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Informative Views and Sequential Recognition

Tal Arbel and Frank P. Ferrie

Abstract

In this paper we introduce a method for distinguishing between informative and un-
informative viewpoints as they pertain to an active observer seeking to identify an
object in a known environment. The method is based on a generalized inverse the-
ory using a probabilistic framework where assertions are represented by conditional
probability density functions. Consequently, the method also permits the assessment
of the beliefs associated with a set of assertions based on data acquired from a partic-
ular viewpoint. The importance of this result is that it provides a basis by which an
external agent can assess the quality of the information from a particular viewpoint,
and make informed decisions as to what action to take using the data at hand.
To illustrate the theory we show how the characteristics of belief distributions

can be exploited in a model-based recognition problem, where the task is to iden-
tify an unknown model from a database of known objects on the basis of parameter
estimates. This leads to a sequential recognition strategy in which evidence is ac-
cumulated over successive viewpoints (at the level of the belief distribution) until a
de�nitive assertion can be made. Experimental results are presented showing how
the resulting algorithms can be used to distinguish between informative and unin-
formative viewpoints, rank a sequence of images on the basis of their information
(e.g. to generate a set of characteristic views), and sequentially identify an unknown
object.
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R�esum�e

Dans cet article, nous pr'esentons une m'ethode qui permet de distinguer les
points de vue informatifs et non-informatifs d'un objet tels que per�cus par un
observateur actif qui cherche �a identi�er un objet dans un environnement connu.
La m'ethode repose sur une g�en�eralisation de la th�eorie inverse utlis�ee en proba-
bilit�e o�u les hypoth�eses sont repr�esent�es par des fonctions de densit�e de probabilit�e.
Cons�equemment, la m�ethode permet aussi l'estimation de la con�ance associ�ee �a
un ensemble d'hypoth�eses bas�es sur les donn�ees obtenues d'un certain point de vue.
L'importance de ce r�esultat est qu'il procure une base par laquelle un agent externe
peut estimer la qualit�e de l'information provenant d'un point de vue et en cons�equence
prendre une d�ecision �eclair�ee quant �a l'action �a r�ealiser.
Pour illustrer la th�eorie, nous montrons comment les caract�eristiques des fonctions

de distribution de la con�ance peuvent être exploit�ees dans le cadre d'un probl�eme
de reconnaissance bas�ee sur un mod�ele. La tâche consiste �a identi�er un mod�ele �a
partir d'une base de donn�ees d'objets repr�esent�es param�etriquement. Ceci d�ebouche
sur une strat�egie de reconnaissance s�equentielle par laquelle les �evidences sont accu-
mul�ees sur plusieurs vues (au niveau des distributions de con�ance) jusqu'�a ce qu'une
hypoth�ese d�e�nitive puisse être �etablie. Des r�esultats exp�erimentaux d�emontrent
comment l'algorithme peut être utilis�e pour: distinguer entre les vues informatives et
non-informatives, classer une s�equence d'images sur la base de leur information (i.e.
pour g�en�erer un ensemble de vues caract�eristiques) et identi�er s�equentiellement un
object inconnu.
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1. Introduction

Consider an active agent charged with the task of roaming the environment in
search of some particular object. It has an idea of what it is looking for, at least at
some generic level, but resources are limited so it must act purposefully when carrying
out its task [1]. In particular, the agent needs to assess what it sees and quickly
determine whether or not the information is useful so that it can evolve alternate
strategies (the next place to look for example). Key to this requirement is the ability
to make and quantify assertions while taking into account prior expectations about
the environment. In this paper we show how the problem be cast in probabilistic
terms from the point of view of inverse theory [25]. Assertions are represented by
conditional probability density functions, which we refer to as belief distributions,
that relate the likelihood of a particular hypothesis given a set of measurements.
What is particularly important about the methodology is that it yields a precise
recipe for generating these distributions, taking into account the di�erent sources
of uncertainty that enter into the process. Based on this result we show how the
resulting distributions can be used to (i) assess the quality of a viewpoint on the
basis of the assertions it generates and (ii) sequentially recognize an unknown object
by accumulating evidence at the probabilistic level.
Speci�cally, we show how uncertainty conditions prior expectations such that the

shape of the resulting belief distribution can vary greatly, becoming very delta-like
as the interpretation tends towards certainty. In contrast, ambiguous or poor inter-
pretations consistently tend towards very broad or at distributions [4]. We exploit
this characteristic to de�ne the notion of an informative viewpoint, i.e. a view which
gives rise to assertions that have a high probability according to their associated be-
lief distribution. There are at least two applications for this result. First, in the case
of an active observer, viewpoints can be chosen so as to maximize the distribution
associated with an object of interest. This does not specify how to choose an informa-
tive viewpoint1, but can be used as a �gure of merit for a particular choice. Second,
in the case of an o�-line planner, it is often advantageous to be able to pre-compute
a set of characteristic views to aid in recognition [15, 16, 23, 11, 12, 17, 8]. A good
strategy here would be to select the n best views of an object ranked according to
its belief distribution.
Second, although viewpoints can be labelled as either informative or uninforma-

tive, ambiguous cases where there is \reasonable" belief in more than one interpreta-
tion still exist. It becomes apparent that evidence from more than one viewpoint is

