global geometric arguments
to overcome the limitations of the sensor in speci�c situations. For example, Connolly
[12], then Ahuja and Veenstra [1] have considered the problem of the views needed
to build an octree representation of a 3D scene; Tarabanis and Tsai [29] have worked
on a theoretical analysis of the best camera viewpoint for detecting a generic feature;
and more recently Maver and Bajcsy [24] developed a technique for �lling in the
range image shadows when sampling a scene with a light stripe range �nder.
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Some important general principals were established with the introduction of the
active vision paradigm by Aloimonos [2]. The basis of the approach is a parametrized
model of how the sensor views features in the scene. Continuously varying the view
parameters causes the observed features to undergo measurable local transformations
which can be used to simplify and constrain the computation of unknown scene
parameters. For example, Kutulakos and Dyer [21] cleverly exploit the di�erential
properties of smooth surfaces to model local changes in the appearance of an occluding
contour due to camera movement. This knowledge shows them how to position the
camera, �rst to extract occluding contours from an edge map, and then to use the
extracted contours to sweep out the complete 3D shape.
Much of the power of the active vision paradigm comes from the simpli�cation

of only having to model local changes to local features, so it is more applicable to
problems in low and intermediate vision where local features play the major role.
However in a complex vision system these problems are only the �rst steps towards
a description of the world which will enable the system to perform some speci�c
task, so if there are any de�ciencies in the low levels it becomes essential that they
be taken into account. For example it is impossible to reconstruct some surface
concavities using the method of occluding contours proposed by Kutulakos and Dyer.
Without that knowledge decisions based on the reconstructed surface could result in
a system failure. With it, other instrumentation can be called upon to make up for
the method's shortcomings.
It has also been demonstrated that \high-level" control of data acquisition is very

useful. For example, Birnbaum, Brand, and Cooper [6] present a system (BUSTER)
which uses a generative causal semantics to control the visual exploration of arbitrary
stacked block structures. The system works by encoding the knowledge that the scene
is stable under the force of gravity in a simple set of rules. The rules are used to
direct visual attention to search for blocks which make an unstable scene stable.
Thus in complex systems such as the one we are working on, the information used to

select sensor viewpoints can come from many di�erent sources and must be combined
in ways that go beyond the principals established by the active vision paradigm. One
can attempt to formulate general frameworks to represent and solve these problems
[13, 17] but tractable solutions often require the development of speci�c insight into
the structure of the problem. We attempt to avoid this dilemma with an active vision
approach that generalizes the characterization and manipulation of uncertainty. As
a consequence it can be applied wherever the interaction between a sensor and its
environment is modelled parametrically.
We begin development of the theory in x2 with a description of a system where

the location of a sensor is determined by a set of control parameters, and in which
the interaction between the sensor and its environment is modeled by the linear
combination of an arbitrary set of basis functions. We show how to �nd a maximum
likelihood estimate of unknown model parameters from a set of noisy measurements,
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and illustrate that the parameter covariances represent and encapsulate the model
uncertainty.
In x3 we continue with an information based measure of uncertainty, the determi-

nant of the covariances, and consider the problem of how to reduce it incrementally
by taking a single extra measurement. We �nd a theoretical solution to this problem
which is identical to a proposition we have made in previous work [31] | that the
best sensor locations are those where our ability to predict is worst.
This leads to a gaze-planning strategy, described in x4, that uses model uncertainty

as a basis for selecting viewpoints. We show theoretically that the strategy ensures
convergence when applied to linear models, and present experimental results for non-
linear superellipsoid models which verify that the linear theory can be applied as a
local approximation. We test the speed with which it can estimate superellipsoid
model parameters and show that, unlike other strategies, it not only does this faster
but can also adapt robustly to changes in model pose and size.
By closing the loop around bottom-up vision with this gaze-planning strategy,

we design in x5 an exploration system that is capable of autonomously building a
description of its environment from a sequence of exploratory probes. This leads to
the implementation in x6, and a sequence of experimental results which show how
the system performs on real scenes obtained with a mobile laser range�nding system.

2. Linear Model Inference

Although the volumetric models we use to represent surfaces in a 3D scene are
highly non-linear many of the basic concepts and insights are obtained from a study of
the linear case. Non-linear analytic solutions are usually hard to obtain and invariably
one must resort to numerical iterative techniques to get results. Once this is done
however the system can be linearized around the solution, and the linear analysis
applied. Provided that perturbations in the state of the system are small enough,
the linear analysis is valid and not as severe a restriction as might �rst appear.

2.1. The linear model. Consider the scenario where we have a sensor making
measurements of a physical system and where the location of the sensor is determined
by specifying a vector of control parameters x.1 In a linear model data measurements
can be predicted by a linear combination of basis functions de�ned over the space
of control parameters. That is given known model parameters m the measurement
obtained at location xi can be written in the form

di = gT
i m (1)

where gT
i = (g1(xi); : : : ; gp(xi)) are the basis functions evaluated at xi.

1By \location" we mean the sensor's location in the space of control parameters. This could
be its physical location, but could also be many other things, e.g. the direction of gaze, sampling
density, beam intensity, etc.
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The basis functions themselves do not have to be linear in the control parameters.
For example suppose our sensor is a depth probe constrained to move in a horizontal
plane. Its location is given by the cartesian coordinates xT

i = (xi; yi), and the mea-
surement di it makes there is the vertical distance to some surface. We can choose
to model the surface as a general quadratic di = ax2i + bxiyi + cy2i + dxi + eyi + f ,
then the model parameters are mT = (a; b; c; d; e; f), and the basis functions are
gT
i = (x2i ; xiyi; y

2
i ; xi; yi; 1). These are de�nitely non-linear in the control parameters

though the model as a whole is still linear, and the linear analysis to follow applies
without approximation.

2.2. The maximum likelihood solution. Of course it is usually the case that the
model parameters are not known, and the whole purpose of making measurements
is to solve the inverse problem, that is to �nd model parameters that explain the
observed measurements. If we have made n measurements such a solution amounts
to solving the linear system of equations fdi = gT

i m ; i = 1 : : : ng which can be
written in the form

d = Gm: (2)

where the gi form the rows of G.
In general it is not possible to �nd an exact solution to (2) as the data are con-

taminated with noise. However when the measurement errors are randomly and
independently sampled from a normal distribution with zero mean and variance �2

it can be shown that the maximum likelihood estimate bm of the true model m
T
is

given by the pseudo inverse

bm =
�
GTG

�
�1
GTd: (3)

Furthermore, the parameter errors ê(m
T
) =m

T
� bm are distributed as a zero mean

p {variate normal distribution

N(ê(m
T
) ;C) =

1p
(2�)p C

exp

�
�
1

2
ê(m

T
)TC�1ê(m

T
)

�
(4)

with covariances

C = �2
�
GTG

�
�1

= �2 H (5)

which determine the dispersion of the probability density in the di�erent parameter
directions.

2.3. The uncertainty of the inverse solution. The presence of random errors
in the inverse solution is an indication of its inherent uncertainty or non-uniqueness.
To see this consider the quadratic form that appears in the exponent of (4) as Q(m

T
),
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that is

Q(m) = ê(m)TC�1ê(m) =
1

�2
ê(m)TH ê(m) (6)

(7)

The true model must lie somewhere on the hyper-surface Q(m) = Q(m
T
). Because

C�1 is symmetric and positive de�nite this surface is ellipsoidal.
Now we do not know the value of Q(m

T
) but it is a well known result of statistical

theory that the quantity is randomly sampled from a chi-square distribution with p
degrees of freedom[25]. For some con�dence level  we can �nd from that distribution
a number �2 for which there is a probability of  that Q(m

T
) < �2

. It follows that
there is also a probability of  that the ellipsoid

�2Q(m) = ê(m)TH ê(m) = �2�2 (8)

will enclose the true model,2 and for this reason it is called the ellipsoid of con�dence.
The ellipsoid of con�dence gives us a useful visual image of the non-uniqueness of
the inverse solution as it shows us the region of model parameter space in which any
of the models could be the true one. Further localization of this region can only be
made by lowering the con�dence level, or equivalently, by being increasingly mistaken
in ones belief that the true model is still enclosed within it.

