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Abstract. Complex robotic tasks such as autonomous exploration

and grasping demand the co-operation of sensors and actuators. In

order to integrate sensor measurements and actuator control schemes

we must determine the rigid body transformations that relate the native

co-ordinate frames of these devices. Equivalently, we need to estimate

the relative pose of sensors and actuators in the system.

We examine the problem of determining the pose of a robot-

mounted range-�nding camera, and present a class of solutions mo-

tivated by the idea that mobile camera calibration is best addressed by

an ongoing dynamic estimation process. We use range measurements

and known robot kinematics to provide the estimate of camera pose

which is maximally consistent with the available data. Our scheme

uses scene features that are often present in typical workcell scenes and

that are easily and reliably extracted. We develop several formulations

of the principle, and present experimental results for both simulated

and real data sets.

R�esum�e. L'exploration autonome et la pr�ehension, comme exemples

de tâches robotiques complexes, requirent la coop�eration de plusieurs

capteurs et de plusieurs moteurs. L'int�egration de donn�ees visuelles

dans le sch�ema de contrôle demande que l'on connaisse les transfor-

mations qui relient les coordonn�ees de base de chaque sous-syst�eme.

Autrement dit, il faut estimer la pose relative des capteurs et manipu-

lateurs composant le syst�eme.

Nous examinons l'estimation de la pose d'une cam�era t�el�em�etrique

manipul�ee par robot, et pr�esentons une classe de solutions qui d�ecoulent

de l'id�ee que la calibration est un proc�ed�e dynamique et continuel. Les

mesures prises par la cam�era et la connaissance de la cin�ematique du

manipulateur permettent d'extraire estimation la plus consistante de la

transformation cam�era-robot. La m�ethode exploite des particularit�es

g�eom�etriques qui sont pr�esents dans la plupart des sc�enes typiques, et

qui sont facilement identi�ables. Nous d�eveloppons plusieurs formu-

lations du principe, et nous pr�esentons les r�esultats d'essais avec des

donn�ees simul�ees et r�eelles.
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1. Introduction

CHAPTER 1

Introduction

1. Motivation

Consider an image sensor, such as a conventional intensity camera or a range-

�nding sensor, mounted on the end e�ector of a mobile robot (Figure 1.1). The utility

of this con�guration lies in its ability to provide multiple views of a scene, which

may yield information from object surfaces which would be occluded or otherwise

ambiguous from a single viewpoint. In order to assimilate the information acquired

from several viewpoints we need to map between the local co-ordinate frames of

the sensor at each position. This requires knowledge of the relative motion between

sensor positions; often we also �nd it useful to know the absolute sensor positions

with respect to some global co-ordinate system.

In general we have some knowledge of end e�ector position from the kinematic

model of the robot manipulator. The orientation of the sensor frame with respect

to the robot end e�ector, often called the \hand-eye transformation", may not be

known, and indeed it is often di�cult to measure. This is largely because the camera

co-ordinate system may be de�ned with respect to the camera's optical axes (which

may be physically inaccessible and not indicated by any mechanical feature), or may

be arbitrarily de�ned by a numerical calibration process. In this thesis we explore the

problem of determining the end-e�ector-to-camera co-ordinate transformation for the

case of a robot-mounted range-�nding sensor, and develop a class of solution methods

which address both the analytic and the practical di�culties inherent in the task.

Typically, the hand-eye calibration problem is regarded as a static computation

that is performed once after assembly of a robotic system under highly constrained

conditions and using optimally designed jigs or calibration targets. While this ap-

proach is expedient, it fails to address several important considerations that arise in

a practical context. If the sensor is re-calibrated, removed and re-installed, or if its
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1. Introduction

Figure 1.1. Industrial robot manipulating a scanning laser range-�nding camera.

�xture to the robot changes in any way, the static calibration procedure must be

repeated. This requires introduction of the calibration jig into the work environment

and cessation of normal operations while the procedure is executed. Furthermore,

the calibration generally requires that the robot kinematics be precisely known; in

practice, positioning errors in industrial robots can be large, and are highly complex

functions of con�guration, static and dynamic loading conditions, and location in the

workspace.

In this thesis we argue in favour of a dynamic calibration scheme. Such a pro-

cedure runs continuously during normal operation of the system, and uses data from

the robot/sensor complex as well as feature correspondences indicated by higher level

processes which either know or infer the structure of the environment. The premise of

the calibration is to seek hand-eye transformation parameters which make measured

data maximally consistent with known or inferred models of objects in the workspace.

We cast the problem in a parameter estimation framework, and visualize the solu-

tion as a �lter taking feature correspondence data as input and generating kinematic

parameter estimates as output (Figure 1.2).

2



1. Introduction

Figure 1.2. Dynamic calibration. Estimates of camera pose helps to establish
feature correspondences between views, which in turn are used to re�ne the pose
estimates.

2. Contribution

The major contributions of this thesis are (i) a novel dynamic formulation of the

hand-eye calibration problem, and (ii) a demonstration that hand-eye calibration can

be computed simultaneous with the execution of a robotic vision system's primary

task. We select an invariant feature in the environment for which correspondence

between views is easily and reliably established, and collect a sequence of views of

that feature from di�erent positions. We then compute the hand-eye transformation

that is most consistent with the correspondence hypothesis, given the data currently

available. Our approach is:

- dynamic, in the sense that it runs continuously and can adapt to changing

conditions in the workspace

- capable of accommodating partial information, i.e. features that do not com-

pletely constrain rotations and translations in six degrees of freedom

- tolerant of errors in feature extraction and robot kinematic control

- economical in terms of its constraints on the structure of objects in the

workspace, as well as in computational complexity

- applicable as a static calibration, requiring no special calibration jigs or manual

measurements of the scene

3



1. Introduction

Central to the practical utility of such a scheme is the selection of features which

can be reliably estimated and tracked in typical task environments. We formulate our

estimator for both point features and planar surfaces, as these represent two feature

classes which are common and easily recovered in many real situations. In particular,

we do not require that position of the invariant features be known in any global co-

ordinate system, that more than one such feature be available in the environment, or

that 6-DOF pose and position of an object be estimated from a single image frame.

3. Overview

We begin in Chapter 2 with a formal statement of our calibration problem, and

with a discussion of the desired characteristics of the solution. We survey previous

work of other researchers in this area, and explore the strong relationship of this

problem to static camera calibration, robot kinematic calibration, motion estimation,

and integration of multiple views.

In Chapter 3, we present a solution to the hand-eye calibration problem for mobile

range-�nding cameras based on correspondence of a single point feature across a

sequence of views. The solution is a minimum mean squared error estimator that is

linear in the data, but incorporates nonlinear orthonormality constraints. We also

develop two solutions for the case where the invariant feature is a planar surface.

The �rst of these follows directly from the point-feature development, but is based

on a distance metric that exhibits several undesirable characteristics. The second

formulation improves on the metric problem, but implies a somewhat more expensive

computation. The formulation for plane features is particularly appealing in many

practical contexts, since it is often very easy to �nd and extract an invariant planar

surface (such as a 
oor or table-top) from the scene. In all cases, we emphasize

computational methods which use �nite memory resources, as this is an important

characteristic of �lter processes that run perpetually.

We demonstrate experimental results of the calibration processes in Chapter 4.

We �rst assess accuracy and stability of the point-feature estimator using simulated

data. Both plane-feature formulations are simulated in order to gain some insight into

the impact of the metric problem inherent in the �rst estimator. Finally, we show the

4



1. Introduction

performance of the plane formulation with real data gathered from our experimental

apparatus and compare with the simulated results.

In Chapter 5 we summarize the dynamic calibration technique proposed, and

comment on several issues that remain for future study. We also remark brie
y on

other sensor calibration problems encountered in our laboratory which are solved by

adaptations of our method.

5



2. Problem Overview

CHAPTER 2

Problem Overview

Our discussion of the range-�nding camera hand-eye calibration problem makes fre-

quent reference to co-ordinate frames and transformations between frames, so we

begin by introducing suitable notation. We then state our formulation of the cali-

bration problem, and identify the desired characteristics of a solution. Finally, we

survey the work of other researchers on this and other related problems, and gather

a number of ideas that are useful in our development of solutions.

1. Background - Co-ordinate Frames and Transformations

A point in 3-space is represented by a 3-vector vF , where the components of v in-

dicate displacements along three orthogonal basis directions provided by a co-ordinate

frame F . The world co-ordinate frame W is arbitrarily de�ned to lie somewhere in

space, and an un-subscripted vector v is conventionally assumed to be relative to W

unless the context indicates otherwise.

A frame F is de�ned by the transformation TFW which maps vectors in F into

corresponding vectors inW , as vW = TFWvF . We interpret TFW as an operator, and for

the moment make no assumptions about its mathematical form or parameterization.

Euler's theorem indicates that for rigid objects and motions the transformation can

always be decomposed as a rotation of basis and a translation, which implies that

TFW expresses the position and orientation of F with respect to W .

It is convenient to generalize the notion of co-ordinate transformations to objects

other than points in space. A parametric object such as a geometric solid, surface or

direction in space is described with respect to frame W by a vector of its parameters

fW . Its representation in another frame F is given by TWF fW , where we understand
6



2. Problem Overview

the operator TWF to apply a transformation appropriate to the parameterization of

fW . No ambiguity results as long as we restrict our analysis to a single object class.

We also introduce a natural notation for compositions and inverses of co-ordinate

transformations. Given frames A, B and C, we have

TAC = TBCTAB
TAB = TBA�1

2. Robot Vision Workcell

While the calibration problem we describe is of a quite general nature, for clarity

and concreteness we pose it in the context of the robot vision workcell found in our

laboratory. Our workcell consists of an optical range-�nding sensor mounted on the

end-e�ector of a 6-DOF robot manipulator, as in Figure 1.1. Referring to Figure 2.3,

we de�ne the relevant co-ordinate frames and transformations.

Figure 2.3. Coordinate frames and kinematic loops of the robot/range-�nding
camera complex.

2.1. Robot. The robot base frame B is �xed with respect to W , and the

transformation TBW is assumed to be known. In general we are free to de�ne W , and

in much of this thesis �nd it convenient to identify W with B, in which case TBW is

7



2. Problem Overview

the identity. Relationships between the coordinate frames of the robotic workcell are

shown schematically in Figure 2.4.

Figure 2.4. Schematic view of the workcell kinematic loops.

The robot end e�ector has a rigidly attached co-ordinate frame R. The position

and pose of the end e�ector with respect to robot base TRB can be computed for any

robot position from the known robot kinematic model and measured joint encoder

values [22]. In practice we control the robot by specifying values of TRB, and rely

on robot control software to compute and achieve the required joint angles. We note

that the measured quantity TRB may di�er somewhat from the true value TRB, due to
errors in the kinematic model and to un-modelled loading e�ects. The resolution of

kinematic model errors is itself a signi�cant problem in robotics [11, 24], and for our

purposes we merely acknowledge that TRB is corrupted by a noise process.

2.2. Range-�nding Camera. The range-�nding camera measures distance to

the nearest opaque surface along a ray emanating from its optical centre. The ray is

swept in two axes, and a two-dimensional depth map of the scene is captured. Each

pixel of the range image identi�es the (x; y; z) co-ordinates of a point that lies in

the surface of a scene object. These co-ordinates are expressed with respect to the

camera's intrinsic co-ordinate frame C, which may be aligned with the optical axes of

the camera itself, or may be completely arbitrary with respect to camera geometry.

Note that the camera measures radial distance from its optical centre to a surface,

and that these measurements are mapped onto C by image acquisition software. The

determination of this mapping is called intrinsic calibration [32], as it depends solely

8



2. Problem Overview

on optical and mechanical characteristics of the camera itself. We assume that an

intrinsic calibration of the camera has been obtained previously by a static procedure,

and we do not consider it further.