1Strategies for gaze planning are operationally de�ned [27, 29].
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needed. This leads to a sequential recognition strategy that seeks to improve uncer-
tain interpretations by accumulating evidence over several views. But at what level
of representation should this evidence be accumulated? The autonomous exploration
procedure that we use to generate the set of database models, for example, sequen-
tially constructs a complete 3-D representation at the level of surface geometry [29].
One could follow a similar approach at the recognition phase, i.e. recalculate the
belief in each hypothesis as the explorer adds new data to its representation of the
unknown object. Unfortunately this would be computationally prohibitive, largely
due to the expense of data fusion [22]. A better approach would be to process each
view independently and avoid the fusion problem at the data level by seeking instead
to combine information at the level of the belief. An active agent would then be
able to gather evidence until the composite belief associated with a particular hy-
pothesis exceeds a prescribed �gure of merit. We show that such evidence can be
accumulated by histogramming votes from each viewpoint and picking the hypothe-
sis with the highest score. This strategy is appropriate provided that clear \winner"
hypotheses prevail in a largely view-invariant manner.
This brings us to the problem of obtaining the belief distributions. Here we consider

the recognition problem itself, focusing on a model-based approach. Speci�cally,
model-based recognition focuses on matching an unknown model, which is computed
on-line from sensory data, with a predeterminedmodel computed o�-line and residing
in a database of known objects [5]. What di�erentiates approaches is largely a matter
of the kinds of models used to represent objects in the scene and how models are
matched. Our interest is in three-dimensional object recognition in which objects
are represented by parametric shape descriptors (i.e. models) such as superellipsoids
[7, 6, 21, 13], deformable solids [10, 20], and algebraic surfaces [24]. In our context,
models are constructed through a process of autonomous exploration [27, 28, 29]
in which a part-oriented, articulated description of an object is inferred through
successive probes with a laser range-�nding system. Figure 1a shows the set-up
used to perform experiments | a two-axis laser range-�nder mounted on the end-
e�ector of an inverted PUMA-560 manipulator. For any particular viewpoint, such
as the one shown in Figure 1b, a process of bottom-up shape analysis leads to an
articulated model of the object's shape (Figure 1c) in which each part is represented
by a superellipsoid primitive [13]. Associated with each primitive is a covariance
matrixC which embeds the uncertainty of this representation and which can be used
to plan subsequent gaze positions where additional data can be acquired to reduce
this uncertainty further [27, 28]. A system which automatically builds object models
based on this principle is reported in [29, 18].
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(a) (b) (c)

Figure 1. (a) Mobile laser range-�nding system used to construct
object models. (b) Laser range-�nder image of a pencil sharpener ren-
dered as a shaded image. (c) An articulated, part-oriented model of the
sharpener using superellipsoid primitives; 8 superellipsoids are used,
one corresponding to each of the parts of the object.

Many approaches have been advocated for the problem of matching models. The
majority of these employ various metrics to measure the distance between models in
the appropriate parameter spaces, e.g., Mahalanobis distance [14], dot product [20]
to mention but a few. These strategies rarely include both the uncertainties in the
parameters of the measured models and the ambiguities of the representations in the
database. However, when �tting a model to data that are noisy, there is an inherent
lack of uniqueness in the parameters that describe the model. In these cases it is
impossible to make a de�nitive statement as to which model �ts the data best [27].
For this reason, rather than choose external constraints that would force the choice
of one model over another, it would be more instructive to embed the uncertainty in
the chosen description into the representation. This is precisely the approach that
we have taken in computing the belief distribution.
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Our methodology is based on a probabilistic inverse theory �rst introduced by
Tarantola in [25]. Earlier work has shown how this theory can be used to methodically
synthesize belief distributions corresponding to each model hypothesis, Hi, given the
parameters corresponding to the unknown model, M, computed from the current
measurement Dj , i.e. P (HijMDj

) [4, 3]. This procedure explicitly accounts for
uncertainties arising from the estimation of the unknown model parameters, database
model parameters, and prior expectations on the frequency of occurrence for each of
the database entries. In this case, the solution reduces to the classical Bayesian
solution, similar to the result obtained by Subrahmonia et al. [24] - the primary
di�erence being in the techniques used to obtain the solution. The inverse solution
forces all sources of knowledge to be made explicit prior to the experiment. The
method provides a more general recipe for combining information in a formal and
structured fashion. In addition, they (and many others [5, 9]) are interested in
constructing a discriminant that makes an absolute identi�cation of the measured
object. We argue that making assessments about identity from single measurements
can be erroneous. We are more interested in assessing the quality of the identi�cation
from a particular viewpoint and to communicate this belief to other processes to
determine whether further sampling is required.
The sequential recognition strategy therefore seeks to combine information at the

level of the belief distribution. That is, given two data sets Dj and Dj+1 correspond-
ing to di�erent viewpoints we seek a conjunction of P (HijMDj

