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Abstract

A key problem in the interpretation of visual form is the partitioning of a shape into

principal components that correspond to the parts of an object. This paper presents a

method for partitioning a set of surface estimates obtained with a laser range �nding

system into subsets corresponding to such parts. The strategy employed makes use of

two complementary representations for surfaces: one that describes local structures

in terms of di�erential properties (e.g. edges, lines, contours) and the other that

represents the surface as a collection of smooth patches at di�erent scales. It is shown

that by enforcing a consistent interpretation between these two representations, it is

possible to derive a partitioning algorithm that is both e�cient and robust. Examples

of its performance on a set of range images are presented.



Section 1 Introduction

A key problem in the interpretation of visual form is the partitioning of a shape

into principal components that correspond to the parts of an object. This paper

presents a method for partitioning a set of surface estimates obtained with a laser

range �nding system into subsets corresponding to such parts. The strategy employed

makes use of two complementary representations for surfaces: one that describes local

structures in terms of di�erential properties (e.g. edges, lines, contours) and the

other that represents the surface as a collection of smooth patches at di�erent scales.

Traditionally, parts decomposition has been posed as the problem of interpolating

features associated with part boundaries. However, the locality of these features has

made this a di�cult problem. In this paper, we present a novel method that makes

use of an auxiliary representation, a curvature scale space, which can simplify the

process of interpolation in an e�cient and robust manner. The key idea is that each

of these representations can provide structural cues that may not be present in the

other. Since each representation describes the same physical object, it is possible to

exploit consistencies in each to arrive at a plausible interpretation, in this case a set

of part boundaries.

The input to our algorithm consists of two maps, x[m][n], a discrete set of range

measurements sampled from a piecewise-continuous surface S, and f [m][n], a feature

map that identi�es putative boundary points. For a given f [m][n] the algorithm �nds

an optimal set of contours that best interpolates the set of boundary points while par-

titioning S into closed regions that are consistent with the scale-space representation.

Estimation of f [m][n] is beyond the scope of this paper, but is described elsewhere [17,

14].
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1. Introduction

a) b)
a) A shaded range image of a pencil sharpener, rendered from a depth map obtained with
a laser range �nding system. b) A representation of the sharpener using superquadric
primitives, one for each part. To determine the description for each part (i.e. superquadric
parameters), one must �rst partition the range data. The algorithm described in this paper
was used to obtain the result shown.

Figure 1.1: Two representations of a pencil sharpener.

1.1 Motivation

The motivation for this research can be explained with the aid of Figure 1.1,

which shows two di�erent representations of a pencil sharpener. Figure 1.1a cor-

responds to a depth map obtained with a laser range �nding system [30]. How-

ever, for tasks involving manipulation or recognition of the object, information re-

garding position, orientation and shape should be made more accessible [25] as

is the case with the representation shown in Figure 1.1b. Here the position,

orientation and approximate shape of each part is made explicit by using a su-

perquadric shape primitive that best accounts for the corresponding range data [12,

13]. In addition to making essential features more accessible, the second representa-

tion also corresponds to a data reduction of approximately 80:1.
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1. Introduction

A fundamental problem in the process of object modelling is that of parts decom-

position, the partitioning of the surfaces of an object into regions or segments corre-

sponding to each part1 [19]. Traditionally two general approaches have been consid-

ered. So-called edge-based approaches work by �rst identifying features corresponding

to part boundaries and then interpolating to form smooth contours. Region-based ap-

proaches, by contrast, �rst identify clusters or regions that are continuous in speci�ed

features and then seek to merge smaller groupings until some continuity criteria are

violated. Each strategy taken separately is often insu�cient for lack of robustness,

non-uniqueness or complexity. For example, the interpolation problem in edge-based

methods is often complex and becomes very di�cult when features are sparse [33, 12,

13], as shown in Figure 1.2. On the other hand, region-based approaches using mini-

mal descriptor length strategies can easily be perturbed in the presence of noise [28].

We seek a method for partitioning that is robust to data perturbation and sparsity

of features.

?

Top) A feature set to be interpolated. Left) Possible interpolation that can be obtained
with an ad-hoc scheme; two regions are found. Right) Other possible interpolation ob-
tained with another ad-hoc scheme; only one region is found. It is not possible to determine
which interpolation best interpolates the feature set. Both are acceptable, but which one
correctly represents the data?

Figure 1.2: The interpolation problem.

1This precludes the problem of �gure/ground separation, which is not addressed in this paper.
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1. Introduction

1.2 Methodology

A key observation of this paper is that edge-based and region-based processes are,

in fact, complementary to each other as the detected edges provide cues to validate

region boundaries and these same region boundaries specify how the edges must be

interpolated [15]. In this paper we de�ne an object to be a solid mass composed

of convex parts without holes of any kind2. Consequently in our model of a part,

an edge can correspond to a discontinuity in depth, (C0), a concave discontinuity

in orientation, (C1), or a negative local minimum in normal curvature [1, 16, 12,

13]. This de�nition complies with the notion of transversality regularity [19]. When

two arbitrarily shaped surfaces are made to inter-penetrate, they meet in a contour

of concave discontinuities of their tangent planes [18].

A region is de�ned as a subset of the surface of an object that is void of any edge

features de�ned above. Regions are represented as parametric surface patches com-

puted at di�erent resolutions [2] to account for the appearance of features at di�erent

scales. We refer to the resulting representation as a curvature scale space [10] be-

cause discontinuities and negative local minima of curvature are implicit in the patch

boundaries at each scale. The relation of this scale space to the interpolation problem

now follows. A single region implicitly de�nes a closed contour. When two adjacent

regions are merged, the resulting region de�nes yet another contour. The set of all

possible surface contours can thus be determined by enumerating all possible merges.