3. Reducing Uncertainty

When the parameter errors are normally distributed, the covariances can be used
to communicate the uncertainty to the tasks which make use of the inverse solution.
By applying classic statistical methods the solution can be tested to see if it meets
standards of acceptability predetermined to keep system failure rates below bearable
levels. When the uncertainty is such that it does not we must take steps to improve
the uniqueness until it does.
One way is to build better sensors with lower noise �gures. It can be seen from

(8) that lower values of �2 simply scale the ellipsoid of con�dence to be smaller.
The eccentricity and pose of the ellipsoid are unchanged, though in the limit for the
perfect instrument (�2 = 0) the ellipsoid shrinks to become a point at the true model,
and there is complete certainty.
Another way in which we may a�ect the character of the uncertainty is through

the choice of measurement locations. From (2) we see that H = GTG is dependent
only upon the gj(xi), that is on the form of the basis functions and the locations
of the measurements.3 As H de�nes the eccentricity, size, and pose of the ellipsoid
of con�dence we have a potentially powerful method for controlling uncertainty. By

2This statement is often misinterpreted to mean there is a probability of  that m
T
is inside this

particular ellipsoid. This is not so | it means that when (8) is repeatedly computed from many
independently sampled data sets, then m

T
will fall inside the computed ellipsoids % of the time

3It is perhaps surprising that the uncertainty is totally independent of the true model and there-
fore of the actual measurements. This is not true when the model is non-linear however.
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simply selecting appropriate xi we can cause the ellipsoid of con�dence to fall in
regions of parameter space which meet criterion of acceptability imposed by the task
at hand.

3.1. A measure of uncertainty. A central question is what constitutes an appro-
priate criterion of acceptability. In general, it really depends upon the use to which
the model parameters are put and can only be answered in an operational context.
For example we are currently investigating the object recognition problem and there
we need to obtain parameter covariances which allow us to discriminate between
models in a data base. The ability to discriminate depends largely on the makeup
of the data base. In some cases precise knowledge of only one model parameter is
necessary for positive identi�cation, whereas in others all must be found to a high
degree of precision.
However a generally useful criterion is one based on the well known Shannon en-

tropy, and which measures the amount of information contained in the probability
distribution representing the parameter errors. It can be shown that maximizing
this information is equivalent to a minimization of the determinant of the parameter
covariances [23]. Geometrically C is the product of the eigenvalues of C, which can
be shown from (8) to be proportional to the square of the lengths of the axes of the
ellipsoid of con�dence. The determinant is therefore proportional to the square of
the volume of the ellipsoid of con�dence. Small values correspond to small volumes
of model parameter space, which indicate that the true parameters are well localized,
and that the knowledge or information we have about them is high.
A problem with using the determinant is that it will vanish if any single eigenvalue

vanishes, despite the fact that high covariances could still exist along other direc-
tions in parameter space. However, as we shall demonstrate later (Figure 7), the
incremental strategy we employ to minimize C prevents this from happening.

3.2. The location of uncertainty. Finding the sensor locations that minimize
C is a useful result, both practically and for the insights it gives us in general. Here
we will concentrate on what we call the incremental problem:

Given covariances Cn computed from n measurements, what single addi-

tional sensor location xn+1 will minimize Cn+1 ?

We note that this is equivalent to maximizing Hn+1 . Each additional measurement
incrementally updates H, so after n+ 1 measurements its value is

Hn+1 = Hn + gn+1g
T
n+1; (9)

where gn+1 are the basis functions evaluated at each new location xn+1. After fac-
toring Hn out on the right we have

Hn+1 = (I+ gn+1g
T
n+1H

�1

n )Hn;
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and that the determinant is

Hn+1 = (I+ gn+1g
T
n+1H

�1
n ) Hn : (10)

Further simpli�cation requires us to compute the determinant of the quantity I +
gn+1g

T
n+1H

�1
n . We do so by �nding its eigenvalues with the aid of two results which

follow from the basic de�nition of an eigenvalue (e.g. [19, de�nition 1.1.2]).

i) If � is an eigenvalue of A then 1 + � is an eigenvalue of I+A.

ii) If x is an m{dimensional vector and A an m�m matrix then there is only one

eigenvalue of xxTA and its value is xTAx.

It follows that there is only one non-unit eigenvalue of I + gn+1g
T
n+1H

�1
n and that

its value is 1 + gT
n+1H

�1
n gn+1. As the determinant of a matrix is the product of the

eigenvalues (10) simpli�es to

Hn+1 =
�
1 + gT

n+1H
�1

n gn+1
�

Hn ; (11)

or in terms of covariances,

Cn+1 = Cn

��
1 +

gT
n+1Cngn+1

�2

�
: (12)

There is an important interpretation which can be placed on the quantity gT
n+1Cngn+1

and which con�rms some of our intuitive notions as to where the best sensor place-
ment is. The model parameters bmn estimated from the �rst n measurements allow
us to predict the measurement that will be obtained at location xn+1

d̂(xn+1) = gT
n+1 bmn: (13)

However, there are random errors in the estimated model parameters so we would
expect there to be random errors in the predicted measurement as well. A well known
result from statistics shows that there is a simple mapping between the model and
prediction covariances [25].

If a random vector x̂ is sampled from a p{variate normal distribution with

zero mean and covariances C, and if A is a linear mapping ŷ = Ax̂ to the

q{dimensional vector ŷ, then ŷ will be sampled from a q{variate normal

distribution with covariances ACAT .

In our case (13) is a linear mapping between the estimated model parameters and

the measurement so by the above result the variance of d̂ is

�2
D
(xn+1) = gT

n+1Cngn+1: (14)

This is called the prediction variance at location xn+1.
The ratio of C before and after an additional measurement is seen from (12) to

be

Cn+1

Cn

=
1

1 + �2
D
(xn+1)=�2

: (15)



10 Autonomous Exploration: Driven by Uncertainty

A similar result can also be found in another �eld, the theory of optimal experiments
as developed by Federov [14], and as expounded upon in the more accessible work of
MacKay [23]. It shows us i) that adding any data will always result in a reduction of
Cn , and ii) that Cn+1 can be minimized by taking a measurement at the location
when �2

D
is largest. As our intuition might lead us to expect, any additional data is

bene�cial but the best locations to gather new measurements are those where our
ability to predict is worst.

4. Looking: The Gaze Planning Strategy

The theory we have presented tells us the best place to take a single measurement

but it is rarely the case that this measurement will meet our needs. Instead we have
to collect data at a sequence of locations x1;x2; � � � ;xn until the estimated parameter
covariances Cn are acceptable. Here we consider the problem of how to choose such
a sequence.
The approach we have taken is largely inspired by the problem on which we are

working, i.e. to build volumetric representations of objects in a scene from data
collected by a laser range scanner mounted on the end e�ector of a robot. The
scanner's operation is controlled by a number of parameters which determine not
only its position in the scene, but also the direction in which it is pointed, and
the sampling density with which the beam is scanned. We will therefore refer to
a sensor location as the scanner's \gaze", to the sequence of sensor locations as a
\gaze trajectory", and to the problem of choosing a trajectory as a \gaze planning
strategy". Note however that, although the strategy is presented in the context of
3D volumetric modelling, the methodology we develop is applicable to a much wider
range of problems.
There are many trajectories that will eventually result in an acceptable value of

Cn so the trick is to �nd those which are optimal from the point of view of the higher
level tasks using the volumetric models. This requires us to formulate and minimize
some cost function, for example the elapsed time, the quantity of computer resources
used, or even the amount of energy consumed4. As we shall see below (x4.2) it is
sometimes possible to tailor solutions to speci�c cases but we would prefer not to do
this. Instead we would like to design a module that is generally useful for a wide
range of tasks, even if it is at the expense of some operational optimality.
We start by considering linear models and give, in x4.1, the theoretical guarantee

that a strategy which always moves towards uncertain viewpoints has the important
property that the determinant of the covariances will converge below any arbitrary
value. We conclude the linear case with an example, and point out that optimal
trajectories are independent of the model being measured and can therefore always be
computed o�-line x4.2. However it is the non-linear case which interests us more so in
x4.3 we show how the linear theory can be applied, and verify it with empirical results.