TCW gives the location of the camera in world co-ordinates. In order to merge

image data acquired from several robot positions TRB i, we need to know the actual

camera positions TCW i in the world frame 1. This can be computed from the kinematic

loop of Figure 2.4 as

TCW i = TBWTRBiTCR = TRW iTCR (1)

where TCR is the constant transformation relating the camera frame C to the robot

end e�ector R. Since TRW i can be obtained from the robot controller and the known

transformation TBW , our problem is to determine TCR from some appropriate mea-

surement or series of measurements.

3. Problem Statement

We typically use an estimate of TCR, along with measurements of robot end-

e�ector position, to map camera measurements from di�erent view stations into a

common reference frame W . It is therefore natural to formulate the estimator for

TCR to minimize the error in this mapping over a typical sample of measurements.

In other words, we seek the estimate of TCR which is maximally consistent with all

observations. We can now state our approach to the hand-eye calibration problem as

follows.

Given the kinematic con�guration of Figure 2.4, we select a measurable invariant

feature fW in the workspace, some or all of the parameters of which may be unknown.

De�ne a metric �(f ;g) � 0 which measures the distance between two features f and

g, where the notion of distance is appropriate to the feature class. Then we seek

minimum mean-square error (MMSE) estimates TCR and fW which satisfy

min
TCR2
;fW

nX
i=1

wi�
2(TRW iTCRfC i; fW ) (2)

1This is equivalent to knowing relative camera motions if we de�ne the world co-ordinate frame to coincide with
one of the camera positions.

9



2. Problem Overview

Here, 
 is the set of rigid motion transformations, fC i is the feature measurement

acquired from the ith viewpoint, wi is a weight re
ecting con�dence in the data ac-

quired at viewpoint i, and n is the total number of available views. Note in particular

that we minimize not only over transformations TCR, but also over parameters of the

invariant feature fW .

This analytic statement alone does not completely characterize our calibration

problem. We must identify several practical and computational goals that motivate

our development of estimators for TCR and fW .

(i) Dynamic calibration

We seek a calibration process that can run continuously during execution of

robot vision system tasks, which may be inspection, exploration, grasping, or

similar actions. We therefore do not assume that we have direct control over

the placement or selection of objects in the workspace, or over the trajectory

of the robot. Our procedure should provide the best possible estimate of the

unknowns based on whatever data is available.

(ii) Detectable features

Invariant feature objects used by the calibration scheme should be chosen such

that extraction from a range image and detection of correspondence across

views can be performed easily and reliably. In particular, we would like to

utilize feature objects that are likely to be found in the task environment,

rather than to introduce to the scene a dedicated calibration target.

(iii) Observability

Observability of our system is equivalent to the requirement that the measure-

ments we take be su�cient to constrain the estimated parameters. We must

ensure that the chosen feature classes are su�ciently descriptive to permit ob-

servation of all modes of TCR. We show later that the selection of manipulator

positions also governs observability. Since manipulator motions are directed

primarily by task objectives (and not by the calibration process), we must

detect conditions under which observability is marginal or totally lacking.

(iv) Finite memory

Computationally, we seek an estimator having the behavior of a digital �lter.

10



2. Problem Overview

Each time a new view of the reference feature is obtained, we compute an

updated estimate for the unknowns based on the entire data set. In practice

this demands that the estimator be implementable in �nite memory, and places

some strong constraints on admissible solution methods.

(v) Physically realizable transforms

The fact that our kinematic equations arise from rigid spatial relations implies

that the estimate of TCR should correspond to a physical rotation and transla-

tion of frames. Many useful parameterizations of co-ordinate transformations

have more than the six degrees of freedom consistent with rotation and trans-

lation, and admit solutions that fall outside the space of physically realizable

transformations. While we should ensure that our estimator produce physi-

cally realizable transformations, we believe that a non-realizable solution that

is signi�cantly better (in the sense of our projection error metric) than the

best realizable one is useful in practice and may provide insight into other er-

rors in the kinematic loop (i.e. static calibration of the range-�nder and robot

manipulator).

Having su�ciently motivated our e�orts, we now turn to the literature and ex-

amine previous work on related problems.

4. Related Work

4.1. Representing Rotations. One of the signi�cant issues arising in the

development of our computational procedure is the selection of an appropriate rep-

resentation for rigid co-ordinate transformations, and in particular for the rotation

part. Spring provides a useful overview of this issue in [29], and we quickly summarize

the high points here.

The rotation of a column 3-vector, v, is a linear, length- and angle-preserving

transformation that can be expressed as matrix multiplication by a 3 � 3 real or-

thonormal matrix RAB, as vB = RABvA. This is a convenient representation for

computing rotations, but is inappropriate as a parametrization of rotation because

the number of parameters (9) exceeds the number of degrees of freedom in 3-space

11



2. Problem Overview

rotation (3). The column vectors of a rotation matrix RAB are the unit basis direc-

tions of B expressed in A. The components of a rotation matrix satisfy six implicit

constraint equations which enforce unit length and mutual orthogonality on these

basis vectors.

General rotations may be parameterized by triples of Euler angles. The three

parameters of a Euler angle representation specify successive rotations about de�ned

basis directions. While the number of parameters equals the number of degrees of

freedom in rotation, Euler angle representations su�er several limitations. There

exist many di�erent and incompatible Euler parameterizations according to the se-

lection of rotation axes and the order of successive application, so it is important to

specify which member of this family of representations is intended. The conversion

of Euler angles to rotation matrices requires evaluation of trigonometric functions,

which are computationally expensive and introduce analytic nonlinearity. Finally,

Euler representations have singular con�gurations in which a set of representations

are equivalent, which can introduce computational di�culties.

A representation for rotations which has received much attention in the literature

is the quaternion, and in particular the unit quaternion [29, 27, 12, 41]. The quater-

nion is a 4-vector which can be viewed as the composition of a scalar and a 3-vector.

The direction of the 3-vector identi�es the axis of rotation, and the scalar encodes

the magnitude of rotation about that axis. There exists a particularly elegant alge-

bra for the manipulation of quaternions [10], and it is �nding increasing application

in both analytic and computational work in computer graphics, machine vision and

robotics. Quaternions do, however, have several limitations. Use of a 4-vector still

represents an over-parameterization of rotation, which often motivates a restriction to

unit quaternions. Rotation of a vector is a nonlinear operation requiring two quater-

nion multiplications. Despite this, it is clear that quaternion algebra is a powerful

analytic tool, and arguably provides the most natural mathematical framework for

manipulating rotations.

4.2. Integrating Multiple Views. The construction of descriptive models of

the environment from sensor data generally entails the need to merge data acquired

from multiple viewpoints. This is because a single viewpoint rarely provides su�cient

12
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information to fully constrain the model building process. Successful view integration

typically requires that registration of the image coordinate systems be accomplished

with very high precision. The degree of kinematic precision available from many

manipulator platforms (including both �xed-base industrial robots and free-roving

mobile systems) is often inadequate to provide adequate registration based purely on

sensor/manipulator calibration, and we must resort to re�nements based on feature

matching between views. Much work has been done on this problem; a review can

be found in [28]. In general, establishing correspondence over a dense feature set

is a complex optimization problem with many local minima, and the quality of the

result is therefore highly dependent on having a good initial estimate of relative

camera motion. Our aim in the present work is not to eliminate the need for motion

parameter re�nement based on local feature correspondences, but to ensure that the

best possible initial estimate is provided to this process by the camera positioning

complex.

4.3. Estimating Orientation in Photogrammetry. The problem of deter-

mining unknown solid rotations and translations in three dimensions was explored

early on by the photogrammetric community, and their work signi�cantly predates

the recent contributions of robotics and computer vision researchers. Their problem

generally involved estimating the relative position and pose of two airborne cameras

(or a single moving camera), as well as the orientation of a multi-camera system in

space. These are respectively called problems of relative and absolute orientation [31],

although analytically these problems are equivalent (see Section 2.2).

Solutions to absolute orientation have been proposed by many authors. Given a

number of corresponding points in two frames, it is straightforward to solve for the

translation between frames, as well as an optional scale factor [12]. Estimation of

the rotational component is less obvious. Thompson [30] and Schut [25] obtain exact

rotation parameters from three pairs of point correspondences and o�er no means of

incorporating more data in the formulation. Their methods are computationally ex-

pedient, but implicitly assume the data to be error-free. Furthermore, these methods

use the data in an asymmetric manner, so that in the case of noisy data it is possible

to obtain di�erent results simply by re-ordering the data points.

13



2. Problem Overview

Oswal and Balasubramanian [19] present a solution that accommodates redun-

dant measurements, but which generates a rotation matrix that is not orthogonal.

Their approach obtains the nine components of a 3 � 3 rotation matrix by solution

of a set of linear equations. The authors attempt to orthogonalize the solution, but

their method results in neither an orthogonal matrix nor a minimum error solution to

the original estimation problem. Despite this, we can make two useful observations

about their method:

� the over-parameterization of a rotation (3-DOF) by the components of a 3� 3

matrix (9-DOF) is computationally convenient, because it results in a com-

pletely linear formulation

� if measurement errors are independent, identically distributed, normal and

zero-mean, then as more data is collected the estimate will converge to the

true, orthogonal, rotation matrix.

B.K.P. Horn solves absolute orientation in closed form using unit quaternions [12],

and with orthonormal rotation matrices [13]. Both methods directly yield real rota-

tions that solve the over-constrained case (many point correspondences) in a minimum

mean-squared error sense, by solution of a low-order eigenvector problem. In each

method, a minimum of three point correspondences are required between two views.

Horn's solutions have the desirable properties that all data points contribute equally

to the solution (unlike methods which imply an ordering of the data points), and that

the solution is symmetric with respect to interchange of the two views.

Note that the estimation of absolute orientation from point matches is useful to

us in two ways. First, by providing the camera motion parameters directly, it permits

integration of data from multiple views without recourse to measured joint positions

and kinematic models of the robot, or indeed to the camera hand-eye transform.

While this is highly useful, we also need a method to establish camera orientation

in the common case where scene ambiguity denies us the necessary point correspon-

dences. Second, an estimate of relative camera motion between two views can be used

in conjunction with an estimate of robot end e�ector motion, in order to determine

14
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the camera hand-eye transform. However, the solution for camera orientation is but

one step of this nontrivial process, which we discuss in Section 4.5.

4.4. Motion Estimation. The problem of motion estimation posed by the

computer vision and robotics community is basically the same as that of orientation

in photogrammetry: given two views of a scene, extract the motion parameters of

the camera. Equivalently, we may assume the camera to be stationary and objects

in the scene to be in motion. The problem is generally approached by establishing

point matches between image frames, and computing the rigid transformation which

best maps between correspondences. The nature of solutions to this problem depend

strongly on the projection model of the camera employed.

Motion estimation under perspective projection has been studied at length [6].

Characterization of conditions under which the problem can be solved and the number

of point correspondences required is rather involved. A number of authors consider

the case of orthographic projection [35, 15, 14], where the results are somewhat more

straightforward. It is understood that an orthographic projection model may be a

suitable substitute for perspective in the case of intensity cameras with long focal

lengths. The extension of our formulation for range-�nding cameras to intensity

cameras is of some interest, but is beyond our present scope.

In three-dimensionalmotion estimation the measurement source is a range-�nding

camera or stereo-vision system, or in general a device capable of delivering point

measurements in 3-space. Many authors have considered this problem (see [4] for a

review). Estimation of an orthonormal matrix which best maps one set of vectors into

another in the least squares sense is known as the orthogonal Procrustes problem, and

is solved directly using the singular value decomposition [9]. This solution implicitly

models errors as being con�ned to one view. When both views are corrupted by noise

(which is generally the case), a solution based on the method of total least squares

(TLS) [9, 8] is more appropriate, and is studied in [4]. It should be noted that the

TLS solution generates a rotation matrix that is orthogonal, but not orthonormal.
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4.5. Camera Hand-eye Calibration. At this point we have acquired a bat-

tery of methods for establishing camera motion parameters from point correspon-

dences in two views. Several methods for computing the hand-eye calibration of a

mobile camera are built on this procedure, as we show presently.