) and P (HijMDj+1
)

that is equivalent to P (HijMDj+Dj+1
). Although the theory formally de�nes conjunc-

tion, such an operation requires knowing how a change in viewpoint conditions the
respective belief distributions. Later on, we will show that if the maximum likelihood
hypothesis 2 is largely invariant over a sequence of trials, then a robust interpretation
can be made by tabulating the votes for each one and picking the hypothesis with
the highest score. We also show that this invariance can be maximized by using the
structure of the belief distribution to �lter out uninformative hypotheses.
The remainder of the paper is organized as follows. We begin in Section 2 by

describing how to distinguish between informative and uninformative viewpoints.
We then introduce the general inverse theory in Section 2.1 and explain how to
apply the theory to the problem of recognizing parametric models. We then indicate
how the theory can be used to label viewpoints as informative or uninformative
in Section 2.2. Finally, the results lend themselves to an incremental recognition
scheme described in Section 3. In Section 4, we describe a series of experiments
illustrating the application of the method to characterize informative views within

2This refers to the hypothesis that the correct answer is the one with the highest belief.
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the context of recognizing parts of multiple-part objects. As well, we perform a
series of incremental recognition experiments that test the accumulation of evidence
from sequential viewpoints. Finally, we conclude in Section 5 with a summary of the
results and a pointer to future applications.

2. Determining Which Viewpoints are Informative

Prior to using information obtained from a particular viewpoint, an agent must be
able to assess the quality of the information in order to determine its usefulness for
the task at hand. Assertions that are made at each viewpoint must therefore be quan-
ti�ed based on prior expectations about the scene. In this section, we will illustrate
how the problem can be cast into a probabilistic framework from the vantage point
of the inverse theory. Assertions are made in the form of conditional probability den-
sity functions (belief distributions) which indicate the likelihood of the measurement
matching each of the models in the database. The importance of the methodology is
that it incorporates the various sources of uncertainty into the solution.
The information assessment can be cast into the context of model recognition. In

[4, 3], it has been shown that recognition based on complete information produced
very reliable results. However, complete information is not always available, and
potentially expensive to acquire. Assessments can be made from a single-viewpoint,
but the degree of reliability depends on the amount of information available. For
example, some viewpoints capture enough of the unique characteristics of the object
to su�ciently distinguish it from the others in the database. We will refer to these
viewpoints as informative viewpoints. Other viewing positions, where it is impossible
to say which object in the database the unknown is closest to, are called uninformative

viewpoints. By determining if a viewpoint is informative or not, we can establish if
further sampling is necessary to be able to recognize the object reliably.
In order to be able to determine whether the viewpoint was informative or not, the

recognition engine should quantify the identi�cation by producing a degree of con�-
dence in the hypotheses, rather than establish an absolute identity for the unknown
object. In this fashion, views with stronger hypotheses in terms of a signi�cantly
higher degree of con�dence in one model than the others, can be considered in-
formative. Viewpoints associated with low con�dence levels in the hypotheses are
considered uninformative. In the next sections, we will illustrate how the inverse the-
ory can be used to generate con�dence in various hypotheses, and illustrate how it
can be used to distinguish between informative and uninformative viewpoints within
the context of model-based object recognition.
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2.1. The Inverse Problem Theory. In lieu of a single maximum likelihood solu-
tion, we seek a method that generates a measure of con�dence in various hypotheses
within the context of an object recognition problem. The recognition problem we
wish to address requires us to infer from measurements of an unknown object that
model which most closely represents it in a database of known objects. Like all in-
verse problems, the recognition problem is ill posed in that, i) several models can
give rise to identical measurements and, ii) experimental uncertainty gives rise to
uncertain measurements. As a result it is not possible to identify the unknown ob-
ject uniquely. There are various ways of conditioning ill posed problems, but these
all require strong, and often implicit, a priori assumptions about the nature of the
world. As a result a method may work well only in speci�c cases and because of the
hidden implicit nature of the conditioning assumptions, cannot be easily modi�ed to
work elsewhere.
For this reason we have adopted the very general inverse problem theory of Taran-

tola [25]. In it the sources of knowledge used to obtain inverse solutions are made
explicit, so if conditioning is required, the necessary assumptions about that knowl-
edge are apparent and can be examined to see if they are realistic. The theory uses
probability density functions to represent the following sources of knowledge:

1. Knowledge given by a theory which describes the physical interaction between
models m and measurements d, denoted �(d;m);

2. Knowledge about the model from measurements, denoted �D(d).
3. Information from unspeci�ed sources about the kinds of models which exist in

the world (namely that there are a discrete number of them). We denote this
knowledge �M (m). Knowledge like this is a powerful constraint and can be used
to eliminate many of the unconstrained solutions.