4The amount of energy consumed could be of critical importance, e.g. when the sensor is mounted
on a space craft, or on a battery operated vehicle.
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It is not possible to compute non-linear gaze planning strategies o�-line so in x4.4
we develop a general iterative gradient strategy based on the model estimate at each
iteration. We then present in x4.5 a speci�c implementation of this strategy, and the
kinds of trajectories obtained when exploring the surfaces of superellipsoidal objects.
In x4.6 we develop ways to measure the strategy's performance and present the results
of simulation experiments con�rming that, not only does the use of model uncertainty
result in faster convergence, but that it does so even when model pose and size are
arbitrarily changed. Finally in x4.7 we consider additional problems encountered
when scenes are explored in the real world and outline the way in which we can
decrease their e�ect. Ultimately however such problems are beyond the domain of
the strategy, and point to the necessity of an overseer with task speci�c knowledge.

4.1. The convergence of linear models. When the model is linear we see from
(15) that an additional measurement always results in some reduction of Cn irre-
spective of the sensor's location, and therefore that any gaze trajectory must result
in a monotonically decreasing sequence C1 ; C2 ; C3 ; : : : . However for some tra-
jectories the sequence can converge to a positive, non-zero value, and it may prove
impossible to reduce Cn to an adequate level. Fortunately, as the following argu-
ment shows, our condition that we always measure at locations of high �2

D
prevents

this from happening.
First we note that Cn = �2H�1

n so Cn ! 0 provided Hn !1 as n!1. Now
because

Hn =
nX

i=1

g(xi) g
T(xi);

then its diagonal elements must be positive and monotonically increase as more mea-
surements are added. We will not go into the mathematical details here but it can
be shown that Hn ! 1 if any of its elements do so as well. The trajectories for
which this doesn't happen are the ones which will cause us problems.
The sensor trajectories for which the components of Hn don't diverge are those

where g(xn)! 0. As an illustration consider the problem of estimating from depth
probes z the slant � and tilt � of a planar surface known to pass through the origin.
We can model this with the equation z = �x + �y, where the sensor is located
at xT = (x; y), the basis functions are g(x) = x, and the model parameters are
mT = (�; �). If the sensor takes a trajectory that approaches the origin then the
components ofHn could converge. For example, if the trajectory is along the straight
line xT

j = (x0 rj ; y0 rj); jrj < 1 then

H1 = lim
n!1

Hn = H0 +
r2

1 � r2

�
x2
0

x0y0
x0y0 y20

�
: (16)

where H0 is the value of Hn obtained before the sensor started moving towards the
origin. The eigenvalues of H1 are non-zero and �nite so Cn will never converge to
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zero in this particular case. Many, but not all, of the trajectories that spiral inward
to g(x) = 0 will behave similarly.
Places where g(x) = 0 are rather special in that they are extremely non-informative.

First, because ggT = 0 any measurements taken there do not change the value of
Hn. Second, the prediction variance �2

D
= gTH�1g is always zero no matter what the

value of H. That is we know a priori what the model is at these places (in the ex-
ample above the surface was known to pass through the origin). There is no point in
taking measurements from locations where g(x) = 0 because they can not contribute
anything to our knowledge of the model5.
Furthermore, for some local neighbourhood around the place where �2

D
= 0, (pro-

vided of course that g(x) is continuous over that neighbourhood) �2
D
increases mono-

tonically as one moves away from the location where �2
D

= 0. A gaze planning
strategy that drives the sensor towards locations of maximum �2

D
will avoid places

where g = 0, and therefore ensure that Cn converges to zero.

4.2. Gaze planning strategies for linear models. For some linear models the
best gaze trajectory can be found analytically. For example if we have a sensor prob-
ing the height of planar polyhedral objects then these can be modelled with the basis
functions gT = (x; y; 1) where x and y are the location of the probe. The prediction
variance is easily shown to be parabolic in x and in y, so it grows monotonically,
and quadratically, as one moves away from the data. The highest values of �2

D
(x; y)

therefore occur on the edges of the objects, and as others have shown [7], the best
place to probe for new data is on one of the vertices. The strategy that results in
the greatest decrease in Cn at each step is to successively sample from the vertex
where �2

D
is highest.

Even when analytic solutions are not available it is always possible to �nd, for
the linear case, an optimal gaze trajectory by numeric means. This is because the
basis functions g(x), and therefore the covariances Cn, are totally independent of the
model being measured and depend only on the distribution of sensor locations. As
no a priori knowledge of the true model in the scene is required, the sensor parameter
space can be exhaustively searched for the gaze trajectory that results in the lowest
value of an arbitrary cost function (provided, of course, that the cost function doesn't
require knowledge of the models in the scene). Such a search could be very costly
but need only be done once o�-line, and the results simply played back to direct the
gaze of the sensor while model inference was taking place.

4.3. Non-linear models. Because of their descriptive power, we use non-linear
superellipsoid models to describe objects in the scene. Given that we have a theory
of where to take measurements in a linear system we would like to know if, and to
what extent, that theory can be usefully applied to non-linear models. Note that

5However they would be a good place to measure the sensor noise �2.
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although we use superellipsoid models, the methodology outlined below is applicable
to non-linear models in general.
In our laboratory we sample 3D coordinates from surfaces in the scene with a

laser range scanner and, after several layers of \bottom-up" processing, infer those
superellipsoid models which best explain the measurements [15]. Points fsi; i =
1; : : : ; ng on the surface of a superellipsoid model with parameters m satisfy the
implicit equation

D(si;m) = Di(m) = 0; (17)

which is highly non-linear in both si and m. Speci�c details, e.g. the form of (17),
are given in [30]. In fact D has the metric property that it is the radial distance of si
from the surface. Therefore when the sensor returns noisy measurements, such that
D(si;m) is randomly sampled from a zero-mean normal distribution with variance �2,
a maximum likelihood estimate of the true parameters can be found by �nding those
model parameters bm which minimize

Pn

i=1
Di(m)2. Because of the non-linearities

iterative techniques must be employed.
Once the solution is obtained the covariances are found by linearizing the model

around bm. It is easy to show that this gives a locally linear model of the same form
as (1) but where

gi =
@D

@m
(si; bm); (18)

is the Jacobian of D evaluated for si on the surface of bm. By following the linear
analysis in x2 the prediction variance at a point on the surface of a superellipsoid
model is

�2
D
(s) =

�
@D

@m
(si; bm)

�T

Ĉ

�
@D

@m
(si; bm)

�
: (19)

We have previously derived this quantity by other means [30] where we called it the

prediction error � =
q
�2
�

2
D
.

There is an implicit assumption in the non-linear solution that a posteriori pa-
rameter distribution is Gaussian. In general this is not true for two reasons: i) the
errors in D(s;m) will usually not be Gaussian, and ii) the basis functions gi exhibit
random variation due to the noisy measurements si. This variation combines multi-
plicitatively with the assumed Gaussian randomness in data errors, and results in a
distribution that is not normal nor even symmetric. One consequence is that the max-
imum likelihood solution will in general be biased, so on repeated trials the expected
value of bm will di�er signi�cantly from the true value m