Suppose that we have captured two views of static scene, and have successfully

established the camera motion by one of the methods of sections 4.3 or 4.4. Referring

to Figure 2.5, we can write the closed kinematic loop equation

TC1C2TCR = TCRTR1R2 (3)

This expression is obtained by equating transformations from camera frame C1 to

robot frame R2 via di�erent paths around the kinematic loop. We are interested in

solutions TCR satisfying (3), given that we can measure the camera motion TC1C2 as
above, and obtain the robot manipulator motion TR1R2 from known robot kinematics

and joint measurements. This problem is addressed by Shiu and Ahmad [26] using

homogeneous representations of rigid motion, and rather more directly by Zhuang

and Roth [41] using a quaternion formulation. This provides another compelling

example of the power of quaternion representations, for their application results in a

far simpler presentation, as well as additional insight that was not forthcoming in the

homogeneous transform representation. Both authors conclude that two pairs of views

satisfying some weak conditions are required for a unique solution to TCR. Zhuang

and Roth further point out that their method is easily extended to accommodate

over-constrained data in a least-squares framework.

Angeles [1] presents a solution based on vector invariants of rotation matrices,

which he applies to the hand-eye calibration problem. The solution uses Gramm-

Schmidt orthogonalization and results in an extremely simple computational proce-

dure. While the solution is exact and makes no attempt to account for measurements

corrupted by noise, it appears that extension of this methodology to over-constrained

data should be straightforward.

Tsai and Lenz propose a similar solution to the hand-eye problem [33, 34] as part

of a series of camera calibration solutions for mobile CCD cameras [32, 16, 34]. A

linear algebraic equation which must be satis�ed by transformations between pairs
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Figure 2.5. Kinematic loops for two camera positions C1 and C2. The relative
end e�ector motion TR1R2 is known from robot kinematics, and the relative camera
motion TC1C2 is the displacement of the feature in camera co-ordinates between the
two views.

of viewpoints is derived, and a system of several such pairs (at least two) is solved

for the minimizing rotations and translations comprising TCR. The authors provide

a thorough analysis of error propagation and show quite impressive practical results.

However, since pairs of camera stations comprise a datum in their minimization frame-

work, it is necessary to consider all combinations of view stations in order to fully

utilize the information present in the data set (pairing only of stations adjacent in

time does not completely utilize the data). Thus it is necessary to store the data

from each view independently, and the memory requirement of the procedure grows

with time.

We should point out that all of these procedures require that the position and

pose of the camera with respect to a �xed calibration target or a previous camera

station has been obtained for each view. This requires either the solution of a motion

estimation problem (sections 4.3 and 4.4), or the use of a known target from which

camera position and pose can be estimated unambiguously. In [34], a precision optical

target is employed, and the solution of camera orientation relative to the target is

given in [32] as part of the calibration of intrinsic camera parameters.

4.6. Robot Kinematic Calibration. We digress brie
y to explore work in

the area of robot kinematic calibration. All attempts to estimate TCR using computed

end-e�ector orientations are subject to errors in the robot kinematic model, so some
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attention to this issue is called for. Furthermore, robot calibration bears several

interesting similarities to our camera calibration problem.

The forward kinematics of a serial link manipulator are conveniently represented

by a composition of co-ordinate transformations between successive links. Each trans-

formation is commonly parameterized in terms of Denavit-Hartenberg (D-H) param-

eters [5, 22], which represent two rotations and two translations for each link. In the

case of a revolute joint, one of the angular D-H parameters is controlled and measured

via a joint encoder, while the others are �xed design parameters. These values are

subject to error from a variety of sources: machining and assembly tolerances, gear

backlash, and link 
ex due to static or dynamic loading. The compound e�ect of

small errors can be quite signi�cant in a serial manipulator, and the highly non-linear

nature of the error model has given rise to a signi�cant research problem. Much of

the work in this area is reviewed in [11].

While we are not directly concerned with the correction of robot kinematic er-

rors, we have noted two approaches to this problem which are of interest. Bennett

and Hollerbach [3] propose a methodology for self-calibration of a redundant serial

manipulator. A robot with greater than six degrees of freedom may be formed into a

mobile closed kinematic loop by constraining its end-e�ector to be �xed with respect

to its base. By exercising the robot joints and recording all joint measurements, it

is possible to recover the kinematic corrections by nonlinear optimization. We ob-

serve that a range-�nding camera mounted on the end-e�ector of a 6-DOF robot from

which we can determine position and pose of a �xed calibration target can be viewed

as a single redundant manipulator with end-point constraints, where the camera-

target transformation provides the parameters of the �nal link. Thus we expect that

we could calibrate the entire robot/camera complex following their approach, pro-

vided that good initial estimates of the parameters (including the unknown TCR) are
available.

A less rigorous approach to kinematic correction is proposed by Foulloy and

Kelly [7]. They assume that within a small volume of the workspace, end-e�ector po-

sition errors can be adequately modeled as a homogeneous linear function of measured

position. This is a rather doubtful assumption, for they describe robot end-e�ector
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position with a 6-vector composed of Euler angle and translation components, and

compute corrections using linear combinations of these elements. There is no reason

to believe, for instance, that the error in a rotational parameter should be a linear

function of its mean value, which is measured with respect to a completely arbitrary

zero.

Following their line of thought, however, it is probably reasonable and su�cient

to suppose that in a small volume of the workspace and for a given robot con�gu-

ration (i.e. a small volume of joint space) the end e�ector orientation error is nearly

constant. To correct for this, we need to compute a corrective transform at the end

e�ector, which we expect to adjust as the robot traverses its workspace. If we can

obtain a convenient procedure for dynamically estimating TCR of our robot-mounted

camera, then our estimate will incorporate whatever constant end-e�ector correction

is appropriate to that region of the workspace. This is appealing since the global po-

sitioning accuracy for typical industrial manipulators can be quite poor, while small

relative motions can often be made with high precision.
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CHAPTER 3

Theory

We begin our development of estimators for the range camera hand-eye transform

with the case in which a single point is detectable as an invariant (i.e. stationary)

feature in the scene. Such a feature might be a corner of an object, the center of a

solid object with known symmetries such as a sphere, ellipsoid or cube, or any other

unambiguously identi�able point in the scene. We then proceed to examine the case

where a single planar surface is used as the invariant. The plane is assumed in�nite

in the sense that we make no attempt to determine its boundary, as is appropriate

in the case of a 
oor or tabletop forming the background of a scene. We �nd the

development for plane features somewhat more troublesome than that for points, but

assert that the e�ort is justi�ed given the practical appeal of this method.

1. Point Features

Suppose that we can identify in the environment a stationary point pW , described

with respect to the world frame by its Cartesian co-ordinates [ x y z ]. Since pW is

unknown, we will develop an estimate for it which we call pW . For several robot

positions TRW i, we acquire a measurement pC i expressed in the local camera frame.

Intuitively we expect that for a su�ciently large number of di�erent robot/camera

positions, and supposing that the measured data is perfect, there should exist a unique

rigid transformation TCR that is consistent with all of the measurements and with the

hypothesis that pW is indeed stationary. Our task is to determine the conditions

under which TCR is uniquely determined, and to recover the estimate TCR that is most

consistent with a given noisy set of measurements.

In order to solve the optimization problem (2) we require:
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- a representation of coordinate transformations to project point features from

camera frame to world frame

- a metric with which to evaluate the quality of this projection for a given datum

and parameter vector in the domain of the optimization

1.1. Representing Transformations. A useful representation of coordinate

transformations is the homogeneous transformation matrix [22]. Homogeneous trans-

formation matrices may also encode scaling, mirroring and perspective projection op-

erations, but our interest is limited to those representing rigid motions. We therefore

consider a subset of homogeneous transform matrices consisting of a 3�3 orthonormal

rotation matrix R and a 3� 1 translation vector rt, as,

T =

2
64 R rt

0 0 0 1

3
75

A point p is described by the augmented vector p = [ x y z 1 ]0, so that p is rotated

and translated by a single matrix multiplication, and transforms are compounded as,

pC = TBCTABpA

Here we have adopted the same subscripting convention as for generic coordinate

transformations.

The homogeneous transform matrix above, when considered component-wise, rep-

resents an over-parameterization of the space of rigid motions, as 12 numbers are

required to describe 6 degrees of spatial freedom. While this causes some di�culty in

the formulation of our minimization, it is attractive as it gives rise to both a useful

linear approximation and a computationally convenient iterative path to the optimal

solution.

1.2. Error metric. We project the camera frame measurement of each feature

point pC i into the world frame as pW i, and obtain the projection error as its distance

to the estimated world frame feature pW . Since both pW i and pW are points in

Cartesian space, a natural distance metric �i is the 2-norm of the di�erence vector

ei =pW i � pW

�2i =keik22 = e0iei (4)
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Following the kinematic loop of Figure 2.4, we can write the projected feature point

using homogeneous coordinate transformations as

pW i = TRW i TCR pC i (5)

We now write the Cartesian error vector de�ned in (4) as,

ei = TRW i TCR pC i � pW (6)

Clearly, this expression for di is linear in the unknown parameters, which are the 12

components of the homogeneous transformation matrix TCR and the 3 components of

the feature point position pW . We introduce a shorthand notation for the terms of

(6), as

TRW i =

2
64 W wt

(03)0 1

3
75 RCR =

�
r1 r2 r3

�
TCR =

2
64RCR rt

(03)0 1

3
75

p =

2
66664
px

py

pz

3
77775 pC i =

2
64p
1

3
75 pW =

2
64pw
1

3
75 (7)

where W is the 3�3 rotation sub-matrix of TRW i, rj are the column 3-vectors of TCR,

and pw is also a 3-vector. Now we can rewrite (6) in a familiar form by de�ning the

15 � 1 vector of unknown parameters x as

x =
�
r01 r02 r03 r0t p0w

�0
(8)

and write (6) in the standard linear form

ei = Ai x+ bi (9)

where the 3� 15 matrix Ai and 3 � 1 vector bi are de�ned as

Ai =
�
Wpx Wpy Wpz W �I3

�
bi =wt (10)

Here, as throughout, I3 is the 3 � 3 identity matrix. The minimum mean-squared

error estimate of the camera transform and of the unknown feature point location is

then the vector x that minimizes the objective function

� =
X
i

(Ai x+ bi)
0(Ai x+ bi) (11)
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over all views i, subject to admissibility constraints on x. We de�ne a symmetric

matrix H, vector c and scalar k, and expand the above to obtain,

H =
X
i

A0
iAi

c =
X
i

A0
ibi

k =
X
i

b0ibi

� =x0Hx+ 2x0c+ k (12)

1.3. Approximate Linear Solution. The objective function de�ned by (12)

is a linear quadratic function to which the minimizing solution is well known from

least squares estimation. Our development parallels the standard derivation of the

normal equations of the linear least-squares problem [23], for which we can directly

write the solution

xl = �H�1c (13)

The solution is uniquely determined if H is positive de�nite; since H is symmetric,

this is equivalent to H having full rank. Since there are 15 unknowns and each

view provides 3 independent constraint equations, no less than 5 viewpoints will be

required to constrain this solution. The matter of selecting exactly 5 viewpoints so

as to ensure that 15 linearly independent constraints are generated is di�cult, and

remains for further study. However, we can certainly detect degenerate viewpoint

combinations by monitoring the condition of H. Furthermore, our experimental work

has given rise to several heuristics that are useful in guiding viewpoint selection, which

we discuss in Chapter 4.

It is well known from numerical analysis that inversion of H is not the most

numerically stable means of solution to the linear least squares problem [9, 23]. This

is largely because the condition number of H is proportional to the square of the

condition number of the so-called \design matrix" A = [ A0
0 : : : A

0
n ]

0. The condition

number of a matrix is the ratio of the largest and smallest singular values, which are

the gains of the matrix along various prescribed basis directions. Since numerical

accuracy of the solution is typically proportional to the condition number, a more

stable computation can be performed by operating directly on A. QR factorization
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or singular value decomposition (SVD) of A, for example, both o�er numerically

robust solutions to the linear least squares problem [9]. However, the cost of this

approach is evident in the fact that while H is �nite-dimensional (15 � 15 in our

example), A grows as the number of available views increases. Thus, if the number of

views is small, we are advised to solve this system by one of the methods operating

directly on A. Since in our case we desire a solution that can be implemented in �nite

memory for an in�nite number of views, we prefer to form H and exercise caution

when computing its inverse.