Given this knowledge the theory tells us how it should be combined, but leaves any
decision about its usefulness up to the tasks that require it. For example, when at-
tempting to recognize objects we would ideally want the unknown model be identi�ed
correctly all the time. Because of experimental uncertainties this can never happen,
and there is always the possibility that an object will be identi�ed incorrectly. Only
the task can know if the likelihood of errors is acceptable.
This raises the interesting question of what we should do if the level of errors

is not acceptable. Because the sources of knowledge are explicit they are not only
visible to the operational tasks, but are also potentially open to manipulation by
them. In principal it should be possible for the task to condition or actively acquire
the a priori knowledge required to make the solution acceptable. We have already
demonstrated that what we call autonomous exploration functions well at the model
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building level [26, 29] and we now intend, with the aid of this theory, to incorporate
feedback from the recognition task as well.

2.1.1. The Inverse Solution. The theory postulates that our knowledge about a set
of parameters is described by a probability density function over the parameter space.
This requires us to devise appropriate density functions in order to represent what
we know about the world. The solution to the inverse problem then becomes quite
straight forward | it is simply a matter of combining the sources of information.
The logical operation of conjunction is appropriate, i.e. the solution to the inverse
problem is given by the theory and the measurements and any a priori information
about the models. Tarantola extends the notion of logical conjunction to de�ne the
conjunction of two states of information [25, pages 29{31]. With this de�nition
we can therefore combine the information from the joint prior probability density
function �(d;m) and the theoretical probability density function �(d;m) to get the
a posteriori state of information

�(d;m) =
�(d;m) �(d;m)

�(d;m)
(1)

where �(d;m) = �(djm) �M (m) and �(d;m) = �D(d) �M (m) over the joint space
M �D, where M refers to the model space and D, the data space. The so called non-
informative probability density �(d;m) = �D(d)�M (m) represents the reference state
of information in much the same way that noise is used when measuring information
in terms of signal to noise ratios. The formulation of appropriate non-informative
densities is a complex issue, but for our purposes we will assume that all the non-
informative densities are uniform over their respective spaces.
Accordingly, (1) is more general that the equations obtained through traditional

approaches, but degenerates to them in speci�c cases. Under the conditions men-
tioned, the solution is identical to the Bayesian solution [25, page 61] where the a
posteriori information about the model parameters is given by the marginal proba-
bility density function:

�(m) = �M (m)

Z
D

�D(d) �(djm)

�D(d)
dd: (2)

2.1.2. The Part Recognition Problem. In the system we have constructed, range
measurements are taken, surfaces are reconstructed, segmented into parts, and indi-
vidual models are �t to each part. We will treat the whole system as a measuring

instrument. Given some model m in the scene, range measurements are taken and
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from these an estimate of the model d is obtained, which we call a measurement of

the model in the scene.

1. Information Obtained from Physical Theories We �rst formulate an ap-
propriate distribution to represent what is known about the physical theory that
predicts estimates of the model parameters given a model in the scene. Such
a theory is too di�cult to formulate mathematically given the complications of
our system. We therefore build an empirical theory through a process called
the training or learning stage. Here, Monte Carlo experiments are run on mea-
sures of a known model exactly as in traditional statistical pattern classi�cation
methods. The conditional probability density function �(djm) is calculated for
each model m by assuming a multivariate normal distribution. Therefore, the
equation for �(djm) is:

�(djm) = N(d �m;CT) (3)

where N is the multivariate normal distribution, with a covariance matrix, CT ,
describing estimated modelling errors for a model m.

2. Information Obtained from Measurements
Much of the knowledge we have about a problem comes in the form of ex-

perimental measurements. In our system [29], we obtain an estimate of the
observed model parameters dobs, and also an estimate of their uncertainty in
the covariance operator Cd. The assumption we make is that the multivariate
normal distribution N(d � dobs;Cd) represents our knowledge of the measure-
ments. The probability density function representing this information is the
conditional probability density function �(dobsjd) , such that:

�(dobsjd) = �D(d)=�D(d) = N(d� dobs;Cd) (4)

3. A Priori Information on Model Parameters
In the current context, there are a discrete number of reference models,mi; i =

1 : : :M . The probability density function used to convey this knowledge is

�M (m) =
X
i

P (mi) �(m�mi); (5)

where P (mi) is the a priori probability that the ith model occurs.
4. Solution to the Inverse Problem
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Substituting the probability density functions (3), (4), and (5) into (2) gives
us the �nal equation for the a posteriori probability density function

�(m) =
X
i

P (mi)N(dobs �mi;CD) �(m�mi): (6)

where CD = Cd +CT . This density function is comprised of one delta function
for each model in the database. Each delta function is weighted by the belief

P (mi)N(dobs � mi;CD) in the model mi. The �nal distribution represents
the \state of knowledge" of the parameters of mi. The beliefs in each of the
reference models are computed by convolving the normal distributions in (3) and
(4). The advantage of the method is that rather than establish a �nal decision
as to the exact identity of the unidenti�ed object, it communicates the degree of
con�dence in assigning the object to each of the model classes. It is then up to
the interpreter to decide what may be inferred from the resulting distribution.
The methodology introduced applies to the recognition of any parametric

primitive. For our purposes, superellipsoid models were chosen because of the
range of shapes they can represent as well as their computational simplicity.
However, representations based on superquadrics pose a number of problems
due to degeneracies in shape and orientation. In solving this problem, work
has being done in representing objects by multi-modal distributions, where each
mode contains information about a possible equivalent form. Discussion of this
process is beyond the scope of this paper.