By construction, the resulting space must contain the true surface boundaries. The

computational task is to search this space for the correct interpretation.

For lack of speci�c constraints, the minimal descriptor length paradigm has often

been used to guide this search problem [28]. But in the present case there is a

more substantial principle involved, that of consistency. Given that the edge and

region descriptions must both correspond to the same object, the search problem can

be precisely formulated as that of �nding the smallest set of covers, i.e. unions of

regions, that is most consistent with the edge-based description.

2While somewhat restrictive, this de�nition admits a large range of objects. It can be relaxed to
a degree provided that holes can be ignored as in the pencil sharpener example.

4



1. Introduction

Similar problems have been studied previously [26, 7, 15] in terms of sequential

search strategies, but these can result in sub-optimal solutions from a global view-

point. Backtracking is usually not considered in these algorithms, the search-space

being simply too large. To obtain optimal solutions, what is required is a process that

seeks a best covering but that can compromise locally for global bene�t. It will be

shown later that this can be achieved with the use of a relaxation labelling algorithm

[20]. However, because there are many ways of combining adjacent regions, some

means are required to reduce the search space involved.

1.3 Contribution

A curvature scale space was developed to reduce the dimension of the search space by

organizing data in a precisely structured fashion. It has the property of smoothing

regions of convex curvature to reduce noise while preserving the positions of features

corresponding to part boundaries through scale.

Once the scale space representation is built, optimizing the covering of the sur-

face so that the resulting boundaries are consistent with the detected cues becomes

possible. We show that this optimization problem maps naturally into a relaxation

labelling framework [20]. A label is assigned to each surface patch in the scale space

representation and constraints are de�ned by the detected edges. These constraints

will de�ne which regions merge as the labels are allowed to change.

1.4 Paper Summary

This paper is organized as follows. Section 2 focuses on the curvature scale space

with boundary conditions in 1-D and then shows how it can be adapted to 2-D.

Next in Section 3, the resolution algorithm is presented and shows how relaxation

labelling can be used to determine a set of part boundaries that is consistent with

both the edge-based and surface-based representations. A number of experiments are

presented in Section 4 in which range images from di�erent sources are partitioned.

Finally, some observations on the method and the results are presented in Section 5.
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Section 2 Curvature Scale Space with Boundary

Conditions

We now present a scale space that partitions a surface S into a collection of non-

overlapping regions at di�erent scales so that each region is void of C0 discontinuities,

concave C1 discontinuities and negative local minima of curvature. By de�nition, any

feature corresponding to a part boundary cannot be contained within any element of

the resulting scale space. Scale is de�ned by a process of di�usion that progressively

smoothes the surface S, yet preserves the positions of putative boundary features.

Therefore, unlike a Gaussian scale space [32, 22], we avoid the problem of coarse-to-

�ne tracking, which is necessary to recover the true position of features. Accurate

location of position is essential for further modelling. The process in one dimension

is �rst considered and is then extended to two dimensions.

2.1 Scale Space in 1-D

In 1-D, scale spaces are comprised of a waveform undergoing progressive deformation.

Through these deformation steps, the components of interest in the waveform are

made explicit. Kimia [21] showed that any type of time dependent deformation of a

parametrized curve C0(s) can be expressed by

�C
�t

= �(�(s)))
!

N;

C(s; 0) = C0(s);
(2.1)

where �(:) is a function controlling the di�usion process,
!

N is the normal to the

curve, � is the curvature of the curve, s is an arbitrary parameter (not necessarily

arc-length) and t is the di�usion parameter, which takes place in time. To derive a

scale space from this model, it is necessary to estimate
!

N and � for a given curve and

to de�ne a deformation function �(:).
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2. Curvature Scale Space with Boundary Conditions

In this paper, we are concerned with curves of the form y = f(x). For these curves,

it is reasonable to assume that the normal to f(x) is mostly vertical, i.e. parallel to

the y-axis. It is also possible to approximate the curvature as
�
� (x) = f 00(x) [24].

According to our model, parts are convex and part boundaries are manifest in three

ways: i) as C0 discontinuities where the boundary is an occluding contour, or ii) as

concave C1 discontinuities or iii) negative local minima of curvature depending on

whether the intersection between parts is discontinuous or smooth. What is common

to each of these features is that they correspond to concave local neighbourhoods

where
�
� is negative1.

Therefore, the safest way therefore to preserve the positions of putative boundary

features is to apply no deformation where
�
� is negative. This translates into a �(:)

that is zero for a negative (:) argument. When
�
� is positive, the section of the

curve is convex and di�usion is required. The level of di�usion can be chosen to be

linearly proportional to the estimate of the curvature. This means that �(:) is linearly

proportional to its argument when it is positive.

As a result, the curvature scale space for a curve C0(s) can be de�ned as

�C
�t

=

8><
>:

0 if
�
�< 0

�
�
!

N if
�
�� 0

;

C(s; 0) = C0(s);

(2.2)

where C0(s) is a parametrization of the original y = f(x) curve,
�
� is an approximation

of the curvature computed as the second derivative fxx of the original curve and
!

N

is assumed to be parallel and in the direction of the negative y-axis.