Equation (13) can be conveniently solved by any number of methods, notably

Cholesky factorization. In our experimental work, we prefer the more costly singular

value decomposition (SVD) for the diagnostic insight it o�ers into the condition of

H. We may of course also weight each viewpoint dataset while accumulating H, c

and k, in order to bias the estimate according to con�dence in the data [23], although

to do so in a meaningful way we need to model kinematic errors in the manipulator,

which is beyond our present scope.

While the above solution generates values for TCR and pW which result in the

global minimum mean-squared error � for a given data set, we are not at all certain

that TCR corresponds to a real rigid motion. We must enforce on x the constraint

that it give rise to a real rotation in TCR, to which we now turn our attention.

1.4. Enforcing Orthonormality Constraints. A 3�3 matrixR is orthonor-

mal if and only if its columns (and, equivalently, its rows) form a mutually orthog-

onal set of unit vectors. This requirement is compactly expressed by the condition

R0R = I. Column-wise expansion of the rotation sub-matrix R of TCR yields a set of

6 independent equations that enforce orthogonality and unit length, as

r01r1 = 1

r02r2 = 1

r03r3 = 1

r01r2 = 0

r01r3 = 0

r02r3 = 0 (14)
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In addition to satisfying equations (14), the columns of a matrix representing rigid

rotation also satisfy r1 � r2 = r3, or det(R) = +1, in order to disallow transforma-

tions representing re
ection. In our case we �nd it unnecessary to enforce this last

constraint, as re
ective transformations are likely to produce a good �t only in the

case of extremely poor data. We write the orthogonality constraint equations in the

form of a vector equation,

G(x) = 06 (15)

where x is as de�ned in (8), and the components ofG(x) are understood to be ordered

as in equations (14).

Returning to the original optimization of equation (2), we now have a linear

quadratic objective function to minimize subject to a set of quadratic constraints on

the optimization parameters. Formally, we solve

min
x

(x0Hx+ 2x0c+ k); G(x) = 0 (16)

This is easily solved by the method of Lagrange multipliers [18]. We form the La-

grangian

l(x; �) = x0Hx+ 2x0c+ k + �0G(x) (17)

where � is the 6 � 1 vector of Lagrange multipliers corresponding to each of the

(ordered) equations (14). Then the solution of the constrained optimization (16)

also minimizes the Lagrangian l(x; �). The �rst order su�ciency conditions for a

minimum of l(x; �) are

@l(x; �)

@x
= 0

@l(x; �)

@�
=G(x) = 0 (18)

which are precisely the conditions for a solution of (16).

Since l(x; �) contains terms of the form �ixjxk arising from the constraint equa-

tions, the partial derivatives appearing in (18) are not linear in the unknowns and

an analytic solution for (x; �) is impossible. Instead, we apply Newton's method to

derive an appropriate iteration. Expanding the above partial derivatives in a power
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series about (x0; �0), discarding second and higher order terms, and combining with

(17), we obtain

@l(x; �)

@x
� @l(x0; �0)

@x
+ (x� x0)

0@
2l(x0; �0)

@x2
+ (� � �0)

0@
2l(x0; �0)

@�@x

= 2x00H + 2c0 + �00
@G(x0)

@x
+ (x� x0)

0(2H +
@2(�00G(x0))

@x2
)

+(� � �0)
0@G(x0)

@x
(19)

@l(x; �)

@�
� @l(x0; �0)

@�
+ (x� x0)

@2l(x0; �0)

@�@x

= G(x0) + (x� x0)
0@G(x0)

@x
(20)

Equating the right hand sides above to zero and writing dx = (x�x0), d� = (���0),
we �nd the next iteration step [ dx0 d�0 ]0 by solving the linear system

2
64 2H +

@2(�0

0
G(x0))

@x2
@G(x0)

@x

0

@G(x0)
@x

0

3
75
2
64 dx

d�

3
75+

2
64 2Hx0 + 2c + @G(x0)

@x

0
�0

G(x0)

3
75 = 0 (21)

Note that vector equation (21) is composed of the data accumulators H and c com-

puted in the linear approximative solution, and derivatives of the constraint equations

G(x) which are independent of the data. This is highly convenient from a computa-

tional viewpoint, since at each iteration we need only evaluate several simple functions

of the constraints at the current solution [x00 �
0
0 ]
0. In addition to G(x), we also need

its gradient and the Hessian of �00G(x) with respect to the optimization parameters x,

@G(x)

@x
=

2
666666666666664

2r01 0 0

0 2r02 0

0 0 2r03

r02 r01 0

r03 0 r01

0 r03 r02

06�6

3
777777777777775

@2(�0G(x))

@x2
=

2
66666664

2�1I3 �4I
3 �5I

3

�4I
3 2�2I3 �6I

3

�5I
3 �6I

3 2�3I3

09�6

06�9 06�6

3
77777775

(22)
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which are 6 � 15 and 15 � 15 respectively. Note that rj in the above refer to col-

umn vectors of the unknown transformation TCR, which themselves are elements of

the present value of the solution x0. The symmetric system (21) can now be solved

by standard techniques for the next iteration step. We thus obtain an iterative so-

lution for TCR and pW that locally minimizes the objective and satis�es the stated

orthogonality constraints.

The successful solution of general nonlinear optimization depends on the avail-

ability of a good initial estimate for the optimal parameters, both to minimize the

number of iterations required for convergence and to avoid falling into local minima.

We have just such an estimate available in the form of the linear solution to the uncon-

strained problem. The practical estimation procedure can therefore be accomplished

by the following prescription. For each view i of the feature point,

(i) Form the matrix Ai and vector bi, and accumulate the partial sums H =
P

i wiA
0
iAi, c =

P
iwiA

0
ibi, and k =

P
i wib

0
ibi. wi is an optional weighting

term which can be used to bias the solution in favour of more certain data, and

is inversely proportional to the expected value of the mean squared projection

error �i. We often assume all data to be equally reliable, and set wi = 1 for

all i.

(ii) If i >= 5, check the numerical condition of H. If H is near singular, then

insu�cient independent constraints have been generated by the available view-

points, and more data is required before proceeding.

(iii) Obtain an initial estimate for the unknown parameters x. This may be known

a-priori, it may be the solution obtained from previous views, or it may be the

unconstrained linear approximation to the optimal parameters. In the latter

case, compute the approximation xl = �H�1c.

(iv) Using the initial estimate obtained above, iterate according to equation (21)

until convergence.

At convergence, we expect that the orthonormality constraints on TCR are satis�ed,

and that gradient of the objective function is zero. Numerically, of course, we cannot

expect exact convergence, and must instead set thresholds on some suitable conver-

gence measures. We use the magnitudes of the constraint error kG(x)k and of the
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step size kdxk. When both of these measures fall below limits based on desired ac-

curacy and machine precision, convergence is inferred. Under this scheme, each time

we acquire new data we immediately generate an update estimate that utilizes all

information available thus far.

1.5. Observations on the Point Feature Formulation. Suppose that we

have at least �ve views of the feature point which give rise to 15 independent con-

straints on the solution vector. In the ideal case of noiseless data, all camera mea-

surements will be exactly consistent and the total projection error �min will be zero.

Since the minimum of a linear optimization with positive de�nite H is unique, the

minimizing parameters will be the true values. The true value TCR clearly has an

orthonormal rotation component, and therefore the minimizing parameters xl will

satisfy G(xl) = 0.

As we increase measurement error in the data, we expect the world space projec-

tions of feature points to be become inconsistent (i.e. �min > 0), and xl to move away

from the true solution. xl is itself a random quantity which can be characterized by

statistical measures. For a given data set, xl will likely generate a non-orthonormal

rotation sub-matrix, and we will iterate to �nd the orthonormal solution x near to

xl which minimizes the projection error. In principle, the constrained minimization

may have multiple solutions due to local minima. Furthermore, if the initial value

used in the iteration is far from the true solution, the iteration may not converge.

We therefore require that the deviation of xl from the minimum error constrained

estimate x be small. In practice this means that extremely noisy data may yield

a linear estimate that cannot adequately seed the iteration, and result in either a

spurious solution or a divergent iteration.

If a good prior estimate of the unknown parameters is available, it may be used in

place of the linear solution to seed the constrained minimization. In cases of extremely

noisy data, we expect that the linear solution may behave poorly and an independent

estimate may be required. Since the orthonormality equations provide constraints

over 6 of the 15 degrees of freedom in the solution vector, and since each view of the

feature point generates three equations, we infer that the constrained optimization is

solvable given at least 3 viewpoints. This number re
ects the fundamental geometry
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of the problem, in contrast to the 5 views required for the linear solution as an artifact

of the over-parameterization of rotations.

While the constrained estimate provides the best �t to the data based on a rigid

body model of the camera/robot system, we note that in general this estimate results

in a greater mean prediction error
q
�=n than the linear estimate. This is hardly

surprising since the linear estimate is based on a model that o�ers 6 more degrees of

freedom which are adjusted to obtain a better �t to the data. However, following the

above discussion, we expect that the mean prediction errors associated with the two

models should not di�er drastically, provided that the rigid transformation model is

appropriate to the system. In particular, if the camera intrinsic calibration or the

robot kinematic model are very poor we expect the constrained estimate to perform

signi�cantly worse than the unconstrained one, in terms of mean prediction errors.

If we observe such a situation, we can infer that the kinematic loop comprising cam-

era, robot and feature point is not well modeled by the rigid transformation model

described in Figure 2.4.

In this case, we may wish to look more closely at the unconstrained estimator.

This solution incorporates the degrees of freedom required to model and compen-

sate for several linear distortion modes of the camera, such as anisotropic co-ordinate

scaling. If the unconstrained result is stable over several datasets and is signi�cantly

better than the constrained result in terms of projection error, we should consider dis-

carding some of the orthonormality constraint equations or using the linear estimate

directly.

Finally, we emphasize that our estimator makes use of all of the available data

in a symmetric fashion. Furthermore, it does so in �nite memory, so that it may

be applied as a �lter operating on an in�nite input data stream, and continuously

delivering updated best-�t transformation parameters. As such, it provides a means

of dynamically computing a �rst order correction to the robot kinematic model, along

the lines suggested by Foulloy and Kelly [7] and discussed in Section 4.6 of Chapter 2.

We would like the estimates to adapt quickly as the manipulator moves between

regions of the workspace, and this can be achieved by varying the weight assigned to

each datum according to some criterion. The design of our estimator admits several
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such schemes at very low computational cost. We now brie
y explore two adaptations

of our basic approach to illustrate this idea.

1.6. Viewpoint weighting schemes. The estimator presented above makes

no assumption as to spatial or temporal ordering of the available viewpoints. While

this is appropriate for the case of a static calibration where the goal is to minimize

projection errors over the entire workspace, it is not always a desirable behavior. Con-

sider for instance the case where our prime interest is in assuring the best possible

mapping between images captured from two viewpoints adjacent in time. Here we

intend that adjacency in time implies adjacency in space, as in the case of a manip-

ulator following a simple trajectory and stopping periodically to capture the scene.

In such a case we are not overly concerned with the quality of mapping over the

entire robot workspace, but in recovering a relative motion with the highest possible

precision.

For this purpose we modify the error metric (4) so as to re
ect only the error

incurred in mapping between adjacent frames, as

ei = pW i � pW i�1 (23)

We call this the di�erential form of the point-based estimator. Notice that in this

form we impose no penalty on a solution which maps poorly between viewpoints

more than one frame apart. We also completely eliminate from the unknowns the

components of pW , thus reducing the number of variables for which we need to solve.