2.1.3. Example { Recognizing a Sphere. Figure 2 illustrates the kinds of results we
get by applying the theory to a typical recognition problem. Here, the reference
models were produced by training on models created with data acquired by scanning
the objects all around their surfaces (i.e. complete 3D data). The reference models,
consisting of a smaller sphere, a large sphere, and a lemon, can be seen in Figure 2a.
The larger sphere was then measured from a single viewpoint, and the resulting model
is shown in Figure 2b. The system's ability to distinguish the larger sphere from both
the smaller sphere and the lemon was then tested. The result is the belief distribution
found in Figure 2c. One can see that the system has a signi�cantly higher degree of
con�dence in the hypothesis that the measured model was a large sphere.

2.2. Determining Which Viewpoints are Informative using the Inverse

Theory. An important result of the inverse solution is that rather than establish an
absolute identity for the unknown object, the system produces a belief in each of the
models in the database. We can then use the belief distribution to tell us whether a
particular viewpoint is informative or not. This is easily accomplished by denoting
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a) Reference Models

b) Measured Model c) Beliefs in Reference Models

6.12�10�43 0.00273 0

Figure 2. Recognizing a sphere. (a) The reference models are: a
smaller sphere, a larger sphere, and a lemon. (b) The measured un-
known model. (c) The belief distribution.

views with a clear winner, in terms of a signi�cantly higher belief in one model than
the others, as informative views. From these positions, the system is able to capture
the attributes of the model that distinguish it from the others.
We can also use the beliefs to label a viewpoint as uninformative. This would be

an indication that results from the current viewing position do not tell us much about
the object's identity. Using the inverse solution, one would detect an uninformative
viewpoint when the unnormalized belief in each of the models is very low (or zero).
In this situation, it is impossible to say which reference model the unknown might
correspond to. Such a scenario would arise if the distribution of the unknown model
does not signi�cantly overlap with any of the reference distributions. There are two
possible reasons for this to occur. The �rst is the case where the distribution of the
measured model is very wide due to large uncertainties in its parameters. The result
is low beliefs in all the reference models in the database. This case occurs when the
scanning has occurred from a viewpoint where insu�cient data were collected. The
second case occurs when there is a breakdown in some of the prior assumptions. In
this case, the issue is not one of insu�cient data. Here, the parameters determined
from that particular viewpoint di�er signi�cantly from any of the models in the
database. The resulting distribution could actually be quite sharp, but simply does
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not overlap with any of the reference model distributions. In this case, it could be
that the linearity assumption breaks down, implying that perhaps the assumption of
a normal distribution is not valid. Another possible breakdown of assumptions occurs
when the chosen model does not adequately describe the data. Zero belief cases exist
when the values of the a posteriori probability density functions are extremely low.
Due to numerical underow, the procedure produces beliefs of zero for each of the
reference models.
Figure 3 illustrates the di�erence between informative and uninformative view-

points for the case of a cylinder. Here, one can see that the system is able to dis-
tinguish the cylinder from a block with great ease, if the cylinder is measured from
an informative viewpoint. However, if measured from an uninformative viewpoint,
there is little con�dence in either model. In this case, the beliefs are in fact below
the numerical precision of the system, and therefore become zeros.
The problem of distinguishing between the two kinds of states becomes one of

determining the threshold, below which one can safely state that the beliefs are in
fact insigni�cant. It is obvious that cases where the beliefs in all the models are
zero are uninformative. However, this threshold depends on the numerical precision
of the system. In this sense, it is chosen externally (and is, therefore, a random
cuto� point). We therefore feel justi�ed in raising this threshold to one that excludes
other low con�dence states. The expectation is that this will eliminate false positive
states, as they are generally occur with low belief. One can determine this cuto�
point empirically, by observing the belief distributions from di�erent viewpoints,
and noting if there is a clear division between the clear winner states and the low
con�dence states. A bi-modal distribution would indicate that an application of a
prede�ned threshold can easily distinguish between these states.
Figure 4 illustrates the logarithm of the beliefs resulting from recognizing 36 dif-

ferent single-view samples of each of six models in a database: a Big Sphere, a Block,
a Cylinder, a Lemon, a Small Sphere and a Round Block. The results indicate the
bi-modality of the belief distribution. In Section 4, we illustrate the bi-modality of
the results of recognizing the parts of articulated models.