1Note that C0 discontinuities always have a concave side where
�

� is negative.
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2. Curvature Scale Space with Boundary Conditions

2.2 Discretization of the Scale Space in 1-D

The extension of this scale space to discretized data follows. The curve y = f(x) is

discretized into a sampled set x[n]jn = 1; : : : ; N . The second derivative
::
x[n] on this

set is obtained with the kernel [�1
2
; 1;�1

2
] and the scale parameter that was time now

becomes a sampled scale, denoted as k. The di�used signal after k iterations xk[n] is

given by

::
xk�1[n] = �

1

2
xk�1[n� 1] + xk�1[n]�

1

2
xk�1[n+ 1]

xk[n] =

8><
>:

xk�1[n] if
::
xk�1[n] < 0 (concave region)

xk�1[n]�
::
xk�1[n] if

::
xk�1[n] � 0 (convex region)

: (2.3)

Equation 2.3 can be explained with the aid of Figure 2.1. In the case of a positive

curvature, Figure 2.1a,
::
x[n] is positive. Hence local smoothing is applied to this

convex region which serves to displace the central point towards its neighbours. For

the concave region shown in Figure 2.1b,
::
x[n] is negative in which case no smoothing

is applied.

a) For a positive curvature estimate in which
the central datapoint is over the average
of its neighbours, the update takes place.

b) The update does not take place for a neg-
ative curvature estimate in which the cen-
tral datapoint lies under the average of
its neighbours. This datapoint serves as
a boundary in the di�usion process.

Figure 2.1: Two cases de�ning the di�usion process.
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2. Curvature Scale Space with Boundary Conditions

The level of di�usion is controlled by the number of times the operator is re-

applied. Boundary conditions are set by the second case where the curve is concave,

in which case no di�usion occurs. By design, this di�usion function can displace

neither negative minima of curvature, nor discontinuities in depth (C0), nor con-

cave discontinuities in orientation (C1). The signal is forced to pass through these

points, hence they serve as boundary conditions. This condition remains in force until

neighbouring points have di�used su�ciently to change their normal direction.

The implementation of our di�usion process, in Equation 2.3, may look similar

to median or average �ltering. By de�nition (Equation 2.2), it is di�erent because

the update value of each datapoint is function of the local curvature estimates of

the curve to be di�used. Moreover the update only takes place at locations where

the curvature estimate is positive, thus ensuring that feature locations are preserved.

This is not the case in median and average �ltering, in which such features would be

displaced.

The e�ect of this di�usion process on a waveform that consists mostly of two

large convex regions and two smaller ones is shown in Figure 2.2a. As the sequence

begins at the bottom, the original waveform is not di�used. As it progresses to the

top, the waveform becomes increasingly di�used. The intuitive e�ect of this operator

is to atten noise quickly, texture slowly and shapes that are mostly convex very

slowly while leaving concave ones untouched. The overall e�ect is to bring out mostly

convex shapes. Notice how the separation between each convex shape really stands

out. Figure 2.2b shows the curvature scale space image, which for this di�usion

process also corresponds directly to what Witkin called an interval tree [32]. At each

scale, the signal could be segmented along the vertical lines.

It can be noticed that Gaussian di�usion as in Figure 2.3a, is not tuned to con-

vex shapes and indiscriminately smoothes the regions and their boundaries. As the

di�usion progresses, the features of interest become more di�cult to identify, they

do not stand out as in Figure 2.2a. The scale space image for Gaussian di�usion

in Figure 2.3b does not consist of vertical lines, but of curves. To properly locate

features that survive to coarser scales, a coarse-to-�ne tracking must be performed.
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2. Curvature Scale Space with Boundary Conditions

a) A sequence of waveforms from the non-
di�used ones at the bottom to the most
di�used ones at the top. As the waveform
becomes di�used, noise and texture disap-
pear, unveiling the more important struc-
ture.

b) The scale space image is the same as
the interval tree for this di�usion process
since the boundaries do not change posi-
tion. Each line corresponds to a detected
boundary through scale.

Figure 2.2: Scale space for an arbitrary waveform with noise and texture.

a) A sequence of Gaussian di�used wave-
forms. This di�usion process is not tuned
to convex shapes and indiscriminately
smoothes the regions and their bound-
aries.

b) Contours of zeros of the second deriva-
tive of the waveforms in a scale space
image. These contours are curved (fea-
tures change position) and a coarse-to-�ne
tracking algorithm is necessary to prop-
erly locate features at coarse scales and
obtain an interval tree as in Figure 2.2b.

Figure 2.3: Scale space produced with Gaussian di�usion, adapted from

Witkin [32].
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2. Curvature Scale Space with Boundary Conditions

2.3 2-D Case

In two dimensions, implementation of the di�usion operator is moderately more com-

plex, given that curvature is a directional property of a surface [9]. The basic elements

comprising the di�erential geometry can be described with the aid of Figure 2.4, which

shows the local neighbourhood of a point Pi on a surface S. Let TPi be the plane

tangent to Pi and �NPi
a plane orthogonal to TPi containing the unit normal vec-

tor to Pi, NPi . As �NPi
is rotated about NPi, it intersects S in a contour called

a normal section. The curvature of the normal section at Pi is called the normal

curvature, �NPi
. There are two special directions in TPi for which �NPi

takes on

maximum and minimum values, �MPi
and �MPi

, and are referred to as the principal

directions MPi and MPi respectively [9]. The scalar quantities �MPi
and �MPi

are

similarly referred to as the principal curvatures at P . According to Sander [31], the

set (Pi;MPi;MPi; NPi; �MPi
; �MPi

) is referred to as the augmented Darboux frame at

Pi, i.e. D(Pi).

M
m

P

P

NP

TP

π

S

P

i

i

i

i

i

N
iP

Figure 2.4: Local surface representation: the augmented Darboux frame.

For our di�usion process, it is su�cient to determine the signs of the two principal

curvatures at each Pi. If both are positive, Pi will likely correspond to a convex surface

where di�usion should be applied. Otherwise, the likelihood is that Pi corresponds

to a putative part boundary where no di�usion should be applied, such as in the

1-D case. Accurate recovery of the elements of D(Pi) over S is possible with surface

reconstruction algorithms[12, 13, 11]. However, when only the signs of �MPi
and �MPi

are of interest, estimation of second directional derivatives at Pi can su�ce.
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2. Curvature Scale Space with Boundary Conditions

It was found that a reasonable estimate of the signs of the principal curvatures

can be determined from four estimates of the second directional derivative (sdd) in

the vertical, horizontal and two diagonal directions.