T
. The seriousness of this

depends upon the sensor noise level, and on the distribution of sensor locations. For
superellipsoid models the �tted surface stays within the envelope of the measurement
noise, so provided the sensor noise is low, and that the data obtained constrains the
model parameters, any biases due to non-linearities will be small. During the initial
stages of exploration the parameters will not be well constrained so estimation bias
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could cause problems, for example by falsely estimating the position and size of the
model. However the whole purpose of exploration is to �nd data that do constrain
the model parameters so ultimately bias will not be a problem.
Another consequence of a non-normal parameter distribution is that the covari-

ances do not fully account for the variation, and are generally an optimistic estimate
of the expected parameter errors. This is a problematic when Kalman �lter tech-
niques are applied to non-linear models (the extended Kalman �lter) because the
weighting new data receives is based on how believable it is. If the current estimate
of the model parameter variance is too low then the data will appear excessively
noisy so it will be given a lower weight than it should be. Ultimately this can result
in a situation where less and less importance is attached to new data, and more and
more to an estimate which diverges increasingly from the correct value [27]. The
exploration strategy we propose di�ers fundamentally from a Kalman �lter in that
state updates are based only on the data collected and not at all on any previous
state estimate. Thus, although a poor estimate of the covariances might cause us to
sample data from a sub-optimal location that data will receive just as much weight
when used to update the model parameters, and no weight at all will be given to
the previous, erroneous, state. Therefore we do not observe the kind of divergence
exhibited by extended Kalman �lters.
It is probably not wise to trust the parameter covariances if they are used proba-

bility computations, for example when evaluating the risk of a course of action. For
these purposes a more general probability distribution should be adopted, such as
sums of Gaussians [23], or even grid-based methods [17]. For exploration this could
be a problem except, as we shall see later, the strategy we adopt follows the gradient
of �2

D
(19), so it is not the magnitude of the parameter covariances that is important,

but their \direction". Provided we operate within the region of parameter space
where the linear approximation is valid then we can expect the gradient to be valid
as well.
We know from the linear theory that the best place to take new data is where

�2
D
is greatest, but it is not clear to what extent this is true in the non-linear case.

For superellipsoid models the non-linearities have so far proven intractable, so we
used Monte Carlo simulations to test the validity of the linear theory [31]. In these
experiments we simulated data acquisition by a range scanner in orbit on a view
sphere about a superellipsoid model. For some latitude # and longitude ' on the view
sphere we computed the improvement in the ability of the model estimate to predict
surface position due to the addition of a single measurement, and correlated this with
the amount of prediction error on the surface where the measurement was taken.
These trials were repeated a large number of times for scanner positions covering
the entire view sphere, and some of the results obtained are shown in Figure 3. In
the �rst two columns the prediction error (a), and improvement (b), are plotted as a
function of # and ' where the added datum was collected. It is immediately evident
that there is a strong correlation between the two quantities and that the additional
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The height of the mesh plots in (a) shows the prediction error as a function of view sphere
location. At each location 5 values were averaged to obtain the plotted results. Latitude
varies along the short horizontal axis, and longitude along the long one. In (b) is shown
the incremental improvement in a model's ability to predict surface position when an
extra datum is taken with the sensor at di�erent view sphere locations. Column (c) is
a scatter plot that shows the relationship between prediction error (horizontal axis) and
improvement for every view sphere location in (a) and (b).
In all cases except the bottom row the model size was kept constant (ax = 20mm,ay =

25mm,az = 30mm) and posed in an unrotated position with respect to the scene coordi-
nate axes. In the bottom row the model was a little larger (ax = 40mm,ay = 50mm,az =
30mm) and the base view was chosen so as to sample only a portion of the tilted edge of
a block shaped superellipsoid.
For a more detailed description of the experiment see [31].

Figure 3. Empirical experiments demonstrating how improvement is
a function of prediction error for non-linear superellipsoid models.
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data with most bene�t is collected from regions on the view sphere which \look" at
high prediction errors.

4.4. The gradient strategy { a general non-linear gaze planning strategy.
Although the simulations strongly suggest we can apply the linear analysis to non-
linear models there is an important and fundamental di�erence which must be taken
into account. As we have seen optimal trajectories for a linear model depended only
on the sensor locations, and could be computed without having to know anything at
all about the actual model in the scene. This is not true when the model is non-linear
as the local linear approximations for gi, and for C and �2

D
, are all dependent uponbm. As bm is estimated from the measurements taken of the model in the scene we

are placed in the untenable position of having to know the unknown model before
an optimal trajectory can be computed. It is not possible to �nd truly optimal gaze
trajectories for non-linear models, so we must soften our expectations.
In view of the the dependency of �2

D
upon bmwe adopt the following general iterative

strategy. At each step n of the gaze trajectory we compute (�2
D
)n = �2

D
(x; bmn) using

the current estimate of the model bmn. The next sensor trajectory location xn+1

is chosen to be that which maximizes (�2
D
)n, but subject to the constraint that it

lie within the region of sensor locations for which the linear approximation is valid.
Once xn+1 is found the sensor is moved there, and an additional measurement taken.
The model estimate is then updated by re-�tting to a data set in which the new
measurement is appended to all of those obtained previously. The process repeats
using the updated estimate bmn+1, and runs until the parameter covariances meet
some operationally de�ned criteria of acceptability.
A problem with the approach is that it is di�cult to determine the region of sensor

locations over which the non-linear relationships of the model can be approximated
su�ciently well by the linearized form (18). What we suspect, and what our obser-
vations suggest, is that the region is indicated by low values of (�2

D
)n, but it is not

clear how to quantify the linear approximation error in �2
D
. In fact the size of the

approximation error is not important provided the monotonic relationship between
�2
D
and the decrease in Cn is preserved. Again we suspect that this relationship

remains true even when the approximation errors are large, and observations indicate
that the region of allowable sensor locations can include regions of large �2

D
without

any noticeable degradation in performance.
However because of worries about the validity of the linearized theory, we took

a conservative approach in which the sensor was always moved in small steps. Our
rationale was that in the region around the current sensor location the position of
the surface would be well known due to the measurement already made there, so
locally the di�erence between the true and estimated models would be small, and the
linearized form would serve as an adequate approximation. Thus instead of globally
maximizing (14) we do it in the local neighbourhood of the current location, and
move the sensor in the direction of maximum of �2

D
. In e�ect the scanner follows the
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gradient @�2
D
=@x (or an approximation of it), so we will refer to this as the gradient

strategy.
At �rst glance the gradient strategy might seem to be an implementation of the

classical gradient ascent method but there is an important di�erence. This is that the
form �2

D
(x) being ascended is continuously changing as new data are added. When

a measurement is taken from a location where �2
D
(x) is high the prediction variance

there will be reduced to the level of sensor noise. The e�ect of this reduction is to
\push" the sensor away from the current location on the next iteration and thus to
help overcome a major problem of gradient methods | that the sensor trajectory
will falter on top of a local maximum.

S

S'

X

X'

O

x

x'

s

C

When the model does not enclose the view sphere center O there will be a closed
contour C where the scanner beam is tangential to the models surface. The contour
divides the model into two regions S and S 0 which map into the disjoint view sphere
regions X and X 0 respectively. Thus the point s on the contour can be \seen" by
the scanner when it is positioned at either x or x0, and a small movement across the
contour will require a discontinuous jump in view sphere position between x and x

0.

Figure 4. The mapping between x and s is discontinuous

4.5. The view sphere gradient strategy. At this point our gaze planning strat-
egy is quite general in that it simply tells us to keep moving the scanner in a direction
which locally maximizes the prediction variance. Here we present an implementation
in which a laser range scanner is able to orbit about a single superellipsoidal object.
The location of the scanner is given by its position on the surface of a view sphere,
and is directed so it always points towards the sphere's center. When describing the
view sphere location we will usually refer to its radius %, latitude # and longitude
'; but because this parametrization has singularities at the poles, a better way to
represent sensor location x is by a 3D vector from the center of the view sphere, to
the position of the sensor on the sphere's surface.
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The �rst problem is to compute the gradient @�2
D
=@x of the prediction variance.