Now the vector of unknown parameters x contains only the 12 components of TCR,

and we accumulate at each viewpoint the components

H =
X
i

(Ai �Ai�1)
0(Ai �Ai�1)

c =
X
i

(Ai �Ai�1)
0(bi � bi�1)

k =
X
i

(bi � bi�1)
0(bi � bi�1) (24)

where the last three columns of Ai have been truncated with respect to equation (10).

The remainder of the solution now proceeds as before. If the manipulator trajectory

and image capture schedule are such that adjacency in time implies closeness in
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both space and manipulator con�guration, then this formulation will reject large-

scale positioning errors of the manipulator and provide an estimate of TCR that is

optimized for merging nearby views by relative motions.

A similar behavior can be obtained by embedding view-aging in the estimator,

based on the idea that what happened long ago is less important than what is hap-

pening now. Returning to the original formulation, if we accumulate data matrices

according to the rule

Hi = aHi�1 +A0
iAi (25)

and similarly for c and k, with 0 < a < 1, then the weight of data acquired at a

given viewpoint will fall o� according to a �rst order decay controlled by the time

constant a. Our rough notion of time in this example is de�ned in terms of the

availability of new viewpoint data on an ongoing basis, though in principle the decay

of a data set could equally well be referred to clock time, or indeed to any other

monotonically increasing quantity.

2. Plane Features

Our development of an estimator for the camera mounting transform using single

points is motivated by our aim to minimize complexity of the image analysis on which

feature extraction depends, and to correspondingly broaden the class of scenes which

can provide the necessary constraints to our estimation process. Often we can extract

the location of a point feature with good reliability and relatively little computational

burden, where determining the full 6-DOF position and pose of a feature might be

di�cult - or impossible, if the feature object possesses inherent symmetry.

Following this argument, we observe that a robot vision workcell is frequently

composed of a collection of objects placed on a planar surface, such as a 
oor or

table-top. This background surface is often considered uninteresting and ignored,

except to the degree required for placement of objects on the surface and for collision

avoidance. In cases where a background plane is known to exist and to be immobile

with respect to the manipulator base frame, we are tempted ask whether it can be

used as the invariant feature in our dynamic calibration process.
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It is not immediately obvious that measurements of arbitrary points in an in�nite

plane can provide su�cient information to constrain an estimate of the hand-eye

transform. Note that an in�nite plane in R3 is characterized by three symmetries:

two directions of translation in the plane, and one of rotation about the normal.

Equivalently, we think of it as providing three constraints over the 6-DOF space of

rigid motions. Dimensionally speaking, this is no worse than the single point feature

which o�ers three translational constraints and three rotational symmetries, so we

are encouraged to proceed by analogy to the point feature development.

2.1. Plane Representations. A plane Q embedded in R3 is de�ned as a set

of points v = [ x y z ]0 satisfying the linear relation f(v) = ax + by + cz + d = 0.

We speak of a planar surface as being parameterized by the vector of coe�cients of

this expression q = [ a b c d ]0. Recall that since rf(v) = [ a b c ], the �rst three

parameters are the components of a vector normal to the plane, and we will often

write q = [ u0 d ]0. The parameterization of the plane by q is not unique, since q and

kq describe the same plane. However, if we choose k such that k2(a2 + b2 + c2) = 1,

then the representation is unique up to the sign of the normal. This last ambiguity

is resolved for planes which do not pass through the origin if we also, arbitrarily,

insist that kd < 0. We therefore de�ne the canonical representation of a plane Q as

q = [ a b c d ]0, such that

ax+ by + cz + d = 0 8[ x y z ] 2 Q
a2 + b2 + c2 = 1

d � 0

(26)

with the understanding that when d = 0 the representation is singular. This implies

that for planes containing the origin, sign ambiguity of the normal remains.

With this parameterization, the perpendicular distance � of a point w to the

plane is simply jf(w)j. Referring to Figure 3.6, we see that for any point v in the

plane, and with unit normal to the plane u = [ a b c ]0, we have

� = j(w � v) � uj = jw � u + dj = jf(w)j

We immediately also see that the parameter d is the (negative) perpendicular distance

from the plane to the origin.
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Figure 3.6. Perpendicular distance from a point to a plane

Amechanism for transforming plane representations between coordinate frames is

also required. Using the homogeneous coordinate representation for a point p = [v01]0

and our canonical representation of a plane q, we can write the plane equation in

vector form simply as q0p = 0. Considering two coordinate frames A and B related

by the homogeneous transform matrix TAB, we seek a transformation TAB which maps

the plane representation qA into qB. Since we must have q0
A
pA = 0 and q0

B
pB = 0,

we can write

q0
B
(TABpA) = q0

A
pA = 0

q0
B
TAB = q0

A

qB = T 0
AB

�1qA

(27)

We see that planes are transformed in a manner analogous to vectors by applying the

inverse transpose of the homogeneous transform matrix, i.e. TAB = (T 0
AB
)�1 = T 0

BA
.

Since the rotation part RAB of TAB is orthonormal, we have RAB

�1 = R0
AB
. A unit

normal vector transformed by (R0
AB
)�1 = RAB will therefore also have unit length.

We often write the plane transformation TAB in terms of the components R and rt of

the natural (i.e. point-based) homogeneous transform, as

TAB =
2
64 RAB 03

�r0tRAB 1

3
75 (28)

The above discussion shows that the �rst two conditions of (26) are preserved by

homogeneous transformations of plane representations. The last condition (d � 0) is
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not satis�ed in general, but in our case we can avoid the problem by ensuring that all

co-ordinate systems in use have their origins on one side of the plane. This ensures

that the sign of d is transformed uniformly in all cases, and usually occurs implicitly

when the plane of interest is the background. If a transformation displaces the local

coordinate origin across the plane, we simply multiply q through by �1 to preserve

the convention.

2.2. Error Metric. We need to de�ne a metric describing the similarity be-

tween two plane representations in order to formulate an optimization of the form of

equation (2). The canonical plane representation ensures uniqueness except in the

case where the plane contains the origin, and this can always be avoided by applica-

tion of an arbitrary constant transform. We therefore use the magnitude of the vector

di�erence between plane representations, as we did for point features,

ei =qW i � qW

�2i =keik22 = e0iei (29)

As in (4), qW i and qW are 4-vectors, although here they represent plane surfaces

instead of points in space.

While this has some of the desired properties of a metric, there is a dimensional

problem due to anisotropy of the plane representation. In taking the 2-norm, we add

squared dimensionless quantities arising from the plane normal components, to d2

which has dimensions of squared length. This is equivalent to the observation that

two planes can di�er in two distinct modes according to whether or not the planes

intersect. In general, there is no fundamental way to decide how to weigh each of

these modes in a single di�erence metric, and this manifests itself in the fact that

behavior of the metric is not independent of our choice of inches or millimeters for

the expression of d in the plane representation.

This is a serious problem for our metric, for which we will show a more general

solution in Section 3. To continue in the theme of the point formulation, however, we

introduce a scaling constant to balance the penalty applied for parallel planes which

di�er by a normal translation, against those which intersect but di�er in terms of the
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normal orientation. We de�ne the di�erence vector

ei =

2
64 uW i � uW

�(dW i � dW )

3
75 (30)

where u represents the �rst three components of the canonical plane representation

and d the last. The scale constant � is chosen such that the two components of (30)

are comparable in magnitude for planes that are similar in the region of the workspace

over which we can acquire image data. We refer to the metric de�ned in this way as

the direct plane formulation.

2.3. Approximate Linear Solution. We now have a problem in exactly the

same format as the points formulation, and we can proceed to a solution by the same

means. The projection of the camera frame plane to the world frame is

qW i = (TRW
0
i)
�1
(TCR

0)
�1
qCi (31)

which we combine with (30) to obtain the objective function. We write the compo-

nents of ei as

(TRW
0
i)
�1

=

2
64 W 03

�w0
tW 1

3
75 RCR =

�
r1 r2 r3

�
(TCR

0)
�1

=

2
64RCR 03

~rt
0 1

3
75

u =

2
66664
ux

uy

uz

3
77775 qCi =

2
64u
d

3
75 qW =

2
64uw
dw

3
75 (32)

where the translation component ~rt is de�ned by ~rt = �RCR

0rt as in (28). The vector

of unknown parameters x now has 16 components,

x =
�
r01 r02 r03 ~r0t u0w �dw

�0
(33)

and the error vector can be written as ei = Aix+ bi, with

Ai =

2
64 Wux Wuy Wuz 03 �I3 0

�w0
tWux �w0

tWuy �w0
tWuz u0 03 �1

3
75

bi =

2
640

3

�d

3
75 (34)
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Note that we have one more equation than in the point formulation, so that Ai and

bi are 4� 16 and 4� 1 respectively. Once a solution vector x is obtained, we �nd the

natural translation component of TCR as rt = �RCR ~rt.

Existence of the linear approximative solution, as before, depends on the rank of

H =
P
A0
iAi. Since we have four independent equations for each viewpoint and 16

unknowns, we expect no less than 4 views to be required.

2.4. Constraints. Once we have an initial estimate (via the linear solution or

by other means), we can proceed to enforce constraints. The iteration of equation

(21) applies almost verbatim, except that the constraint vector G(x) is augmented

by the requirement that the normal of the estimated feature plane have unit length,

i.e. u0wuw = 1. This yields a total of 16 unknowns and 7 constraints.

If we already have available good estimates of the unknown parameters, these

can be used in place of the linear solution vector. In this case, the components of

G(x) constrain 7 of the 16 degrees of freedom, which implies that the system can be

solved uniquely given at least 3 views.

Provided that the scale factor � is chosen so that the metric re
ects a reasonable

balance between orientation and translation errors, and that viewpoints are chosen

such that H is well conditioned, we obtain estimates of the unknown transformation

TCR and plane parameters pW by a short iteration. Although good results are possible

with this technique (as we report in Chapter 4), the need for the scaling factor �

indicates a fundamental problem with our distance metric over the space of planes.

The issue of identifying metrics over the spaces of rigid rotations and translations

has been treated in the literature of theoretical kinematics. The set of Euclidean

rotations in 3-space has the properties of an algebraic group, and is commonly re-

ferred to as the special orthogonal group SO(3) [2]. Similarly, the group of combined

rotations and translations (i.e. rigid motions) is referred to as SE(3). While it is

possible to de�ne a distance metric over SO(3), it has been shown that it is di�cult

to de�ne a useful metric over SE(3) [20, 21]. In particular, there exists no metric

on SE(3) having the property of bi-invariance, meaning invariance with respect to

displacements of both world (i.e. inertial) and local (i.e. moving) frames of reference.

Furthermore, e�orts to devise a metric invariant with respect to one frame or the
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other requires the introduction of an arbitrary scaling factor relating rotational dis-

tances to translational ones. Our problem with plane metrics is subsumed by that of

metrics on SE(3), as planes are parameterized in a space composed of two degrees of

rotation and one of translation.

3. Partitioned Plane Formulation

The foregoing development of the direct estimator for plane features proceeds by

close analogy to that for points, with little attention to the information content of a

plane representation derived from range data. Closer examination of the transforma-

tion constraints provided by a detected plane allows us to develop an estimator that

circumvents the metric scaling problem discussed above.

Examining the linear objective function expanded in equation (34), we observe

that the �rst three components of ei are independent of the translation part of TCR and

of the d element of the world plane vector qW , as well as of the translation parameters

of the data TRW i and qC i. We expect this since the plane normal measured in camera

frame is transformed to its representation in the world frame by a sequence of pure

rotations. The translational components, however, depend strongly on the rotational

ones.

This suggests a natural partition of the procedure for plane features whereby we

�rst solve for the best camera rotation on the basis of consistent mapping of normals,

and then �x the unknown length parameters on the basis of the optimal rotation.

Although partitioning an optimization in this manner will not generally yield a glob-

ally optimal solution, there exists no de�nitive measure of optimality in the absence

of a meaningful invariant metric over the entire space of plane representations. We

therefore begin by solving for the camera hand-eye rotation which most consistently

maps all observed unit normal vectors to a constant unknown normal in the world

frame.