As a result, the curvature scale space in 2-D is built from these four second direc-

tional derivatives. The di�usion process to produce this scale space is now described.

The reader should be aware that surface samples as given by conventional range imag-

ing systems are usually given in terms of the distance from the camera to the object.

Accordingly, the z-axis is reversed with respect to usual conventions, as in the 1-D

case in Section 2.1. In the following equations, this will be reected by the direction

of inequalities. Therefore, given a 2-D array of data x[m][n], the di�used signal after

k iterations xk[m][n]is given by

a =
1

2
(xk�1[m][n� 1] + xk�1[m][n + 1])

b =
1

2
(xk�1[m� 1][n] + xk�1[m + 1][n])

c =
1

2
(xk�1[m� 1][n� 1] + xk�1[m + 1][n+ 1])

d =
1

2
(xk�1[m+ 1][n� 1] + xk�1[m� 1][n+ 1]) (2.4)

e = min(a; b; c; d) (2.5)

xk[m][n] =

8><
>:

e if xk�1[m][n] < e (convex surface)

xk�1[m][n] if xk�1[m][n] � e (other types)
: (2.6)

Figure 2.5 shows how Equations 2.4, 2.5 and 2.6 are applied to a convex set of

datapoints. Notice the direction of the z axis in the image.

Each of the a, b, c and d values in Equation 2.4 determines a possible update

for each datapoint being processed, xk[m][n]. They are equivalent to those in the

1-D case however, this time, their value is computed in the four directions previously

discussed, i.e. horizontal, vertical and two diagonal directions. If each of a, b, c and
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2. Curvature Scale Space with Boundary Conditions

Z

Figure 2.5: E�ect of the di�usion equation on a convex surface.

d is larger than xk[m][n], the surface is convex at this datapoint and di�usion should

take place. Otherwise, the surface is not convex and no di�usion should take place.

Indeed, the second directional derivatives are given by

SDDh = a� xk[m][n] (horizontal case)

SDDv = b� xk[m][n] (vertical case)

SDDd1 = c� xk[m][n] (�rst diagonal)

SDDd2 = d� xk[m][n] (second diagonal)

: (2.7)

A convex surface would have all SDD's positive, which is equivalent to each of

a, b, c and d being larger than xk[m][n]. Since the value e computed in Equation 2.5

equals the smallest of a, b, c and d, all that is required to test for a convex surface

is that e be larger than xk[m][n]. Ergo, e serves as a test for convexity and can also

be used as an update value for the datapoint being processed, provided the surface is

convex. This update value is the most conservative of all a, b, c and d, ensuring that

the region stays convex even after being di�used.

In the 2-D case, the level of di�usion is also controlled by the number of times the

di�usion process is applied. The positions of boundaries marked by negative minima

of curvature, (C0) and concave (C1) discontinuities are preserved as in the 1-D case,

in this way avoiding the problem of coarse-to-�ne tracking, a technique that is both

complicated and expensive [8, 29].
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2. Curvature Scale Space with Boundary Conditions

At any scale, a region segmentation is easily obtained by labelling every con-

nected set of datapoints where the surface is found to be convex (from Equation 2.6).

Because the whole image cannot be made only of convex surfaces, there will be data-

points left unlabelled. Since our de�nition of a boundary consists of C0, concave C1

discontinuities and negative local minima of curvature, the labelled regions can be

grown until they reach these boundaries and all datapoints are labelled. Contours of

the resulting labelled regions are places where the image could be segmented. These

contours exist at the �nest scale and slowly disappear as the scale is made coarser.

While in 1-D, the interval tree was a 2-D image containing lines, the equivalent in a

2-D scale space is a volume containing cylinder-like surfaces, as shown in Figure 2.6.

Scale

Figure 2.6: Interval tree in 2-D.

A few slices of such a volume are shown for the rock pile in Figure 2.7 as contour

maps. These slices were taken at regular intervals on a logarithmic scale. In Fig-

ure 2.7a, the region partitioning algorithm can detect a structure in the image. For

this reason, the image shows a multitude of contours forming tiny regions. As di�u-

sion is applied, the same region partitioning algorithm �nds fewer regions, but these

are larger, as shown by the subsequent images. In Figure 2.7e, three large regions are

found, corresponding to the three rocks. Finally, in the last image, only the pile itself

is seen, as expected at very coarse scales.
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2. Curvature Scale Space with Boundary Conditions

a) Before any di�usion, the image is largely
over-segmented, containing up to 2000 re-
gions of similar size.

b) After 30 iterations, the image is still over-
segmented with up to 1500 regions, but
groupings start to form where noise was less
prevalent.

c) After 100 iterations, close to 1000 regions re-
main, some larger than others.

d) After 300 iterations, some 500 still survive,
but some large ones start to form. The un-
derlying structure slowly appears.

e) After 1000 iterations, only 150 regions re-
main, 3 clearly salient.

f) After 3000 iterations, the image appears as
one larger region that represents the rock pile
itself.

Figure 2.7: Contours of segmented regions through the scale space of a

rock pile.
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2. Curvature Scale Space with Boundary Conditions

2.4 Traversing through the scale space

In general, features in an image exist at many di�erent scales. The problem of auto-

matically selecting the appropriate scale for each feature is a di�cult one. We consider

a simpler problem by assuming that all the features of interest can be represented at

a single scale. These are represented by the feature map f [m][n]. This condition is

true for many man-made objects like those considered in this report. The problem

which remains is that of choosing the best single scale to interpolate the feature set.