However given the expression we have in (19), �2
D
is a function of the position s on the

surface of the estimated model, and not of the sensor location x. The relationship
between these quantities s = s(x; bm) is essentially a ray tracing problem. That is, for
a given scanner gaze we need to compute where the laser beam will hit the surface
on the estimated model. Provided the form of s(x; bm) is known and is continuous
around x then it is in principal an easy matter to obtain the gradient analytically.
Unfortunately we fail on both counts as s(x; bm) is not always continuous (Figure 4),
and a closed form solution to the ray tracing problem is unknown for superellipsoid
models.

xn

O
C

xn+1

σ2
D(s)

sn

sn+1

Xc

Sc

The search circle Xc on the surface of the view sphere is at a constant geodesic radius
from the current scanner location xn, and its image Sc is formed where the cone of
beams directed towards the center of the view sphere O intersect the surface of the
model. Here we show a case where some of the beams emanating from Xc miss the
surface. The next scanner location xn+1 is the one which projects to the surface
coordinate sn+1 that maximizes �2

D
(s) on Sc. The gradient @�2

D
=@x is approximated by

the direction of the arrow from xn to xn+1.

Figure 5. The numerical solution to @�2
D
=@x

Because there is no general analytic solution we employ the numerical technique
illustrated in Figure 5. Essentially we search for the maximum �2

D
on the view sphere

at a �xed geodesic distance from the current scanner location. The scanner is circled
around what we call the search circle thus generating a cone of laser beams directed
towards the center of the view sphere. We use Newton's method to �nd where each
beam strikes the surface of the estimated model, and if it does we compute �2

D
at that

spot. The direction of sensor travel is chosen to be towards the circle position which
resulted in the maximum value of �2

D
.

The conic angle �c which determines the radius of the search circle is set equal to
the distance that the scanner travels with each iteration of the gaze trajectory. If �c
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is too small convergence of Cn will be slow, but if too large it might result in the
scanner missing important features on the surface. This suggests the step distance be
set according to the scale of the models in the scene but such an approach is possible
only if something about them is known beforehand. In the experiments that follow
we do make use of what we know about the scene and set the scanner to travel along
a great circle arc which subtends and angle of 20� at each iteration. In the more
general situation this parameter will have to adapt to the unknown models as they
are inferred.
We investigated the behaviour of the above strategy by running simulations on

various superellipsoid models positioned in the center of a view sphere. After initially
�tting a model to data scanned from above (# = 90�; ' = 0�) the gradient of �2

D
on

the view sphere was evaluated numerically as shown in Figure 5, and the scanner
location then stepped along a great circle arc of 20� towards the maximum. At the
new view sphere location a noisy measurement was taken, added to existing data,
and to this a new model was �t. The process was repeated for 100 iterations.
The view sphere trajectories from 40 separate explorations of an ellipse and a block

are shown in Figure 6. Because the measurements are noisy, each individual path is
subject to a certain amount of random wandering which obscures any structure in
its location. By superimposing a large number the path density gives us some idea
of those locations which attract the \attention" of the algorithm. In the case of the
ellipse it can be seen that the path density is greatest at the pole opposite the initial
data collection (# = �90�; ' = 0�). This matches the strategy most people take
when asked to resolve the ambiguity of a single view, that is to look at the other side.
What is interesting however is the anisotropy of the path locations. There is

de�nitely a greater density along the meridians ' = 0� and ' = 180� and a close
examination of the corresponding 3D rendition of the paths shows that the scanner
spends more time exploring the narrower, more highly curved surfaces of the ellipsoid.
The attraction of the scanner to places of high curvature is demonstrated graphically
by the exploration paths of the block where it is obvious that scanner spends most
of its time collecting data from the edges and the corners. An explanation for this
phenomenon, at least in the case of the block, can be found in the example at the
beginning of x4.2. Here we pointed out that the linear theory predicted the edges of
planar polyhedra objects as being the places to get the most information about the
model parameters. Because the \faces" of the superellipsoidal block are approaching
planarity we would expect the edges of the block to be the best places as well.

4.6. The performance of the view sphere gradient strategy. While the re-
sults above are intuitively appealing, the real test of the algorithm is how rapidly it
re�nes the estimates of the model's parameters, and if fares better in this respect than
other approaches. To evaluate these aspects of the strategy's performance, we used
the same Monte-Carlo simulation techniques that generated the trajectories shown
in Figure 6.
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Ellipse

Block

(a) (b)
The view sphere trajectories of all the explorations are displayed in two forms.
(a) View sphere coordinates are shown in polar form, as though the view sphere were
seen from the underneath. The view sphere latitude is plotted radially with # = �90� in
the center and # = 90� at the outer dashed circle. Longitude is the angular coordinate
with ' = 0 being horizontal and to the right. The initial data was scanned from # = 90�

so the small radial lines show the initial 20� step. The dots mark the places from which
additional data was scanned and the lines connecting them the great circle paths taken
by the scanner.
(b) The 3D positions of the paths in (a) are shown on the surface of a transparent view
sphere. The model being explored is rendered in the center.

Figure 6. 40 explorations of an ellipse and a block.



4. Looking: The Gaze Planning Strategy 21

2 5 10. 20. 50. 100.
n

     -43
1. 10

     -31
1. 10

     -19
1. 10

     -7
1. 10

100000.

     17
1. 10

det(C)

ellipse

block

2 5 10. 20. 50. 100.
n

10.

10000.

     7
1. 10

     10
1. 10

tr(C)

ellipse

block

a b

Figure 7. Exploration simulations showing the convergence of a) Cn

and b) tr (Cn). The dotted asymptotes indicate the rate of decrease
expected due to repeated measurements.

Some typical results showing the decrease in Cn are presented in Figure 7a. The
�rst point to note is that because the models are non-linear, the decrease isn't strictly
monotonic as predicted by the linear theory. However the upward swings are minor
in comparison to the general trend, so it does appear that the linear approximation
holds quite well.
Although the explorer works by minimizing the determinant, the simulations in-

dicate that it also has the e�ect of decreasing the trace as well (Figure 7b). There
are situations where this might not be the case, for example in a linear regression,
sampling data continuously at the origin will decrease the variance of the intercept
yet contribute nothing to our knowledge of the slope. However we believe that in
most situations the exploration algorithm will ensure that this doesn't happen. It
may be that at any moment the best strategy is to decrease a subset of the covariance
eigenvalues, but it can be shown that the decrease in each eigenvalue is asymptotic
to 1=n. That is, the improvement at each step becomes vanishingly small, so at some
stage we would expect there to be an optimal sensor location that results in the
decrease of some other eigenvalue. Ultimately we expect there will be no preference
for any one subset of eigenvalues, and they will all end up vanishing.
However there will be some conditions that result in a sensor trajectory which

does not minimize all of the eigenvalues. In general this can happen where the map-
ping from the space of sensor locations given by the parametric model of the system
does not give full access to the space of model parameters. As we have already
demonstrated in the linear regression example above, it can occur when there are
accessibility constraints on the sensor position, though what usually happens is that
sensor movement is not so restricted and the available locations do provide some
information about all the parameters. As a result all the eigenvalues converge, but
some converge very slowly. A case that concerns us very much is where some of
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the model parameters are meaningless. For example, no matter how much data is
taken, the variances will remain very high for the rotational parameters of a spher-
ical superellipsoid. We would like to detect this case and use a more appropriate
parametrization, but before we can we must make sure that the high variances re-
ally are because the model is degenerate, and not because exploration is incomplete.
Minimizing the determinant is useful in this regard because it will still work to reduce
those eigenvalues that can be reduced, despite the presence of large eigenvalues for
which no improvement is possible.
The question of when to terminate exploration can be resolved based on the obser-

vation that there are two phases to the convergence. Initially Cn decreases rapidly:
approximately proportional to n�2:3p for the ellipse and n�4:3p for the block; but is
soon followed by the �nal phase where, as shown by the dotted lines, Cn / n�p.
This convergence pattern is typical of what we observe, not only in simulations, but
also for the implementation operating in our laboratory.
The signi�cance of the asymptotic approach to n�p is that this is the rate of de-

crease expected due to a reduction in sensor noise because of repeated measurements,
and it indicates that the �nal stage of convergence is due to the scanner repeatedly
re-measuring the model's surface. The picture we have of the strategy's behaviour is
that during the initial stage the scanner is attracted to unknown parts of the model's
surface and as a result the new measurements reveal new structural information
about the model. However once the surface has been \covered" with measurements
the basic structure of the model is known, further scans repeat earlier ones, and the
decrease in Cn slows to the \background" rate due to repeated measurements. If
we want to evaluate how well the strategy does, it is important to see how quickly
the algorithm can gather the structural information. For this we will develop the
notion of coverage as a way of determining when the �rst stage of convergence has
completed.
A good indicator of coverage is the distribution of prediction variance on the surface

of the model. When a scanner measurement is made it allows us to predict surface
position there to the same level of accuracy as the sensor noise. Furthermore, the
ability of the model to interpolate between measurements can result in a reduction
of �2

D
over sizeable regions, and not just in the local vicinity of the measurement.