3.1. Solving the Optimal Rotation. We seek the rotation sub-matrix R of

the camera hand-eye transformation TCR which best maps each camera frame repre-

sentation of the plane normal to a single world frame vector. A suitable metric for

evaluating the distance between transformed unit normals is required.
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The natural metric for unit vectors is geodesic distance on the unit sphere, which

is simply the angle � between two vectors. If instead we consider the straight-line Eu-

clidean distance, or magnitude of the vector di�erence, we obtain a metric that varies

as
p
1 � cos � with respect to the geodesic metric. Since this relation is monotonic

over the range 0 to �, we use the more convenient di�erence metric in our formulation.

As in previous developments we obtain a linear quadratic expression for the ob-

jective function for which we can directly compute the minimizing parameters, and

then iterate to enforce the constraints. The components of the objective function are

written in terms of the measured data and the unknown parameters, via the kinematic

loop of Figure 2.4. For each view i we have, with de�nitions as in (32),

ei =WRu � uw

=uxW r1 + uyW r2 + uzW r3 � uw (35)

and wish to minimize

min
R2

uw2�

nX
i=1

e0iei (36)

Here 
 is the set of Euclidean rotations, and � the set of unit vectors in R3. Equation

(35) is linear in the 12 components of the unknowns R and uw, so we cast this

expression in the standard form by de�ning the vector of unknown parameters as

xr =

2
66666664

r1

r2

r3

uw

3
77777775

(37)

This results in a homogeneous linear formulation ei = Arixr at each viewpoint, with

Ari =
�
Wux Wuy Wuz �I3

�
(38)

Considering all available viewpoints we now minimize

� =
X
i

e0iei =
X
i

xr
0Ar

0
iArixr (39)
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This expression has a minimum for xr such that (
P

iAr
0
iAri)xr = Hrxr = 0. This

implies that we seek a nonzero vector xr in the null space of Hr, or equivalently in

the null space of the design matrix Ar = [Ar
0
0 : : : Ar

0
n]
0.

This poses a more di�cult problem than the non-homogeneous linear systems

previously encountered. One di�culty is that solutions are not unique, except in the

degenerate case where the system matrix has full rank and the solution is the zero

vector. In general, we have a family of solutions of the form x =
P
ck k, where the

set of vectors  k form a basis of the null space. If the system matrix has a nullity1

greater than one, then construction of the best solution (in terms of the objective)

that also satis�es some constraints may be di�cult. If the system matrix has a nullity

of one and we know that a solution exists, then the solution must be c , where  is

the unique null direction of the system matrix. It then su�ces to choose c so as to

satisfy the constraints, which must be possible if a solution exists.

We �rst consider the case of perfectly consistent, noiseless data. It can be shown

by construction that there exist sets of four or more viewpoints such that the nullity

of Hr is one. We also know that a solution with RCR orthogonal and uw unit-length

must exist, so Hr cannot have full rank for any collection of consistent views. We can

therefore construct a solution xrl = c by �nding the null space basis vector  and

choosing c so as to satisfy constraints on xrl.

If the data are noisy, then Hr will generally have full rank. However, the nonzero

xrl which minimizes kHrxrk2=kxrk2 lies in the direction  that is closest to the null

space of Hr. Furthermore, we expect that unless the data are extremely noisy, we

can choose c so that xrl is close to the constraint surface, and use it as the initial

estimate for iterative enforcement of the constraints.

The vector closest to the null space of Hr is obtained in a reliable way by the

singular value decomposition [9, 23]. The SVD of Hr is the triple of matrices U;�; V ,

de�ned such that

U�V 0 = Hr (40)

where U and V are orthonormal, and � is diagonal. The elements of � are the

singular values �j of Hr. A useful property of the SVD is that the columns of U

1The nullity of matrix A is de�ned as the dimension of the null space of A.
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corresponding to nonzero singular values form an orthonormal basis for the range of

Hr, and the columns of V corresponding to zero singular values form a basis for the

null space. If Hr has full rank, then the column vector  of V corresponding to the

smallest singular value is closest to the null space, in the sense that xr =  minimizes

kHrxrk2=kxrk2.
We compute the SVD of Hr (or of Ar if high numerical precision is preferred over

�nite memory usage), and �nd the unit 12-vector  corresponding to the smallest

singular value. Since by convention singular values are ordered in descending magni-

tude, the condition number of Hr is �12=�1, and indicates how close the matrix is to

rank-de�ciency. This is an indicator of the degree to which the data is consistent with

the projection model (recall that, in this case, we desire a singular matrix). Another

useful indicator is the ratio �12=�11, which measures how clearly we can discriminate

the null direction from other directions in parameter space. We call this indicator the

detectability of the unique null direction.

Having determined  , we need to choose k such that with xrl = k the con-

straints are most nearly satis�ed. Evidently we have no control over the mutual

orthogonality of the columns of RCR which comprise xrl, nor indeed over their rela-

tive magnitudes. The best we can do is to note that if xr satis�es the constraints, then

kxrk2 = 4. Since k k2 = 1, we set k = �2, choosing the sign such that det(RCR) > 0.

3.2. Enforcing Constraints. The initial estimate obtained above may be

taken as the �nal solution, following the discussion of Section 1.5. More often we

will use it to seed an iterative procedure to enforce the parameter space constraints

of our projection model. As in the �rst formulation for plane features, we have seven

constraint equations forming the vector equation G(x) = 07. Six of these enforce

orthonormality on RCR, and one assures unit length of the world-frame normal uw.

We use the iteration of equation (21), with b = 0 and the gradient and Hessian of

the constraints constructed according to the de�nition of the vector of unknowns x.

Provided that the initial estimate is su�ciently close to the minimum of the

constrained objective function, the optimal estimate of the rotation part RCR and the

world plane normal vector uw is obtained at convergence. Recall that these estimates
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are obtained without use of any data having units of length, and that we have yet to

�x estimates for the unknown translational parameters.

3.3. Solving the Optimal Translation. Here we present two methods for

estimating the translational components of the unknown parameters. Method 1 fol-

lows directly from the direct estimator for plane features. Method 2 addresses some

of the inherent weaknesses of Method 1, but to our great surprise often generates

estimates that are inferior to those obtained by Method 1 in simulation. We do not

as yet fully understand why this occurs, and leave this issue for future investigation.

For completeness we report both methods, and comment further on the failure of

Method 2 in Chapter 4.

3.3.1. Plane translations - Method 1. Examining equations (34) we see that the

equation corresponding to the fourth element of ei can be used to constrain the

unknown translational parameters. Once the rotational parameters RCR and uW are

�xed, we are left with an expression for the translational error that is linear in the

unknowns ~rt and dw. De�ning the vector of unknowns x as

x =

2
64 ~rt
dw

3
75 (41)

we rewrite the fourth row of equation (34) as ei = Aix+ bi, with

Ai =
�
u0 �1

�
bi =�wtWRu+ d (42)

with u, wt, W and R de�ned as in (32). The minimizing parameters are then found

as usual by computing x = (
P

iA
0
iAi)

�1P
iA

0
ibi.

This computation can be performed in �nite memory, but the fact that the terms

of
P

iA
0
iAi and

P
iA

0
ibi depend on the rotational estimates (which change as more

views are acquired) makes this di�cult. It is possible to factor the rotational esti-

mates out of the above expressions so that summation is performed exclusively over

measurement data. This comes at the cost of storing a larger number of independent

scalar quantities than would be required for the direct evaluation of x, but allows us
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to achieve a �nite memory implementation of the estimator. We discuss this factor-

ization further in connection with the �nite memory implementation of Method 2 in

Section 3.4, where the problem is much more di�cult.

3.3.2. Plane translations - Method 2. In the direct formulation for plane fea-

tures we used the homogeneous 4-vector derived from the plane equation to obtain

a simple algebraic metric for comparing planes. This metric is a weighted sum of

two components: the magnitude of the vector di�erence of unit normals (which we

also used in the improved formulation), and the magnitude of the di�erence in the

translational components di of canonical plane representations. Geometrically, the

fourth component of the canonical plane vector is the perpendicular distance from

the plane to the coordinate origin. Obviously di is not frame invariant, and neither

is the di�erence jdi � dj j between two distinct planes. This is easily seen by con-

sidering two perpendicular planes, and moving the origin along directions normal to

each plane. Also, di may represent a distance from the origin to some point on the

measured plane that is distant from the region that was visible to the camera, as will

be the case if the surface is steeply inclined with respect to the camera view direction

and the camera sits at the origin. In this situation, di is not well supported by the

measured data, and its variance is much higher than that of less oblique views. This

e�ect should be compensated for, but thus far we have no means of doing so.

We can obtain a metric that is both frame invariant and well supported by the

data in a natural way by using the perpendicular distance of a point to a plane. For

a canonical plane q and a point p, this distance is simply jq0pj. If we have a point in
the camera frame known to lie in a plane, we transform this point to the world frame

and measure the perpendicular distance to the world representation of the plane. The

metric thus has the form

�i = q0
W
TRW iTCRpi (43)

Writing the constituent transforms in terms of rotation and translation components

as

TRW i =

2
64Wi wti

0 1

3
75 TCR =

2
64R rt

0 1

3
75 qW =

2
64uw
dw

3
75 pi =

2
64vi
1

3
75
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we expand the metric equation to obtain

�i = u0w(WiRvi +wti) + u0wWirt + dw (44)

The metric is linear in the unknowns and is written for each viewpoint i in standard

form Aix+ bi = 0 with

x =

2
64 rt
dw

3
75 Ai =

�
u0wWi 1

�
bi =u

0
w(WiRvi +wti) (45)

The total error � =
P

i kAix + bik22 is minimized by linear least squares, and the

solution is x = �(PiA
0
iAi)

�1P
iA

0
ibi.

It now remains to determine a suitable point pi at each viewpoint. Since we aim

to choose a point that is well supported by the camera measurements, a reasonable

selection is a point at the centre of the camera �eld of view. We call the line containing

such points the line of sight. Recall that the data we acquire at each viewpoint consist

of a set of samples of a surface from which we extract by segmentation those which

correspond to the feature plane. We then �nd the plane parameters qC i which best

�t the data - typically, in a least-squares sense - and use the resulting canonical plane

representation as an atomic datum in our estimation process. Since we generally know

the gaze direction of the camera expressed in its own frame, it is a simple matter to

intersect the camera line of sight with the measured plane. We thus obtain the camera

frame coordinates of a virtual point on the plane that is centered in the �eld of view.

This point is known more precisely than any range data point because it is derived

from many independent point measurements, and it is guaranteed to exist for any

plane not containing a vector along the line of sight.

In our camera, the line of sight centred in the camera frame is simply the z-

axis of the camera coordinate system. We therefore �x vx = vy = 0 and solve the

plane equation for vz. De�ning qCi = [ai bi ci di]
0 and vi = [0 0 zi]

0, we �nd

zi = �(di=ci). We can always introduce a change of coordinates such that any camera

satis�es this model, provided that the line of sight is known in its natural frame. This

will be useful in the following section, where we make use of the fact that vi reduces

to the scalar quantity zi.
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3.4. Computing Translation in Finite Memory. We now consider �nite

memory estimation of translation for the partitioned plane formulation. In the follow-

ing discussion we derive the �nite memory version of Method 2, as this is somewhat

more challenging than that of Method 1. For the sake of brevity, we merely state that

the same approach is used to derive a �nite memory implementation of Method 1.