Because the region contours in our scale space do not change position in our scale

space, as shown in Figures 2.2, 2.6, 2.7, it is always possible to match every feature

point with the appropriate region contour. Thus, to interpolate a given feature set,

we choose the coarsest scale in which every feature f [m][n] still matches with a region

contour.

As an example of this problem, Figure 2.8 represents a feature set to be interpo-

lated. Each feature in this image is represented by a small line or a small square.

Figure 2.7 shows contours at di�erent scales that can be used to interpolate this

feature set. The �rst �ve samples, Figures 2.7a through e contain contours that

completely overlap with the feature set, while the last sample, Figure 2.7f does not.

Therefore, the sample that should be used to interpolate the feature set is the one

shown in Figure 2.7e because it consists of the coarsest scale in which the contours

completely overlap the feature set.

Figure 2.8: Feature set to be interpolated.
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Section 3 Resolution Algorithm

Given a set of features, f [m][n], corresponding to putative boundary points and a

surface segmentation, taken from the scale space, that implicitly de�nes the space

of boundary contours, the task is now to determine how regions can be merged so

that the resulting boundary contours are consistent with this feature set. In fact, the

process of merging two surface regions is also one of interpolation where union of the

two boundaries results in a new contour that extends further over the surface. For

some optimal set of surface region combinations, there exists a set of contours that

best interpolates (is most consistent with) the set of discrete features. This section

describes how the determination of this set can be formulated as an optimization

problem.

3.1 Merging as an Optimization Problem

In Figure 3.1a a set of putative boundary points is shown that suggest either two

overlapping spheres or a peanut shape with a crease in the lower half. Figure 3.1b

shows a segmentation of the corresponding surfaces | notice that three distinct

regions are present. Di�erent interpretations are possible through di�erent merges,

e.g., R3 [ R2 (Figure 3.1c), R1 [ R3 (Figure 3.1d), R1 [ R2 (not shown) and of

course R1 [ R2 [ R3.

Local overlap between region contours and feature points serves to guide the merg-

ing process. For example, the merging of regions R1 and R3 is encouraged because

there is no support for their common boundary B(1,3) in the feature set shown in

Figure 3.1a. Similarly, R2 [ R3 is plausible since there is no support for B(3,2). On

the other hand, R1 [ R2 is discouraged because B(1,2) is supported by overlapping

features.
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3. Resolution Algorithm

B(1,2)

B(3,2)
B(1,3)

R1
R2

R3

a) Edges that suggest the presence of two
spheres. There is a gap at the junction
where no edge seems to be present.

b) Surface segmentation of the spheres.
There is more than one region per
sphere.

c) Possible covering that is consistent with
both a) and b). The contours overlap
with all edges in a) and are made from
a subset of b).

d) A second consistent covering that is op-
timal with respect to c) because shorter
contour segments were used to overlap
with the edges.

Figure 3.1: Possible coverings for two spheres.

The term covering is used to represent the union of regions that is consistent

with a feature set. Therefore, Figures 3.1c and d constitute possible coverings of the

feature set in Figure 3.1a. The decision on whether to merge regions is given by a

global cost function that determines the convergence of the merging algorithm. Such

a global cost function is based on the length of the unsupported segments to keep,

shorter segments being preferred. Figure 3.1d consists of the optimal covering with

respect to the global cost function because shorter boundary segments are used to

interpolate the feature set.

We use the term resolution to underline the fact that at convergence the pro-

cess has resolved the region and edge-based representations into a single consistent

interpretation of an object or scene. Continuous relaxation labelling, as de�ned by

Hummel and Zucker in 1983 [20] applies directly to this problem, as it is a global

optimization process based on local interactions.
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3. Resolution Algorithm

3.2 Overview of the Relaxation Labelling Algorithm

An optimization problem can be formulated as a continuous relaxation labelling pro-

cess by constructing a network in which the nodes correspond to the entities for which

an optimal set of properties or parameters must be determined. The latter are rep-

resented by a set of discrete labels, one for each instance of a property or parameter

value. To each label is a�xed a numerical value that represents its associated likeli-

hood. In a problem with n nodes and m properties, this likelihood is denoted as pi(�)

where i = 1; :::; n and � = 1; :::; m. Thus, pi(�) is a matrix whose elements represent

the likelihood that node i possesses property �.

In this network, arcs connecting nodes are implicitly represented by constraints

that relate how these likelihoods should change given the current states (labels +

likelihoods) of neighbouring nodes. These constraints, denoted by rij(�; �
0) de�ne

how a node j with label �0 should inuence the node i with label �. This inuence is

called a support function and is simply computed as

si(�) =
nX

j=1

mX
�0

rij(�; �
0)pi(�): (3.1)

Once the support is computed, an update for each node can be computed by

projecting the support vector onto the valid likelihood space [24]. The projection

scheme used in this paper was proposed by Mohammed, Hummel and Zucker [27]

and is called Gradient Projection Algorithm.

After updating of all nodes has taken place, a new labelling is found. The network

is allowed to iterate until the likelihoods at each node converge to a steady-state, at

which point the ordering of the labels at each node as a function of their likelihoods

represents the optimal solution. The global function A that is being optimized is a

measure of consistency between the nodes as de�ned by the constraints, i.e.,
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3. Resolution Algorithm

A =
X

i;j;�;�0

rij(�; �
0)pi(�)pj(�

0): (3.2)

3.3 Merging as a Relaxation Labelling Network

Formulation of the resolution (merging) problem follows directly. Nodes in the relax-

ation network correspond to each region in the scale space representation and labels

are unique numbers that identify each single region. Constraints between nodes are

de�ned in terms of the feature set. The process of merging two regions can be rep-

resented by increasing the likelihoods of labels that are common to both regions and

decreasing those corresponding to labels that are mutually exclusive. Details are

elaborated in the following sections.