Taking more measurements from within that region will not contribute greatly to
our knowledge of it, though as pointed out above, it will reduce �2

D
due the e�ect

of repeated data. The coverage of the surface is indicated by the area over which
�2
D
=�2 � 1, and leads us to adopt the following de�nition.

We say that the surface S of the model bm is covered by measurements
when �2

D
(s)=�2 � 1 for all s on S. In other words a surface is covered

when it can be predicted everywhere to the same accuracy that it can be
measured. We shall designate this condition by the relation d

S
�2
D
(s)=�2 � 1.
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Figure 8. Exploration simulations showing the convergence of the
maximum value of �2

D
=�2 on the surface of the estimated model.

In Figure 8 we show the convergence of d
S
�2
D
(s)=�2 for exactly the same gaze trajec-

tories as in Figure 7. As can be seen its value falls below 1.0 at around 20 iterations
for both models, and that this is also where Cn becomes proportional to n�p.
The number of iterations taken to cover the surface gives us a useful and intuitive

way to compare the performance of di�erent strategies. In particular we would like to
compare gradient strategy with others that make minimal use of the model estimate.
One of these is that the sensor should be positioned to collect data from \the other
side" of 3D objects but there are a couple of problems with it. The �rst is that the
location of \the other side" is a function of the model's pose and, to some extent, its
shape. Because these are exactly the quantities which are uncertain, it is not clear
how one can �nd the other side when its location isn't known very well. The other
problem is that for some shapes, e.g. for block-like objects, there may be several
\other sides", and there is no obvious solution as to which of these it might be best
to measure.
Because of these di�culties we adopt a related approach as the basis for compari-

son. In what we call the avoidance strategy the sensor always moves away from the
places it has visited previously. We do this by �nding the position xk on the search
circle which minimizes the potential

pc =
nX

i=1

1

1 + �p (jxc � xij=(% �c))
2
; (20)

where the xi are the n sensor locations of the current gaze trajectory, and their
distances from the search circle jxc � xij are normalized with respect to the distance
that the scanner steps, % �c, at each iteration. The value of the free parameter �p



24 Autonomous Exploration: Driven by Uncertainty

a b

Figure 9. The avoidance strategy gaze trajectory (�p = 2:0). The
dot in (a) shows the position of the largest \hole" after 100 iterations.

a�ects the scanner path and can be used to tune the performance of the strategy to
speci�c cases. For example in the experiments that follow we shall use the trajectory
shown in Figure 9. It was computed for �p = 2:0, the value which minimized the
number of iterations taken to cover the ellipsoidal surface shown in the Figure 9b.
It should be noted that the speci�c form of (20) is not important, and in fact there

are many ways to achieve essentially the same result. What is important is that the
avoidance strategy requires absolutely no knowledge of the model parameters or their
uncertainty, so it serves as a useful baseline. In particular, a comparison between it
and the gradient strategy tells us how much better we can do if the model uncertainty
is taken into account when planning sensor trajectories.
The results of Monte Carlo simulations used to compare the performance of the

gradient and avoidance strategies are presented in Figure 10. From the histogram
for the ellipse we see that the gradient strategy completed in an average of 19.8 it-
erations, which for a step size of 20� represents only 1.1 circumnavigations of the
view sphere. In general the gradient strategy fares better. It takes the avoidance
strategy 35% longer to cover the ellipse, and 17% longer to cover the block. How-
ever because the gradient trajectory is a�ected by random variations in the model
estimate it sometimes fares worse. For example approximately 22% of the trials took
longer than the 30 iterations required by the avoidance strategy to cover the block.
The insensitivity of the avoidance strategy to such probabilistic uncertainty, and its
consequent ability to complete predictably within 30 iterations, lends the strategy a
certain attractiveness. However it must be remembered that the performance of the
avoidance strategy was optimized for the ellipsoid model used in these experiments,
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Comparison of gradient and avoidance strategies. The histograms show the rela-
tive frequencies of the number of iterations taken to cover the surface of the model,
i.e. the iteration at which d

S
�2
D
(s)=�2 � 1:0. In the legend labels the �rst number

is the total number of trials used to generate the histograms, and the second is
the average number of iterations taken to cover the surface.

Figure 10. Comparison of gradient and avoidance strategies

and the results therefore present that strategy in its best possible light. The avoid-
ance strategy performs well on the block model too, but it is in an identical pose
to the ellipse and is of similar size. As we shall see below this picture can change
dramatically when size and pose are changed.

20 40 60 80

1

Gradient (40,24.1)

Avoidance (40,85.5)

a b

Figure 11. The gradient strategy can adapt to model pose.

The true strength of the gradient strategy is its adaptability. Figure 11 illustrates
the severe degradation in the performance of the avoidance strategy when model pose
and size are changed. Here we have constructed a \cigar-shaped" ellipsoid model,
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oriented so its long axis points directly at the largest hole in the coverage given by the
avoidance strategy (see Figure 9a). We see in Figure 11a that the gradient strategy
has adapted to the change and still manages to measure the narrow ends of the object
even though its pose is initially unknown. From the histogram in Figure 11b the
average number of iterations required to cover the surface has increased moderately
by 25% from 19.8 to 24.1. In contrast the avoidance strategy cannot adapt as it
blindly pursues its predetermined path, and misses seeing the narrow end of the
object until much later. Consequently the number of iterations taken to cover the
surface rises from 26.5 to 85.5, an increase of over 320%.

4.7. Real-world complications. Unlike the simulations of the previous sections,
there are further complications in the real world. One problem has its roots in the
discontinuous nature of the mapping between sensor locations and surface points
shown in Figure 4. In the simulations this was not a problem because the model's
surface enclosed the center of the view sphere. However in a real scene that might not
be true, in which case the scanner will travel downward until it reaches the edge of
the region where its beam is tangential to the model's surface (e.g. at x in Figure 4).
Once there some of the beams emanating from the search circle (Figure 5) will fail
to intersect the surface, so the direction of maximum �2

D
will have to be chosen from

the subset that do. As a result the scanner will be unable to leave the upper view
sphere region and will only be able to collect data from the top portion of the model's
surface. The convergence of Cn will be much slower (proportional to n�p) than if
the sensor were free to make measurements of the lower portion of the surface.
In the current implementation we solve this problem by always repositioning the

view sphere so that its center is at the center of the current model estimate. However
we are also investigating another approach based on the observation that the mapping
x 7! s is a projection of the �2

D
(s) �eld from the surface of the model to the surface of

the view sphere. In the gradient strategy this projection happens to be discontinuous
but there are many others which are not, for example if we project the �eld radially
from the model's center. We have obtained some encouraging preliminary results
with model centered projections that adapt to increase the camera step size as �2

D
=�2

decreases.
Problems also arise because the next scanner position is based upon an estimate of

where the model's surface should be. In the early iterations there is usually a large
amount of error and it is possible to move the scanner to a location where the beam
would intersect the estimated model's surface, but from which no measurement of
the true surface is possible. By keeping the step size small we reduce, but do not
eliminate, the chance of this happening. However a better approach is to adjust the
scanner travel so it never moves into regions where �2