The least squares solution to system (45) is easily computed if we have available

all of the original data TRW i and pi at each viewpoint at the time when we �x R and

uW from the rotational estimator. To execute this computation in constant memory

for any number of views we must we perform the summations
P

iA
0
iAi,

P
iA

0
ibi andP

i b
2
i as the viewpoint data arrives and discard the raw data. The fact that the

solution of the rotation estimator [R uW ] appears in Ai and bi makes this somewhat

di�cult. The terms required are

A0
iAi =

2
64W

0
iuWuW

0Wi W 0
iuW

uW
0Wi 1

3
75

A0
ibi =

2
64W

0
iuWuW

0WiRvi +W 0
iuWuW

0wti

uW
0WiRvi + uW

0wti

3
75

b2i = (uW
0WiRvi)

2 + 2(uW
0WiRvi)(uW

0wti) + (uW
0wti)

2 (46)

where b2i is used only if we desire to know the RMS projection error at the optimal

solution. We would like to bring uW and R outside the summation so that these

functions can be evaluated on demand in a constant number of operations. The

required factorization is not immediately obvious, but it can be done succinctly based

on the following result.

In general, given matrices M;Q and vector n, which are n�m, n� q and n� 1

respectively, we form the product

P =M 0nn0Q

Expand the elements of P in terms of the column vectors mj and qk of M and Q,

and use the fact that

(m0
jn)(n

0qk) = (n0qk)(m
0
jn) = n0(qkm

0
j)n
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since scalar multiplication commutes. Now P can be written component-wise as

Pjk = n0(qkm
0
j)n (47)

Using this result we can compute
P

i Pi component-wise as
P

i(Pi)jk = n0(
P

i qkm
0
j)n,

which is what we require for a �nite memory computation of the estimated translation.

We also use the fact that the term Rvi collapses to a vector-scalar multiplication

under our construction of pC i. Since vi = [0 0 zi] with zi = �di=ci, we have

Rvi = r3zi

Now we can proceed to factor (46) and obtain
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where n is the number of views, and matrices M;E;F and vectors e; f are de�ned

component-wise as

Mjk =uW
0(
X
i

wkw
0
j)uW

Ejk =uW
0(
X
i

ziwkw
0
j)uW

Fjk =uW
0(
X
i

z2iwkw
0
j)uW

ej =uW
0(
X
i

wtiw
0
j)uW (49)

fj =uW
0(
X
i

ziwtiw
0
j)uW (50)

All summands in the above expressions are functions of the data at view i only. By

accumulating the appropriate sums we can easily evaluate the minimizing solution

[r0t dw] and the RMS error
q
�=n for any givenR and uW , using only �nite computing

resources for any number of views.
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CHAPTER 4

Experimental Results

In the preceding chapter we have developed three estimation schemes for the range

camera hand-eye transform. Here we report the results of our experimental analysis

of estimator performance. Simulation is used extensively to characterize the behavior

of the estimators against a known ground truth model. We then demonstrate the

partitioned estimator for plane features using real data gathered from the active

vision workcell in our laboratory, where the true parameters are unknown.

1. Selecting Viewpoints

An important issue in maximizing estimator accuracy is the selection of a set of

viewpoints which adequately constrain the solution. Given an some current set of

viewpoints, we seek a rule to determine the next viewpoint so as to best constrain

those modes of the estimate which are most uncertain. Equivalently, we would like

to choose a trajectory that maximizes the observability of the parameters we are at-

tempting to estimate. This style of viewpoint selection strategy has been proposed

and explored at length by Whaite and Ferrie [38, 39, 40, 37, 36] in the context of

autonomous exploration. In their work the unknown model parameters describe ob-

jects in the workspace, and the goal is to collect data from a set of viewpoints so as

to most rapidly reduce parametric uncertainties. The similarity to our present view-

point selection problem is immediately apparent, but application of these methods is

nontrivial.

A minimal requirement for generating a useful viewpoint trajectory is avoidance

of degenerate viewpoint combinations, i.e. trajectories which constrain the estimates

very poorly. Intuitively we expect that recovery of 6 DOF rigid transformations
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requires that we also drive the camera/robot complex through 6 DOF motions. Ex-

perimentally we have found that trajectories composed only of pure rotations, pure

translations, rotations about a �xed axis or similar simple geometries are typically

degenerate, in the sense that numerical condition of the resulting estimate is very

poor. By contrast, randomly chosen trajectories tend to constrain the estimates well,

since the probability of any particular geometric degeneracy is in�nitesimally small.

An appropriate heuristic is therefore to choose random viewpoints subject to feasi-

bility constraints, and to avoid trajectories which are con�ned to simple geometric

surfaces such as planes or spheres.

2. Generating Semi-random Trajectories

Our simulation of the camera/robot system requires that we generate a series of

camera viewpoints that suitably constrain the estimators. We ensure that viewpoints

generated by the simulated trajectory are actually feasible for a real camera, by dis-

allowing views where the feature target is outside the range of view of a reasonable

camera model. The fact that one side of an object is often occluded by the surface

on which it rests is also incorporated. Finally, the resulting displacements approxi-

mate the feasible displacements of a real manipulator. Within the bounds of these

constraints, the desired trajectory is determined randomly.

The semi-random viewpoint generator is constructed as follows. We begin by

choosing the true world co-ordinates of the target feature, which is either a point or a

plane. We also choose a true value for the simulated camera hand-eye transformation

TCR. For each desired viewpoint we place the simulated camera on the surface of a

hemisphere centered at the feature point, or in the case of plane features we arrange

for the centre of the hemisphere to lie in the target plane. The hemisphere radius

is randomly selected in an interval appropriate to the manipulator and camera en-

visaged. Longitude and elevation angles for the camera position on the hemisphere

are selected from uniform distributions over feasible ranges. Finally, we perturb the

camera orientation by random tilt, pan and twist angles with respect to a nominal

radial gaze direction. With this determination of camera orientation and position it

is a simple matter to compute the robot end-e�ector position from TCR, as well as the
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camera frame projection of the target feature. The resulting semi-random sequence

of views typically constrains the estimator very well, while respecting many of the

feasibility constraints imposed on real manipulators and sensors. The actual values

used in our simulation appear in Table 4.1.

Parameter Value Units

true camera orientation RCR (Euler angles) -83.0, -1.9, -91.00 deg

true camera translation tCR 47.0, 37.0, 233.0 mm

true feature point coordinates 100.0, -200.0, 150.0 mm

true feature plane normal -0.1078, 0.2157, -0.9705 -

true feature plane o�set -1078.3 mm

viewpoint longitude 0 - 360 deg

viewpoint elevation 25 - 90 deg

view sphere radius 250.0 - 750.0 mm

camera tilt -20 - 20 deg

camera pan -20 - 20 deg

camera twist 0 - 360 deg

Table 4.1. Simulation parameters

In order to simulate model and measurement error in the kinematic loop, we in-

troduce an additional homogeneous transform between the robot end-e�ector and the

simulated camera. This transform is nominally the identity, and represents the dif-

ference between the actual and observed positions of the end-e�ector. Translational

disturbances are created by adding a random translation vector to the transform,

where this vector is derived from a multivariate normal distribution. To simulate

rotational disturbances we derive an axis of rotation from uniform latitude and lon-

gitude angle distributions, and then rotate about that axis by a normally distributed

random angle. Note that the magnitude of the total disturbance is fully described by

two quantities: the variance of the translational disturbance �2t = �2x + �2y + �2z , and

the variance of the angle of rotation �2r .
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3. Simulation Results

3.1. Condition Indicators. The condition number of matrix H in equation

(12) is an indicator of how well a given set of viewpoints constrains the estimated

parameter set. Figure 4.7 shows typical values of the condition number �n=�1 for the

point formulation under both noiseless and moderately noisy simulated conditions.

With fewer than �ve viewpoints, the numerical condition of the system is extremely

poor, and we make no attempt to obtain a solution. The condition improves to

greater than 10�10 after �ve views, which is su�cient for computation of a stable

linear estimate. The direct plane formulation exhibits a similar behavior, rising to

10�5 after �ve views. From a strictly computational point of view these are rather low

condition numbers, and we generally apply the technique of column-weighting before

attempting to invert matrix H [9]. We have observed improvements of numerical

condition up to �ve orders of magnitude by this technique, resulting in a more stable

computation. We also use double precision arithmetic throughout to avoid loss of

precision due to numeric under
ow.
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Figure 4.7. Numerical condition (�n=�1) of the direct estimators, for simulated
data. dt is the standard deviation of the magnitude of the translational disturbance
signal, and dr is the equivalent measure for the rotational disturbance (see text).
The number of viewpoints supporting the estimate appears on the horizontal axis.
Note that views are discrete events, and that we show connected curves for clarity
of presentation.

The condition behavior of the direct plane formulation is also a function of the

metric scaling constant �, which suggests that we might attempt to choose � so as to
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maximize the condition number for a given view combination. Unfortunately this rule

does not generally yield good estimates. We have found empirically that a more useful

guide to the selection of � is obtained by minimizing the constraint error kG(xl)k
obtained for the linear approximation xl.

In the case of the partitioned plane estimator there are two useful condition

indicators. The condition number of H should be small, as we require that H be

singular in order to yield a useful solution. We are also interested in a measure of

uniqueness of the null direction of H. Since the singular values of a matrix represent

gains of the system along particular basis directions, we expect the gain in the (unique)

null direction to be signi�cantly smaller than that in any orthogonal direction. We

therefore de�ne the detectability of the null direction as the ratio of the two smallest

singular values �12=�11, where the singular values are ordered from largest to smallest.

When detectability is close to 1:0, the unique null direction is not well de�ned and we

can expect that the linear orientation estimate will be poor. Figure 4.8 shows that

the null direction of H is discriminated by about three orders of magnitude after four

views in the case of moderately noisy data, which is su�cient to provide a reliable

initial estimate of the rotational unknowns.
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Figure 4.8. Condition number and detectability (see text) of the rotation part of
the partitioned plane estimator. With at least four views the null space of the linear
system is well de�ned by a single direction corresponding to the smallest singular
value.
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3.2. Residual errors. The RMS residual error provided by an estimator is

useful to us in two ways. We noted in Chapter 3 that we expect the residual of a

constrained estimator to be somewhat higher than that of the corresponding uncon-

strained linear approximation, and the di�erence between these values to decrease as

more views are acquired. Residuals that do not behave in this fashion suggest that

the projection model used in the estimator is inappropriate, which may result from

inaccurate intrinsic calibration of the camera or manipulator, or from variation of

quantities that are assumed constant.

In addition to providing diagnostic information, the residuals also yield an esti-

mate of the mean projection error that can be expected when we use the estimated

camera transform to compute the world frame representations of camera frame ob-

servations. The error metric of the point feature formulation has pure dimensions of

length, and the RMS residual represents the expected error in the world frame co-

ordinates of a point when that point is projected by the hand-eye transform and the

manipulator kinematic model. This provides an independent performance measure

for the combined camera/manipulator system over a speci�c part of the workspace.

Residuals of the partitioned plane estimator are interpreted in a similar fashion. The

utility of direct plane formulation residuals is not as clear, since these are not dimen-

sionally pure.
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Figure 4.9. Simulated RMS residual errors for the point formulation, using a
semi-random trajectory. A normally distributed translational disturbance (�t =
20mm) is applied to the end e�ector at each view. Measurements of the rotational
component of end e�ector pose are noiseless.
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Figure 4.10. Simulated RMS residual errors as in Figure 4.9, with a rotational
disturbance (�r = 6�) applied to the end e�ector. As in the case of translational dis-
turbances the linear and constrained residuals converge as more views are obtained,
indicating that the constraint model is consistent with the data.

Figure 4.9 shows a typical simulation sequence of residual errors for the point

formulation using a semi-random trajectory. The end e�ector is subject to a trans-

lational disturbance with a standard deviation of 20mm. The constrained residual is

initially much larger than the linear one, but these rapidly converge to yield a stable

estimate of the true disturbance magnitude. In the case of rotational disturbances

(Figure 4.10), convergence to a �xed value occurs similarly. Note that rotational dis-

turbances map into point measurement errors according to �t = r��, where r is the

distance from the end e�ector to the target point and which is varying randomly in

our simulation.