3.4 Labels

Given an array I[m][n] completely covered by n non-overlapping regions Si

I =
NX
i=1

Si; Si \ Sj = ; ; 8i; j i 6= j: (3.3)

A label � belonging to the positive integer set N� is assigned to each region and

associated elements so that each has a di�erent label and all elements belonging to

the same region have the same label

�(Si) 6= �(Sj) i� i 6= j; (3.4)

�(I[m][n]) = �(I[s][t]) i� I[m][n]; I[s][t] 2 Si: (3.5)
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3. Resolution Algorithm

3.5 Constraints

The constraints between labels have four dimensions: rij(�; �
0) is used to denote how

the likelihood of label �0 at region Sj inuences the likelihood of label � at region Si.

Four important considerations reduce this 4-Dimensional array to a 2-Dimensional

matrix symmetric along the i = j diagonal with very sparse non-zero elements.

First, there is no need to consider the e�ect of two regions having di�erent labels, �

and �0. We are only interested in the case where two regions could have the same label

�. If two regions have di�erent labels, there is no need to encourage or discourage a

speci�c label more than another. Thus,

rij(�; �
0) = 0 8� 6= �0: (3.6)

Second, when considering the case where two regions could have the same label,

there is no need to either encourage or discourage a speci�c label more than another.

That is, the particular label with which the two regions end up is unimportant.

Therefore,

rij(�; �) = const 8�: (3.7)

However, rij(�; �) does vary with respect to i and j. It is only necessary to

compute and retain rij, resulting in a 2-D matrix.

Third, it should be noted that constraints exist only between adjacent regions.

The rij are non-zero only when regions touch each other. For a given region, there is

only a limited number of adjacent ones, much less than the total number of regions

in general. This leads to a very sparse matrix.

Finally, constraints are reciprocal. The attraction or repulsion of a region Si

towards Sj is the same as that of Sj towards Si. Thus, the matrix is symmetric along

the i = j diagonal. The resulting constraints can now be represented by a symmetric
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3. Resolution Algorithm

2-D sparse matrix with approximately 5n
2
elements, where n is the total number of

labels and 5 the average number of adjacent regions to a given one.

The problem remains as to how to assign values to constraints. Various schemes

are possible as there are few restrictions on their magnitudes. In general, positive

values are used to encourage the merging of adjacent regions whose common boundary

is not supported by any cue (i.e. element of the feature set). Negative values do

exactly the opposite, inhibit merging where the common boundary is supported by

such cues. The following consists of a possible constraint assignment, but many other

assignments are acceptable.

Given cues H[m][n] and V [m][n] that lie directly on the boundary of adjacent

regions where

H[m][n] =

8><
>:

1 if a horiz. edge exists between I[m][n] and I[m+ 1][n]

0 otherwise
; (3.8)

V [m][n] =

8><
>:

1 if a vert. edge exists between I[m][n] and I[m][n + 1]

0 otherwise
(3.9)

and given the boundary path B, the length of the path L and the overlap C, which

consists of the number of detected cues that match with a given boundary,

B(Si; Sj) = The boundary path of adjacent regions Si and Sj; (3.10)

Lij = length of B(Si; Sj); (3.11)

Cij =
X

B(Si;Sj)

(H[m][n] + V [m][n]): (3.12)

The constraints rij are given by

rij =

8><
>:

Lij if Cij = 0

�Cij if Cij > 0
: (3.13)
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3. Resolution Algorithm

3.6 Determining Initial Conditions

Because relaxation labelling is in fact a gradient ascent optimization method, it is

necessary to provide an initial condition to the labelling pi(�). The closer the initial

condition is to the �nal optimal result, the less chance of becoming stuck at a local

maximum. On the other hand, it is possible to start far away from the optimal

solution by using a method analogous to simulated annealing.

The matrix pi(�) is initialized by assigning a constant value to each element and

then adding noise to avoid numerical instabilities. The type of noise, Gaussian or

uniform, is not critical. The level � is kept small with respect to the initial constant

value. Also, a bias is added to the i = � diagonal. This bias is used to bring the

initial condition closer to the �nal solution. Finally, each vector pi is normalized for

each i. Therefore,

pi(�)1 = 1 + � � noise 8i; �; (3.14)

pi(�)2 =

8><
>:

pi(�)1 + bias: if i = �

pi(�)1 otherwise
; (3.15)

pi(�) = pi(�)2=
X
�

pi(�)2 8i: (3.16)

Now that the labels, the constraints and the initial conditions have been assigned,

continuous relaxation labelling can be applied as explained in Section 3.2. Upon

convergence, the labels assigned to each node are ordered according to their updated

likelihood values. The label assigned to each node is that with the highest likelihood.

Merges are detected simply by noting adjacent nodes with the same label.
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Section 4 Implementation and Results

4.1 Implementation

To evaluate the algorithms described in the previous sections, test bed environments

were implemented on SUN SPARC and Silicon Graphics platforms. Range images

were typically of the order of 256�256 at 10-bits/pixel of depth resolution. The data

was processed in four steps: a pre-processing step to correct gross measurement errors

from the range �nding system; then the di�usion step, as presented in Chapter 2, to

bring out the underlying structure in the image; then a region segmentation and part

boundaries detection step; and �nally the resolution step, as presented in Chapter 3,

to validate region contours with part boundaries.