3. Sequential Recognition

Provided that the low belief states have been identi�ed, we wish to make a state-
ment about the remaining beliefs. Even though the majority of the cases can be
clearly divided into informative and uninformative states, there are still ambiguous
cases where a \signi�cant" belief in more than one model exists. Because of these sit-
uations, it becomes apparent that evidence from more than one viewpoint is needed.
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Database Models

Measured Model View 1 View 2 View 3 View 4

Belief in cylinder 2.237 0.009181 0.0 0.0

Belief in block 0.0 0.0 0.0 0.0

a) Informative b) Uninformative

At the top of this �gure are the two reference models in the data base: the cylinder and the square
block. Beneath these are measured models of the cylinder obtained after scanning its surface from
4 di�erent viewing positions. Below each model one can �nd the unnormalized belief distributions
obtained when attempting to recognize each of the measured models.

Figure 3. (a) Informative and (b) Uninformative Views of a Cylinder.

The question becomes: how do we accumulate evidence from di�erent views, when the
evidence is in the form of a conditional probability density function? The immediate
response is given by the theory (Section 2.1) which formally de�nes the operation of
conjunction of information, i.e. the belief distributions. To state this more formally,
we denote belief distributions corresponding to each model hypothesis, Hi, given
the parameters of the unknown model, M, computed from the measurement, Dj ,
by P (HijMDj

). Then, given two data sets Dj and Dj+1 corresponding to di�erent
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Big Sphere Block Cylinder Lemon Small Sphere Round Block

-40

-30
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Log Belief
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Small Sphere
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Cylinder

Block

Big Sphere

True Parts

Above are the results from attempting to recognize 36 di�erent single-view samples of each of
the models in the database. The beliefs in the di�erent models are represented by di�erent
symbols, each symbol indicating the true model used during that trial.
The level of numerical underow of the system is represented by a "U" on the y � axis.

Because so many trials fall into this category they are marked with a simple point, except
when the belief is for the true model used in the trial.
By observing the log of the beliefs, one can see the bi-modality in the results.

Figure 4. Log of beliefs in the Big Sphere, Block, Cylinder, Lemon,
Small Sphere, and Round Block.

viewpoints we seek a conjunction of P (HijMDj
) and P (HijMDj+1

) that is equivalent
to P (HijMDj+Dj+1

). An active agent would then gather su�cient evidence in this
fashion until the composite belief distribution associated with a particular hypothesis
exceeds a prede�ned level of acceptability.
Although the theory formally de�nes conjunction, such an operation requires know-

ing how a change in viewpoint conditions the respective belief distributions, as they
are normalized with respect to a global frame of reference. As a result, relative values
between the views are meaningless. The normalizing factor is some unknown func-
tion of viewpoint, and is di�cult to obtain analytically. In [2], it is indicated that
the reason for the di�culty lies in that this factor can be shown to be a function ofR
D
dd, the volume of data space. The issue of how to de�ne this space is a di�cult

one to address. In order to do so, a commitment to a permissible region of observed
parameters must be established prior to experimentation. In this sense, this problem



3. Sequential Recognition 15

is analogous to �nding correspondence between range data from di�erent viewpoints
where the relationship between the views is unknown. Because of the di�culty of
�nding this factor, the beliefs are not normalized. As a result, it becomes di�cult to
match a belief of 500, for example, from one view, with a value of 50 from another.
Each of these values may reect the strongest possible belief from their respective
views, however it is di�cult to compare them in a sensible fashion. As well, in sit-
uations where there is a belief of 50 in one model and 40 in another, it becomes
impossible to establish a clear winner.
For this reason, we have chosen not to select a \winner" in ambiguous situations,

and state that all beliefs above a threshold indicate equally likely hypotheses. We
illustrate this philosophy by binarizing the conditional probability density function
values at each view, such that all beliefs above the threshold become ones. In this
fashion, we have divided the possible results to include:

1. Informative states: states with one clear winner (a single positive value).
2. Uninformative states: states without a clear winner. These include:

a) Ambiguous states: states with more than one possible winner (more than
one single positive value).

b) Undetermined states: states with no winners (all zero values).

It is important to note that ambiguous states are, in fact, undetermined states that
lie above the chosen threshold. In theory, careful choice of cuto� level should elimi-
nate these states as well (without eliminating a large number of informative states).
Figure 5 illustrates these di�erent states in the case of a square block. Here, the sys-
tem is asked to identify a square block from di�erent views, and correctly distinguish
it from a similar rounder one. This example indicates that the results match human
intuition. The clear winners, or informative states, in Figure 5a indicate that the
system is able to identify the block despite wide variations in its three dimensions.
The ambiguous cases (Figure 5b) occur when the resulting models are rounder in
shape. Here, the system has trouble di�erentiating between the models. In fact,
these models resemble the rounded block more than the square one. In the third
case (Figure 5c), the system does not have signi�cant belief in any of the models.
Intuitively, one can see that these models are not similar to either reference model.
Using this method of representation, rather than base conclusions on maximum

likelihood methods from independent viewpoints, the methodology would entail com-
bining evidence from single viewpoints by considering all models whose beliefs are
above a threshold to be equally signi�cant. In accordance with Marr's \Principle of
Least Commitment" [19], all plausible hypotheses, rather than just one are commu-
nicated to the external processes. Furthermore, should the case with a clear winner
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Measured Model Belief in Block Belief in Round Block
Unnormalized Binarized Unnormalized Binarized

a) Informative

0.2 1 0 0

0.007 1 0 0

b) Ambiguous

2.0�10�13 1 5.8�10�6 1

3.4�10�13 1 0.002 1

c) Undetermined

0 0 0 0

0 0 0 0

Above are the two reference models: a block and a rounded block. In the left column of
the table are the models of the block measured from (a) informative, (b) ambiguous and
(c) undetermined viewpoints. To their right, one can �nd the unnormalized, and binarized
belief distributions (a threshold of 10�13) obtained when attempting to recognize each of
the measured models.