D
is very large. This is exactly the

behaviour that some of the adaptive projections mentioned in the previous paragraph
exhibit and we are optimistic that we can use them to reduce the frequency of this
problem.
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A di�cult problem is that of accessibility. It is rarely the case that there is complete
freedom to sample any surface in the scene. Real objects are supported by, embedded
within, or occluded by other objects. Real scanners cannot move everywhere. Their
physical size prevents them passing along narrow passages, and the device that moves
them, e.g. a robot arm, has its own limitations. It will simply not be possible to
sample the most uncertain surface in some, and probably most, cases. The successful
resolution of these problems would require task speci�c knowledge, for example details
of the dimensions of the scanner, the robot, and the workspace con�guration. A
basic tenant of our design is that it be modular and general, so we should not have to
customize the gaze planning strategy for each application. We consider the resolution
of accessibility problems to be beyond the domain of the gaze planning strategy.
What is important is that the strategy should operate in a way which makes it

possible to handle external problems like lack of accessibility. In this regard our
requirement that the sensor only move incrementally is a prudent course of action. If
a problem occurs the sensor will still be close to its last position, and it will be easy to
backtrack and recover. There are also practical reasons to prefer small, incremental,
movements. When the scanner is mounted on a robot arm it is much simpler to
compute a path (and to implement collision avoidance) over a short distance than it
is to traverse from one side of the work space to the other. From our point of view
another important requirement is the need to convert scanner centered 3D coordinates
into the scene coordinates used to �t models [28] (x6). Because the position of the
sensor is uncertain we can only do this by the registration of overlapping data sets,
and smaller movements let us to keep the area scanned small whilst still maintaining
a useful overlap.
Although we can alleviate many of the above problems there is always a chance

that they will occur, and that task speci�c knowledge will be required to take cor-
rective action. For this we need a higher authority. The analogy we use is that the
gaze planning strategy plays the role of a navigator , and has the speci�c task of de-
termining what the best heading is at each iteration. The navigator operates under
the command of a more general module which we call the explorer , and it is this
which has the task speci�c knowledge needed to the verify the operational feasibility
of the heading, and to detect and correct the kinds of problems which arise when the
heading is followed.

5. Exploring

Higher level tasks, i.e. those that make use of the volumetric models we infer,
attempt to deal the non-uniqueness (or uncertainty) by bringing in a priori constraints
appropriate to their particular area of expertise. However it is often the case that
these constraints fall short, and the models are still too ambiguous to be useful. This
was the motivation for the gaze planning strategy outlined in x4. Higher level tasks
could invoke that strategy directly by taking control of the lower levels of processing,
but we would prefer to decouple them and maintain a more modular approach.
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For this role we envisage an autonomous agent which we call the explorer. The
explorer takes, from any higher level task, a speci�cation as to the allowable amount
of uncertainty, then proceeds to collect data until that speci�cation is met. Once
complete the explorer reports back with a new set of inferred models.
At the heart of the explorer is a servo loop built around the gaze planning strategy.

As input it takes the uncertain state of some model in the scene (parameters and
covariances), and delivers at its output the direction in which the sensor should move
to maximally decrease that uncertainty. The loop is closed by updating the input
state with additional data scanned from the new sensor location.
The explorer is more than a simple servo loop however. It is an executive that

delegates jobs, monitors progress, and makes decisions. The decision as to when
to stop is largely determined by the application task requesting the models. There
are complications because the speci�cation is application dependent, for example an
object recognition system will want a better knowledge of speci�c model parameters
in order that it may disambiguate two models stored in its data base, and a vehicle
might be more interested in the surface location along its proposed path. In prin-
cipal however these criteria are equivalent but di�erent mappings of the parameter
covariances.
Handling accessibility constraints should also be dealt with by the explorer. The

incremental approach to gaze control helps somewhat but inevitably an exploration
path will be forced to terminate because of occlusion or because of the inability
of the robot moving the scanner to access the correct location. In these cases the
explorer must take control, override the servo loop, and reinitialize the scanner at a
new location.
The gaze planning strategy is also very single minded { it only works upon a single

model. When there are multiple models in the scene it is the explorer which must
decide the focus of attention. The strategy employed will depend to a large extent
on which models the application task is currently interested in.
A very important task for the explorer is to monitor the behaviour of the lower

levels of processing. None of these can be guaranteed to operate awlessly, for rea-
sons ranging from excessively noisy data, to situations in the scene that break the
assumptions upon which the algorithms are based. A general \catch-all" way of de-
termining if something has gone wrong is to measure the amount of mis�t between
the inferred models and the data, i.e. to examine the residual errors. When there is
mis�t the residual errors will signi�cantly exceed the expected sensor noise, the servo
loop can be aborted, diagnostics run to isolate the source of the error, and remedial
action taken to �x the problem where possible. The problem with this is that we
must have good models of sensor noise that we may compare statistically with the
residual errors. We have investigated this and have found that the classic statistical
methods for detecting mis�t can be quite sensitive to departures from the theoretical
model. To this end we have devised a sequential estimator of sensor noise which
operates within the servo loop. We have shown that this estimator reliably detects
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mis�t even when the sensor noise is not that of the theory, and when the noise level
varies during the course of exploration [32].

6. Implementation of an Autonomous Explorer

The concepts of the previous sections are now used to implement an autonomous
explorer capable of building an articulated volumetric description of its environment
through a sequence of exploratory probes. Figure 12 shows a block diagram of the
resulting implementation. The left side corresponds to a classical model of bottom-
up vision in which sensor data are transformed into various levels of representation
through successive stages of processing [15]. In our implementation data are ac-
quired through a laser range-�nding system mounted on the end-e�ector of an in-
verted PUMA 560 robot as shown in Figure 13. The system has a �eld of view of
approximately 1m3 which can be positioned anywhere in the robot workspace. Be-
cause of the relatively low positioning accuracy of the robot (on the order of 1:0cm),
the transformation parameters relating di�erent viewpoints must be computed from
the acquired data.
To facilitate estimation of these parameters and to provide the necessary structure

from which to perform shape analysis, a visual reconstruction procedure is used to
turn the discrete sampled data from the range�nder into a piecewise-smooth (C2)
representation of the surfaces in the scene [16]. From there data acquired from
di�erent vantage points can be fused by determining the correspondence between
features in adjacent views. A temporal extension to our reconstruction procedure [28]
is used to determine the transformation parameters on a local basis. An important
feature of this algorithm is its ability to deal with non-rigid motions. Such might be
the case, for example, when dealing with objects that can change con�guration in
between changes of sensor position.
At the next higher level of abstraction, reconstructed surface information from

multiple viewpoints is used to determine surface boundaries corresponding to the
parts of an object. The perceptual basis of the algorithm is the Ho�man and Richards
[18] principle of transversality regularity. Objects in the scene are represented as
conjunctions of convex solids. Boundaries between parts of objects thus correspond to
concave discontinuities and/or negative local minima in the principle curvatures of the
surface [15]. These features are made explicit as a by-product of the reconstruction
procedure. However, the task of interpolating such features in to part boundaries is
non-trivial and the subject of much work in the literature, e.g. the work of Kimia
et al. [20]. The procedure we use to solve this problem is a special case of the more
general model described by Kimia and adapted for surfaces [22].
Finally, at the highest level of abstraction, surface regions de�ned by part bound-

aries are described by parametric forms (i.e. models) such as superquadrics [5]. In
addition to serving as a basis for the characterization of uncertainty, these descrip-
tors provide additional cues for maintaining correspondence at the level of parts, for
describing general shape properties, and for recognition [15].
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Figure 12. Process ow in the autonomous explorer. The left hand
side of the �gure corresponds to a classical bottom-up vision strategy.
The right hand side corresponds to feedback derived from parametric
uncertainty which is used to close the loop around bottom-up percep-
tion.
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Figure 13. The mobile sensor consists of a laser range-�nding system
with a 1m3 �eld of view mounted on the end-e�ector of an inverted
PUMA 560 robot.