4.2 Results

Fifteen range images were successfully partitioned with very little parameter adjust-

ments [24]. These images came from three di�erent sources: The Canadian National

Research Council in Ottawa [30], the Pattern Recognition and Image Processing Lab-

oratory in Michigan [23] and the McGill Research Center for Intelligent Machines in

Montreal. The images span a wide variety of object types in terms of noise, texture

and number of constituting parts. The results from the scale space and the resolution

algorithms will now be presented for some of the images.

4.3 Scale Space Results

Samples of the scale space representation for two di�erent images will now be pre-

sented. For each of these images, the samples of the scale space were taken at regular

intervals on a logarithmic scale. The images shown consist of the closed contours of

the segmented regions at each sampled scale.
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4. Implementation and Results

In Figure 4.1, the samples of the scale space for a wooden doll were taken at four

di�erent scales. Figure 4.1a shows the contours of the region segmentation before

any di�usion was applied. The over-segmentation of the doll over the limbs, chest

and head is caused by noise measurement and quantization error. For example the

chest, which is mostly convex, locally contains non-convex features that obscure its

general structure. The second sample in Figure 4.1b is taken after �ve iterations

of the di�usion algorithm. It shows that noise is rapidly eliminated to make room

for larger regions that correspond better to each part. The chest is less segmented.

Figure 4.1c is the third sample in the scale space, taken after 30 iterations. Here,

there is almost a one-to-one correspondence between the parts and the regions. Some

parts, such as the legs, are still over-segmented, these parts not being entirely convex.

a) Region segmentation be-
fore any di�usion. The
parts of the doll are over-
segmented because of noise
on the surface.

b) After 5 iterations of di�u-
sion, some noise still causes
over-segmentation on some
parts.

c) After 30 iterations, each
part consists mostly of a
single region.

Figure 4.1: Curvature scale space of the CNRC doll.
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4. Implementation and Results

A similar scale space is presented in Figure 4.2 for the range images of a plate

of mushrooms. Also, samples of the scale space for a rock pile were presented in

Chapter 2, Figure 2.7. For these two scale spaces, the same type of behavior as

with the doll can be observed: noise initially causes an over-segmentation; after a few

iterations of di�usion, the texture of the object is made explicit; after more di�usion,

there is almost a one-to-one correspondence between the regions and the parts that

constitutes the objects.

a) Region segmentation before any di�usion.
The mushrooms are barely distinguishable.

b) After 50 iterations of di�usion, the mush-
rooms are well segmented, but some noisy
regions persist on the plate and around the
stems.

c) After 300 iterations, small regions still sur-
vive on the plate because it is a smooth con-
cave region rather than a convex one.

d) After 1500 iterations, more regions have
merged together. We approach the �gure-
ground (plate-background) separation.

Figure 4.2: Curvature scale space of the CNRC mushrooms.
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4.4 Results from the Resolution Algorithm

After di�usion, edge and region extraction, the resolution algorithm presented in

Chapter 3 was applied to the range images. In the two examples that follow, it will

be shown how the extracted edges support the presence of part boundaries and how

non-supported boundaries are removed through the merging of adjacent regions.

For the wooden doll of Figure 4.3a, edges are extracted (4.3b) and are used to

validate the region segmentation (4.3c). The resulting partition is shown in Figure

4.3d. The blowup in 4.3b shows extracted edges in the doll's elbow. On each side

of the arm, enough edges have been detected for a simple interpolation algorithm

to connect them, but only a few edges separating the forearm from the arm have

been detected. An interpolation algorithm would fail completing this segment. The

blowup in 4.3c shows the contours of the region segmentation for the same elbow.

These contours are connected segments and will serve in interpolating the edges on

each side of the arm and on the arm/forearm separation. The blowup of 4.3d shows

the partition that is most consistent with both 4.3b and c. In this example, all

previously extracted regions are kept as they are all supported by edge features. The

arm/forearm separation has been properly interpolated. A small region has also been

identi�ed: it is the elbow section that is made of a very small wood sphere.

Figure 4.4 shows that the resolution algorithm not only interpolates detected

edges but also merges regions whose common boundary is not supported by any edge

feature. The shaded range image of a plate of mushrooms is presented in Figure 4.4a.

The blowup in 4.4b shows that extracted edges suggest the presence of a stem, but

here also, interpolation is required. The segment that will perform this interpolation

will be provided by region segmentation as shown by 4.4c in the blowup. On the other

hand, this image clearly consists of an over- segmentation. Many region boundaries

are not supported by any edge feature. The blowup in Figure 4.4d shows that the

stem has been properly interpolated while the regions whose common boundary was

not supported have been merged to form a single region.
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4. Implementation and Results

a)

b) c)

d)
a) Rendered original. b) Detected edges after 30 iterations of di�usion. Blowup of the elbow
shows enough cues to suggest segmentation of the forearm, but interpolation is necessary to obtain
two closed regions. c) Region segmentation taken from the scale space. It provides the necessary
contour to interpolate the cues in the elbow. Also note that there are contours in each leg that are
not supported by any cues. d) Merging, 39 groups found, 28 groups had over 5 datapoints. The
expected interpolation occurred in the elbow and regions have been properly merged in each leg.

Figure 4.3: Merging results of CNRC doll, 256x256.
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a)

b) c)

d)
a) Rendered original. b) Detected edges after 300 iterations of di�usion. Blowup shows cues
that support the presence of a stem. c) Region segmentation taken from the scale space.
Boundary of the stem is present along with other boundaries not supported by the cues. d)
After merging, 149 groups found, 18 groups had over 5 datapoints. The stem is properly
identi�ed and most unsupported boundaries have been removed.