Figure 5. Informative, Ambiguous, and Undetermined States for the Block.
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persist with a signi�cantly higher belief in one model than the rest (referred to as a
bi-modal distribution - where there is a clear separation between the high con�dence
and low con�dence beliefs), then binarization becomes a perfectly valid method of
normalizing the beliefs from one view to the next.
By normalizing our con�dence values in this manner, combining them from di�er-

ent viewpoints becomes straightforward. Should the maximum likelihood hypothesis
prevail in a largely view-invariant manner, then after a sequence of trials, a robust
interpretation can be made by tabulating the votes for each one, represented by the
binarized beliefs, and picking the hypothesis with the highest score. In this fashion,
a clear winner should emerge. In addition, the con�dence in the incorrect models
should become insigni�cant. In Section 4, we will verify this empirically by attempt-
ing to recognize a series of real objects from sequential viewpoints. We will also
show that the view-invariance is maximized by applying a threshold to �lter out the
uninformative viewpoints.
Figure 6 illustrates an attempt at sequentially recognizing the square block at 40�

increments. As in the previous example, the square and round blocks are used as
reference models. The raw beliefs are binarized by imposing a threshold of 10�13.
Notice that the ambiguous case quickly becomes insigni�cant with the increase of
evidence in the correct model. After only 9 iterations, the clear winner emerges,
casting all doubt aside.

4. Experiments and Results

Through a series of experiments, we wish to illustrate how one can use the belief
distributions to distinguish between informative and uninformative viewpoints. As
well, we wish to show that evidence, in the form of the belief distributions, can be
accumulated from sequential viewpoints. The expectation is that a clear winner will
emerge rapidly after a small number of views.

4.1. Characterizing Informative Viewpoints by External Threshold. The
�rst question that must be addressed through experimentation is: Can we distinguish
between informative and uninformative viewpoints? In previous sections, we have
hypothesized that the beliefs are di�erentiated into two distinct states: the state of
high con�dence in the correct model and the state of low con�dence in the others.
Through experimentation on a set of real objects, we will examine the idea that
should the distribution be bi-modal, the application of a threshold to distinguish
between informative and uninformative states becomes justi�ed.
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View Angle Measured Model Belief in Block Belief in Round Block
Unnormalized Binarized Unnormalized Binarized

0� 2.0�10�13 1 5.8�10�6 1

40� 0 0 0 0

80� 0.2 1 0 0

120� 0.03 1 0 0

160� 0 0 0 0

200� 0.1 1 0 0

240� 0 0 0 0

280� 0.03 1 0 0

320� 0.001 1 0 0

Final Score 6 1

Displayed above are the 9 models resulting from sequentially measuring the square block at 40�

increments. From left to right, one can see the viewing angle, the measured model, the unnormal-
ized and binarized (threshold of 10�13) belief distribution resulting from attempting to recognize
each of the measured models. The �nal distribution is the histogram of the binarized distributions.

Figure 6. Incremental Recognition of a Block.
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Our current focus is \recognition by parts", whereby measured objects are seg-
mented into their constituent parts, each of which is compared to the parts in the
database. Here, objects are seen as collections of independent parts where topologi-
cal relationships are not yet considered.3 Recognizing parts of articulated models is
challenging due to problems of self-occlusion and segmentation.
Two articulated models were used in the recognition experiments: a potato-head

toy consisting of two ears, two eyes, a nose and a head, and an alarm clock with
two bells, two legs, a cylindrical face and a back were chosen for the purposes of
testing the part recognition algorithm on complex objects. In addition, six single-
part \distractors" were placed in the database in order to render the recognition task
more di�cult. These objects consisted of: two spheres (rad = 20mm; rad = 25mm),
a block, a cylinder, a lemon, and a block with rounded edges. The objects were
chosen for the experiments because they consisted of parts that generally conformed
well to non-deformable superellipsoids, with the exception of the toy head whose
shape was tapered. The parts varied in size and shape, so as not to be clustered
together too tightly in �ve-dimensional feature space. However, their distributions
overlapped su�ciently enough in several dimensions so that the recognition procedure
was challenged in its discrimination task.
Training automatically produced object class representatives, by measuring the