6.1. Closing the Loop. Much as in the same way that feedback serves to reduce
plant uncertainty in a conventional control system, the autonomous explorer uses
feedback to minimize the uncertainty of the parametric models used to describe the
scene. The right hand side of Figure 12 shows how this feedback is implemented. A
fundamental assumption implicit in the strategy is the validity of the models used as
reference, i.e., that a particular model is competent to describe its data in the �rst
place. The sequential estimator of sensor noise discussed earlier in x5 is used for this
purpose. At the present time no attempt is made to backtrack in the event that a
model is deemed invalid; the exploration process for the model in question is simply
re-initialized. The default strategy is simply to throw away the data corresponding to
the model in question and begin again with the data in the current viewpoint. This
strategy, while not optimal, works quite well in practice as failures are more often a
result of segmentation errors where a single model may overlap two or more parts.
Gaze planning is based on the view sphere gradient strategy developed for a single

model in x4.5. However, the problem becomes much more complicated when an
object comprised of many parts (models) must be explored by a single mobile sensor.
Di�erent uncertainty surfaces give rise to di�erent viewpoint requirements which
often cannot be met within the �eld of view of a single sensor in any position.
Our initial solution, the one reported in this paper, was to apply a focus of attention

mechanism to break this dilemma. At each gaze planning iteration all models are
examined and valid ones ranked according to size, magnitude of the uncertainty
gradient and distance to the sensor. The \winner" gains control of the sensor for
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that iteration and a next view is chosen that corresponds to the direction on the
view sphere with the largest uncertainty gradient relative to the current position.
The exploration process is allowed to run until all models fall below a prescribed
error of �t threshold or until a maximum number of exploratory probes have been
completed.

6.2. Experimental Results. The prototype implementation of our exploration
system consists of a collection of processes distributed over a network of special and
general purpose computers corresponding to the ow diagram shown in Figure 12.
A 128 � 128 laser range-�nder image was collected at each iteration. The total
processing time per iteration is data-dependent, but for the example shown here
was approximately 30 seconds. Of this the time taken to plan the trajectory was
under 1 second, so it essentially comes for free in these experiments. The majority
of the time was taken by the correspondence process used in data fusion. A more
accurate positioning system than the one in our laboratory would speed up the process
considerably since time to convergence of the correspondence algorithm is directly
proportional to the initial guess determined from the robot. For all processes except
volumetric modeling, computations were distributed between a Silicon Graphics IRIS
4D/35 and an Indigo VX workstation.
Some qualitative results are shown in Figure 14, where the explorer is discovering

a scene consisting of a wooden block on top of which is an assortment of 4 fruits. The
system starts o� by coarsely sampling the workspace until the block and fruit come
into view. It then positions the range�nder such that the block and fruit are at the
center of its �eld of view. This de�nes the initial position shown in Figure 14a. The
corresponding model determined from this initial viewpoint is shown immediately to
the right. All 5 parts comprising the \object" are correctly localized, but there are
signi�cant errors in the positions and shapes of each part. This is about the best that
can be expected given only a single view of the scene without additional constraint
information.
Next, a second viewpoint is computed based on the uncertainty surface of the part

closest to the range�nder. This new viewpoint is shown in Figure 14b along with the
model computed from the previous and current views. The additional data serves to
further constrain the shapes of the fruit, but provides little additional constraint on
the wooden block. Using the same part as in the previous iteration, an uncertainty
surface is computed and a third viewpoint determined (Figure 14c). This viewpoint
brings the scanner low on the horizon from which more of the wooden block is visible.
The resulting model, shown to the right, incorporates data from all three viewpoints
and now correctly represents the shape of each part. We have veri�ed that the overall
process is stable, producing near identical results when the initial positions of objects
in the scene are perturbed.
Some quantitative results from exactly the same system are given in Figure 15. In

this case the object positioned in the work space was a small stone owl. Figure 15a
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(a) View 1 Model computed from view 1 >

(b) View 2 Model computed from views 1, 2 >

(c) View 3 Model computed from views 1,2,3 >

Figure 14. Autonomous exploration sequence. (a) The initial view-
point and corresponding scene model. (b) Second viewpoint deter-
mined from the uncertainties in the initial model. Scene model com-
puted from fusion of data in the �rst and second views. (c) Final
viewpoint and composite scene model computed from all 3 views.
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shows the kind of range data obtained from the scanner, though for this experiment
the actual data used was sampled from grid four times courser, so we should not
expect parts to evolve which depend on resolution of �ner details (e..g the wings). A
wide �eld of view was required so that range images from di�erent views could be
registered into the same coordinate frame [28].
Processing of the initial scan resulted in a segmentation of the range data into three

separate patches. The superellipsoid part models �tted to each patch are shown in
Figure 15c-1. Some of the range data scan lines can be seen on the surface, and
give an idea of the amount of surface covered. Because it was closer than the other
two parts, the explorer focussed its initial attention on the owl's body to select a
new viewpoint. After moving the scanner to the new view another scan was taken,
segmented, then registered with the �rst. The second set of scan lines crossing the
original in Figure 15c-2 indicate the region from which new data was obtained, and
also the success of registration algorithm. The part models, particularly the head, are
now more constrained because the second view added additional data on the side of
owl. The process continues for another two iterations, with the part models, especially
the feet, becoming smaller at each step. Further improvement would require access
to the back surfaces, but these are inaccessible because the owl is resting on a table.
All the uncertainty criteria for each part model decrease at approximately the same

rate (Figure 15b) probably because of the wide �eld of view, and because each part
is roughly in the same pose. Under these conditions similar sensor trajectories would
have been obtained with attention focussed on any of the models. The slightly faster
rate of decrease for the feet can be attributed to the model's smaller size and the
larger percentage of its surface covered by the data collected at each iteration. The
leveling o� of d

S
�2
D
(s)=�2 (and tr (C)) after the third iteration is an indication of the

inaccessibility of parts of the surface, and of the inability of the collected data to
improve knowledge of the surface in those positions.
It is important to note that in both of these experiments many of the assumptions

upon which the exploration algorithm is based are not valid. For example, the shape
of the owl cannot be described precisely with superellipsoid models | the body is
asymmetric, and the head is not even convex. Despite this exploration performs well
and recovers useful models which capture the general size, pose, and shape of each
part. What we observe in practice is that the distribution of prediction variance
across the surface of the model still makes sense even when the model �ts the data
badly. It is lower where there is data, and increases rapidly where there is none. A
strategy based on this distribution might be sub-optimal, but the sensor will still be
driven to locations where no data was previously obtained. We have assumed that
the a posteriori model parameter distribution is normal, but even gross departures
from normality result in reasonable behaviour, and in a system which exhibits a high
degree of robustness.
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7. Conclusions

The results presented in the previous section demonstrate that feedback based on
model uncertainty can e�ectively be used to plan gaze and reliably infer scene de-
scriptions. In particular, we demonstrated how a description comprised of articulated
volumetric models could be automatically computed from a sequence of exploratory
probes obtained by a mobile laser range-�nding system. The resulting models are
su�ciently robust to serve as object descriptors for purposes of manipulation and
recognition. Because the process is entirely data-driven, the system is well-suited as
a basis for arti�cial perception in unstructured environments. It is also completely-
autonomous. Sensor measurement, data fusion, model inference and gaze planning
proceed iteratively either until a stable description of the scene is obtained or a
prerequisite amount of data has been collected.
We are currently extending this research in a number of directions. More general

purpose models are being investigated which can take into account the dynamic be-
haviour of objects. Ways of implementing backtracking when a model fails to account
for newly acquired data are being incorporated into the system. The current method
used to merge (fuse) information from di�erent viewpoints is being generalized to
properly account for occlusions. By proceeding in this manner we hope to eventually
learn enough about the general problem to build systems that are truly capable of
autonomous exploration.
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