3.3. True parameter errors. The performance of an estimation scheme is

best measured by its ability to recover the true values of a set of unknowns in the

presence of measurement noise. In simulation the actual parameter values are known,

so we can determine parameter errors with respect to ground truth. This information

is valuable in evaluating performance of the method, and also in interpreting the

results of real data experiments where ground truth is unknown.

True parameter errors for the point feature estimator are shown in Figure 4.11.

Parameter errors are initially of roughly the same order as the disturbance magni-

tudes, and decrease rapidly over the �rst �fteen views. This underscores the value
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Figure 4.11. Magnitudes of the true parameter errors of the point feature esti-
mator, with �r = 1�, �t = 5mm. We also show the RMS residual error, which
indicates the combined e�ects of rotational and translational disturbances on world
frame point projections for a typical viewpoint.
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of redundant measurements, since schemes based only on su�cient data to constrain

the parameters would yield the same results as our �ve-view estimate. As more data

is collected the incremental improvements diminish, and in this simulation there is

little practical bene�t in collecting more than thirty views. The point past which

additional views bring insigni�cant improvement is determined by the disturbance

amplitude, as well as by the perceived cost of collecting views.
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Figure 4.12. Evolution of the true parameter errors of Figure 4.11 over 5000
viewpoints. Parameter errors decay very slowly, in a roughly exponential manner.
Note the logarithmic scale on the horizontal axis.

Despite the diminishing returns apparent in Figure 4.11, we expect the estimated

values to converge to the true values in the limit of increasing viewpoints. Figure 4.12

shows that estimation errors do indeed drop signi�cantly as data are added, although

at an ever decreasing rate. After 5000 views, true parameter errors for the camera

transform are less than 0:02� and 0:1mm.
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Figure 4.13. True parameter errors for the direct plane formulation, in moderate
noise conditions ( �r = 1�; �t = 5mm ), and with length scaling factor � = 1:0. The
linear approximation is very poor with less than ten views, and convergence of the
constraint enforcement iteration is slow. As more data becomes available the linear
solution improves, convergence is more rapid, and ground truth parameter errors
become comparable to the sensor noise level.

True parameter errors for the direct plane formulation with length scaling factor

� = 1 appear in Figure 4.13. With fewer than ten views the linear estimate is

unreliable, and the constrained optimization typically requires ten to twenty iterations

to achieve a rather poor solution. The situation improves rapidly, and after 25 views

a stable and fairly accurate estimate of the unknowns is obtained. The value of

� strongly in
uences both quality of the linear approximation and accuracy of the

estimated parameters. Figure 4.14 shows results over the same data set with � = 0:01,

which is a value suggested by the observation that there are approximately two orders

of magnitude between typical distance measurements (expressed in millimeters) and

components of unit normals (order of 1:0). This yields reasonable solutions with as
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Figure 4.14. True parameter errors for the direct plane formulation, with the
data set of Figure 4.13 and � = 0:01. Performance of the estimator is signi�cantly
improved, particularly for small numbers of viewpoints.

few as �ve views, as well as reduced ground truth errors overall. The need to select a

suitable � based on typical dimensions of the problem at hand is a weakness of this

formulation as the criterion for optimality of � is unclear. Despite this limitation,

parameter estimates with tolerances comparable to sensor noise can be obtained at

the expense of collecting more views, with only a very coarse tuning of �.

The partitioned plane estimator improves signi�cantly on the direct formulation

by eliminating the problem of choosing �, as well as reducing overall ground truth

parameter errors. Results of this method for the same data set as Figures 4.13 and 4.14

are shown in Figure 4.15. The linear estimates seed the iteration well, and convergence

is typically obtained in less than four iterations. Here we use Method 1 to estimate

the unknown translational components. Estimated parameters are reasonable for

small numbers of views, and with twenty viewpoints the true values are recovered
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Figure 4.15. True parameter errors for the partitioned plane formulation, with the
data set of Figure 4.13. Rotational parameter errors decay quickly, but propagation
into the translation estimates causes relatively large errors there. As the rotation
estimate is re�ned, translation parameter errors decrease accordingly.
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Figure 4.16. Time series behavior of the estimated camera parameters, with the
data set of Figure 4.13. All parameters are shown as deviations about their stable
values, which we take to be the values obtained with �fty viewpoints. Rotational
parameters are expressed as z � y � x Euler angles.
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to a tolerance well within sensor noise. Translational parameter errors are large

with respect to the point feature formulation for a given number of views (compare

with Figure 4.11), but fall rapidly enough to yield useful results economically. The

recovered parameters appear in Table 4.2. We show time series behavior of the

recovered camera parameters in Figure 4.16, as this re
ects stability of the estimate

without reference to the ground truth parameters.

Parameter Value Units

camera orientation RCR (Euler angles) -82.93, -1.81, -90.92 deg

camera translation tCR 45.29, 35.95, 232.19 mm

feature plane normal uW -0.1077, 0.2153, -0.9706 -

feature plane o�set dw -1076.6 mm

Table 4.2. Recovered simulation parameters, �r = 1�, �t = 5mm, 50 views

The fact that translational parameter recovery is slower than the point feature

case results from two issues. Translations in the partitioned plane estimator are

solved subject to a rotation estimate that minimizes only orientation errors, and

therefore propagates a bias to the translational estimate. In addition, plane features

provide only one length-dimensioned datum per view as opposed to three per point

measurement, so we expect the plane formulation to take somewhat longer to acquire

equivalent translational information.

We have run numerous simulation experiments using Method 2 to estimate the

translational parameters. In the case of noiseless data the unknowns are recovered

correctly, and in the case of translational disturbances of the end e�ector the results

are comparable to those of Method 1. However, Method 2 exhibits a very high

sensitivity to rotational disturbances, and in the case of large perturbations generates

very poor estimates. We do not completely understand why this formulation fails

to generate reliable estimates, although it seems a likely consequence of the fact

that we discard information by considering only the point on the line of sight in the

translational error metric. Since Method 2 has failed to ful�ll our expectations, the

issue of �nding an elegant solution to the plane metric problem remains for further

study.
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4. Vision workcell calibration results

Figure 4.17. Active vision workcell at the McGill Centre for Intelligent Machines.
A scanning laser range �nding camera is a�xed to the end e�ector of a PUMA 560
robot. A table directly beneath the robot base provides a suitable surface for scene
objects, and also serves as the reference plane in our calibration process.

The robot vision workcell in our laboratory is based on a PUMA 560 industrial

robot and the NRC/McGill scanning laser range-�nding camera. The base of the

PUMA is attached to the ceiling directly above the workspace table, and the camera

is rigidly �xed to the manipulator end-e�ector (Figure 4.17). With this con�guration

we can conveniently explore objects on or above the table surface in a useful working

volume of several cubic meters.
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We use the partitioned plane formulation to recover the hand-eye transformation

of our mobile camera. The tabletop itself is used as the calibration feature. We select

a series of views of the table surface using an interactive robot control interface,

ensuring to avoid degenerate viewpoint combinations as described in Section 1. At

each view position we acquire a 64 � 64 pixel range image of a part of the tabletop,

and �t a plane to each image by linear least-squares. We also record at each position

the robot base to end-e�ector transformation TRW , which is calculated from known

kinematics of the PUMA by the RCCL [17] robot control system. We thus obtain

a stream of (TRW i;qi) pairs which are provided as input to the partitioned plane

estimator.
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Figure 4.18. Deviations of the recovered camera parameters against increasing
numbers of views. The rotational parameters are Euler angles.

Figure 4.18 shows deviations of the recovered parameters against increasing num-

bers of views, for a typical trajectory. Estimates based on fewer than ten views are
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poorly constrained, indicating that the data are fairly noisy. After twenty views the

situation has stabilized signi�cantly, and the recovered camera pose parameters re-

main con�ned within a band of approximately �0:2� and �4mm. Rotational RMS

residual errors for the linear and constrained solutions are very close and nearly con-

stant after twenty views, at a value of 1:4�. The recovered parameter values appear

in Table 4.3.

Parameter Value Units

camera orientation RCR (Euler angles) -90.43, -0.39, -80.24 deg

camera translation tCR 21.1, -13.7, 213.1 mm

feature plane normal uW -0.0175, 0.0252, -0.9995 -

feature plane o�set dw -896.5 mm

Table 4.3. Recovered parameters for the active vision workcell

These �gures indicate relatively high noise conditions. In particular, the RMS

rotation residual error suggests that we can expect end-e�ector orientation errors of

the order of a degree or more, which at a typical end-e�ector to scene distance of

500mm results in translational perturbations of roughly 10mm. We are therefore not

surprised that uncertainty in the camera translational parameters is of the order of a

few millimeters, as this is consistent with comparable simulation results.

The RMS orientation error also serves to predict typical performance of the work-

cell in terms of its ability to accurately integrate data from multiple viewpoints using

only the recovered hand-eye parameters and robot kinematics. Under similar oper-

ating conditions we should expect an absolute orientation error in the range of 1:5�,

which for many purposes is considered adequate. Displacement errors in view in-

tegration vary with the end-e�ector to target distance as r sin (1:5�), and are easily

20mm or more for typical distances. This is clearly a large error if we are imaging

objects with dimensions of a few hundred millimeters, and illustrates the need for

either (i) very high precision manipulators, or (ii) �ne-grained view correspondence

algorithms based on local feature matching. Figure 4.19 shows a typical integration

of two views of an object using the estimated hand-eye transform. While there is a
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Figure 4.19. Results of a typical view integration, using the recovered camera
hand-eye transform. The pyramid is 130mm wide at the base and 30mm at the
top, and was imaged from two viewpoints roughly 500mm from the object. One
view is rendered here as a shaded surface, while the other is shown as a grid.
Displacement errors between the two projections of the pyramid are about 10mm.

signi�cant displacement error the result is as good as we can expect considering the

accuracy of the manipulator, and is quite satisfactory for coarse integration.
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CHAPTER 5

Conclusion

We have presented a class of solutions to the hand-eye calibration problem for range-

�nding cameras that is strongly motivated by practical considerations. Our approach

relies on measurements of scene features that are common in typical scenes and that

are easily extracted, rather than depending on results of di�cult pose estimation

or correspondence problems as input to our procedure. We emphasize the value of

redundant measurements for suppressing noise, and visualize dynamic calibration as

an ongoing re�nement of the measurement model that maximizes self-consistency of

the acquired data. Our solutions admit �nite memory implementations, and can be

applied as �lter processes on in�nite input data streams.

Our development has focussed primarily on a particular calibration task, but our

approach is applicable to a broad range of problems. We have used these methods in

our laboratory to determine the base frame transformation between two co-operating

robots, where one is used to manipulate the range-�nding camera, and the other

performs grasping tasks within the common workspace. Our solutions for the hand-

eye calibration problem are directly applicable to the two-robot problem by a simple

reorganization of the input data. We are presently investigating the application of

a similar method to hand-eye calibration of a range camera mounted on a mobile

rolling robot. We expect this problem to require the addition of constraints re
ecting

the fact that this manipulator moves in the plane, but the essential principle remains

unchanged. We have also explored applications in the calibration of hand-held ultra-

sound sensors. In this case the measurements are samples of space curves instead of

surfaces, but again our approach is directly applicable.
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Several issues remain for further study. The most signi�cant and challenging of

these is the matter of generating manipulator trajectories so as to optimally reduce

uncertainty in the recovered parameters. This is particularly di�cult because of the

need to accommodate a wide range of constraints arising from physical limitations

of the sensor and manipulator. Despite good results obtained with the partitioned

plane formulation, we are not entirely satis�ed with the translation error metric and

believe that some improvement can be made here. In particular, further analysis of

the failed frame-invariant formulation for translations is required.

The idea of dynamic self-calibration presented in this thesis is a general concept

of which we have explored but a single example. We have demonstrated a practi-

cal means of closing the feedback loop around a visual exploration process, thereby

embedding in the system a capacity for ongoing self-validation and self-adjustment.

This capability is vitally important for practical autonomous mechanisms, and we

will require a broad selection of computational methods in order to build arti�cial

perception systems whose adaptability and robustness even remotely approach those

of the human model.
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