Figure 4.4: Merging results of the CNRC mushrooms, 256x256.
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4.5 Results Summary

To summarize this chapter, results for ten range images are presented in a condensed

format. For each range image, four �gures are presented. The �rst �gure consists

of the original rendered range image. The second is the �nal segmentation, after

the resolution algorithm has been applied and regions with few datapoints have been

�ltered out. The next two �gures show how the resulting representations can serve

as a basis for computing object models.

For each �nal partition, a new rendering is determined by �tting superquadric

primitives to the data corresponding to each surface region. Superquadric �tting

algorithms are often very sensitive to the distribution of datasets to be �tted. They

converge with small residual error when the input dataset corresponds to a sampling

of the superquadric model surface to which Gaussian noise is added. The residual

error is large when the partition is wrong and the datasets are non-convex. The

badly partitioned datapoints become outliers in the dataset and cause large residual

errors in the �t. Unless robust �tting algorithms are used for modelling the parts in

a range image, the partitioning algorithm must determine the exact location of the

part boundaries. The last two �gures that are presented for each range image show

a mesh of the �tted superquadrics and the rendered equivalent. The resemblance of

the rendered models to the original object can be used as a qualitative test of the

partitioning algorithm.

Four types of range images are presented. Common objects are shown �rst in

Figures 4.5 to 4.8: a pencil sharpener, a cup, a bowl of mushrooms and a fruit

assortment. In this last example, bananas are properly partitioned, but superquadric

models are not suitable for their bent shape. Deformable superquadrics should be

considered.
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a) b) c) d)
a) Rendered original. b) After 100 iterations of di�usion and merging, 20 groups were
found, 8 groups had over 25 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.5: Partition of the CNRC sharpener, 256x256.

a) b) c) d)
a) Rendered original. b) After 100 iterations of di�usion and merging, 32 groups were
found, 2 groups had over 25 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.6: Partition of the Michigan PRIP cup, 240x240.
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a) b) c) d)
a) Rendered original. b) After 300 iterations of di�usion and merging, 149 groups were
found, 18 groups had over 25 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.7: Partition of the CNRC mushrooms, 256x256.

a) b) c) d)
a) Rendered original. b) After 30 iterations of di�usion and merging, 322 groups were
found, 42 groups had over 25 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.8: Partition of the CNRC fruit assortment, 256x256.
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The second set of range images consists of mechanical parts that could be en-

countered along an assembly line. The �nal superquadric models could be used for

recognition and grasping of the objects. These are shown in Figures 4.9 to 4.10.

They consist of adaptors and a Y-shaped pipe.

a) b) c) d)
a) Rendered original. b) After 100 iterations of di�usion and merging, 38 groups were
found, 3 groups had over 25 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.9: Partition of a third Michigan PRIP component, 240x240.

a) b) c) d)
a) Rendered original. b) After 100 iterations of di�usion and merging, 200 groups were
found, 6 groups had over 25 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.10: Partition of a Michigan PRIP Y-pipe, 240x240.

The third set of images presents toys: a wooden doll obtained from the CNRC and

another one obtained from the McRCIM laboratory. Although the pose and amount

of noise di�er noticeably for the two examples, the �nal representations do not di�er

drastically. These images are shown in Figures 4.11 to 4.12.
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a) b) c) d)
a) Rendered original. b) After 30 iterations of di�usion and merging, 39 groups were
found, 28 groups had over 5 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.11: Partition of the CNRC doll, 256x256.

a) b) c) d)
a) Rendered original. b) After 150 iterations of di�usion and merging, 88 groups were
found, 20 groups had over 5 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.12: Partition of the McRCIM doll, 255x256.
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The last set consists of mineral samples. In these, the resolution algorithm did not

improve the partitioning signi�cantly. A �ltering algorithm, which retains the larger

regions from the region segmentation, would have su�ced. Some of these examples

could not easily be partitioned by previous algorithms based on a Gaussian scale

space [6, 4, 5, 3] however they posed no problem to the curvature scale space with

boundary conditions presented in this paper. They are presented in 4.13 to 4.14.

a) b) c) d)
a) Rendered original. b) After 1000 iterations of di�usion and merging, 28 groups were
found, 2 groups had over 50 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.13: Partition of two McRCIM rocks, 256x256.

a) b) c) d)
a) Rendered original. b) After 1000 iterations of di�usion and merging, 77 groups were
found, 6 groups had over 50 datapoints. c) Mesh of �tted superquadrics. d) Rendered
superquadrics.

Figure 4.14: Partition of three McRCIM rocks, 256x196.
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Section 5 Conclusion

The task of partitioning surface information into part-oriented descriptions of object

geometry is fundamental to problems of object recognition and model building. This

paper presented a partitioning method, given objects that can be characterized as

conjunctions of convex parts. The key idea borrowed from early work in computer

vision, that is, the concurrent application of edge-based and region-based methods of

image segmentation.

The contribution in this paper is a re-casting of this paradigm in terms of surface

di�erential geometry and the development of a solution using constraint propagation

networks (a.k.a. relaxation labelling). The results obtained demonstrate that the

resulting algorithms work very well and can provide a sound basis for the generation

of object models as was shown with the superquadric renderings.

Future work will be directed at �nding how to use multiple scales to perform an

interpolation because di�erent parts of objects are likely to be best represented at

di�erent scales.

Given the complexity of the overall processing, the results obtained are both stable

and robust. This is largely due to the involvement of two complementary processes.

In cases where the scale space was fragmented because of noise in the input data,

the resolution algorithm was still able to determine a consistent interpretation, albeit

at a signi�cant increase in computation time. Errors in the detection of boundary

features and the resulting errors in constraint functions were often accommodated by

cues provided by the scale space description. This experience suggests that there is

still much to be gained in exploiting computation based on multiple representations

as advocated back in the seventies [34].
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