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Abstract

We present a method for partitioning a set of surface
estimates obtained with a laser range �nding system
into subsets corresponding to parts of an object. Our
strategy uses two complementary representations for
surfaces: one that describes local structures in terms
of di�erential properties (e.g. edges, lines, contours)
and the other that represents the surface as a collection
of smooth patches at di�erent scales. By enforcing a
consistent interpretation between these two represen-
tations, it is possible to derive a partitioning algorithm
that is both e�cient and robust.

1 Motivation

A fundamental problem in the interpretation of vi-
sual forms is that of parts decomposition, the parti-
tioning of the surfaces of an object into regions cor-
responding to each part [4]. Traditionally two ap-
proaches have been considered. So-called edge-based
approaches work by �rst identifying features corre-
sponding to part boundaries and then interpolating
to form smooth contours. Region-based approaches,
by contrast, �rst identify clusters or regions that are
continuous in speci�ed features and then seek to merge
smaller groupings until some continuity criteria are vi-
olated. Each strategy taken separately is often insuf-
�cient for lack of robustness, non-uniqueness or com-
plexity.

We argue that each process is, in fact, complemen-
tary to each other as the detected edges provide cues
to validate region boundaries and these same region
boundaries specify how the edges must be interpolated
[3]. An object is de�ned to be a solidmass composed of
convex parts without holes of any kind. Consequently
in our model of a part, an edge can correspond to a
discontinuity in depth, (C0), a concave discontinuity
in orientation, (C1), or a negative local minimum in
normal curvature [2].

A region is de�ned as a subset of the surface of
an object that is void of discontinuities and extrema
of curvature. As such, the set of regions that com-
prise the surface implicitly de�ne the loci of potential
boundary points. Regions are represented as paramet-
ric surface patches computed at di�erent resolutions

to account for the appearance of features at di�erent
scales [1]. We refer to the resulting representation as
a curvature scale space.

The relation of this scale space to the interpolation
problem can be explained as follows. A single region
implicitly de�nes a closed contour. When two regions
are merged, the resulting region de�nes yet another
contour. The set of all possible surface contours can
thus be determined by enumerating all possible merges
that form spatially continuous patches. By construc-
tion, the resulting space must contain the true surface
boundaries. The computational task is to search this
space for the correct interpretation.

Given that the edge and region descriptions must
both correspond to the same object, the search prob-
lem can be precisely formulated as that of �nding the
smallest set of covers, i.e. unions of regions, that is
most consistent with the edge-based description.

2 Curvature scale-space

A curvature scale space was developed to reduce
the dimension of the search space by organizing data
in a precisely structured fashion. It has the property
of smoothing regions of convex curvature to reduce
noise while preserving the positions of features corre-
sponding to part boundaries.

Starting from the de�nition of a scale-space that
can be found in Kimia [6], it is possible to derive such a
smoothing process. Given a 2-D array of data x[m][n],
the di�used signal after k iterations xk[m][n] is given
by
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The e�ect of this di�usion process is shown in the
image of a doll presented in Figure 1. The images



present the contours of convex regions found in the
range image.

a) b) c)
a) Region segmentation before any di�usion. The parts of
the doll are over-segmented because of noise on the surface.
b) After 5 iterations of di�usion, some noise still causes over-
segmentationon some parts. c) After 30 iterations, each part
consists mostly of a single region.

Figure 1: Curvature scale space of a doll.

3 Resolution algorithm

Once the scale space representation is built, opti-
mizing covering of the surface so that the resulting
boundaries are consistent with the detected cues be-
comes possible. It was found that this optimization
problem maps naturally into a relaxation labelling
framework [5].

A label is assigned to each surface region in the scale
space representation and constraints are de�ned by the
edges found between adjacent regions. The presence
of edges at a common boundary of two regions de�nes
a negative constraint that discourages the regions to
merge. The absence of edges at a boundary de�nes
a positive constraint that encourages the merging of
two adjacent regions. By allowing the network to con-
verge, extracted edges and regions are resolved into
an appropriate parts decomposition, as shown in Fig-
ure 2.

4 Conclusion

This short paper presented an overview of a method
for partitioning surface information into part-oriented
descriptions of object geometry. The key idea bor-
rowed from early work in computer vision, that is, the
concurrent application of edge-based and region-based
methods of image segmentation.

We presented a re-casting of this paradigm in terms
of surface di�erential geometry and the development
of a solution using constraint propagation networks
(a.k.a. relaxation labelling). The results obtained

a) b)

c)
a) Detected edges in the range image of a doll after 30 iter-
ations of di�usion. Blowup of the elbow shows enough cues
to suggest segmentation of the forearm, but interpolation is
necessary to obtain two closed regions. b) Region segmen-
tation taken from the scale space. It provides the necessary
contour to interpolate the cues in the elbow. Also note that
there are contours in each leg that are not supported by any
cues. c) After merging, the expected interpolation occurred
in the elbow and regions have been properly merged in each
leg.

Figure 2: Merging results of the doll

demonstrate that the resulting algorithms work very
well and can provide a sound basis for the generation
of object models as can be found in our report [7].
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