object numerous times. Each individual model was created by scanning the object
from several views in an exploration sequence [27, 28, 29]. Here, each object was
scanned using a laser range-�nder, segmented into its constituent parts, a superel-
lipsoid model was �t to each part, and the resulting parameters stored. In order to
create the representatives in the database, 24 samples of each single-part object, 10
samples of the potato-head, and 7 samples of the alarm clock were used. Figure 7
illustrates the actual potato-head and alarm used in recognition experiments, and
the representative models of each object that result from training.
In the �rst experiment devised, the potato-head toy was measured from 32 in-

dependent viewing positions. Recognition was performed on each of these samples
in turn, using a database consisting of the parts of the potato-head as well as the
single-part objects as distractors. The beliefs were plotted on a logarithmic scale
graph. Once again, a bi-modal distribution was anticipated, whereby a clear division
between the informative and uninformative states would permit the use of a threshold
to distinguish between the two. The results can be found in Figure 8.

3Recognition strategies that take topology into account are currently being investigated.



20 Informative Views and Sequential Recognition

BS B C L SS RB
Displayed above are reference objects that result from training acting as \distractors" for the
recognition procedure: a big sphere (BS), a block (B), a cylinder (C), a lemon (L), a smaller
sphere (SS), and a rounded block (RB).

a) Original potato-head and alarm clock.

b) Reference potato-head and alarm clock models created by training.

Figure 7. The reference parts resulting from training.

As hypothesized, the results indicate a bi-modal distribution for the beliefs in the
potato-head parts. For each of these parts, there is a top cluster, representing rel-
atively high beliefs in the correct models. Beneath this, a thin scatter of beliefs in
other models can be seen. Finally, the bottom cluster represents those beliefs that
were below the numerical precision of the system (producing zero beliefs). However,
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B Bs C L EarL EarR EyeL EyeR Head Nose Rb Ss

-40
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EyeL

EarR

EarL

Cap

True Parts

Above are the results from attempting to recognize 32 di�erent single-view samples of each
of the parts of the potato-head: the Left Ear (EarL), Right Ear (EarR), Left Eye (EyeL),
Right Eye (EyeR), Head (Head), and Nose (Nose). The single-part reference models were also
included as distractors for the recognition process. (see Figure 7 for notation.)
One can see the bi-modality in the log of the beliefs in the potato-head models. The beliefs

in the distractors appear much more scattered, the majority lying beneath the top cluster
of the potato-head parts. The top horizontal line indicates the results that can be achieved
if a threshold of 10�5 were applied. This would lead to minimal false-positive indications
accompanying a high number of correct votes.

Figure 8. Log of beliefs in the Potato-Head parts, as well as the Big
Sphere, Block, Cylinder, Lemon, Small Sphere, and Round Block.

the majority of the beliefs were concentrated in the the top cluster illustrating that,
most of the time, the system had high con�dence in the correct part. However, some
scattered beliefs in the single-part distractors occurred as well. It is important to
note that the majority of these cases lie below the top cluster of correct identi�-
cations, indicating that by application of a threshold anywhere from 10�10 to 10�5

should eliminate the majority of the false-positive cases. The exact value of the cuto�
level is not critical. The bold horizontal line illustrates the what can be achieved by
applying a threshold of 10�5. The result should lead to minimal false-positive indica-
tions accompanying a high number of correct votes. The case of the head, however,
emphasizes the possibility of individual threshold levels for maximal e�ciency. Here,
a much lower threshold would ensure the highest number of correct matches.
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Having established the bi-modality of the belief distribution, the next step is to
investigate the application of an external threshold to distinguish between informative
and uninformative viewpoints, and consequently, remove the majority of false-positive
assertions. To this end, the cuto� point was raised to 0.00001. The results of using
maximum likelihood on the beliefs, before and after applying the threshold, can be
seen in Figure 9.
Figure 9a illustrates that the system is able to successfully recognize instances of

articulated parts of a complex object with only partial information available, even
with the added e�ects of self-occlusion. In fact, even with \complete" data gathered
from all around the object surface, most parts were embedded within others and
thus part of their surfaces were never visible. This resulted in reference parts being
created without complete information. As a result, the training procedure was not
able to ensure that model parameters were close to their \true" values.
Figure 9b indicates that, for most models, the external threshold retained most

of the correct states, con�rming that the system had high con�dence in the correct
identi�cations. In addition, the majority of the false-positive assertions were elimi-
nated. This con�rms the hypothesis that, because the beliefs are bi-modal in nature,
the application of an external threshold can used to successfully distinguish between
informative and uninformative viewpoints. An active observer can then assess these
results from a particular viewpoint and determine if further sampling is necessary.
In the case of the head, however, application of the external threshold caused almost

all of the correct identi�cations to become undetermined states. This is because
the beliefs in the correct model were generally low to begin with. The problem
is that the head is tapered, breaking the assumption that the objects can in fact
be accurately modelled by non-deformable superellipsoids. Here, training produced
one particular model, and di�erent single-view samples of the head produced very
di�erent superellipsoids depending on where the data were collected from. Therefore
other equally viable descriptions that result from single view measurements were not
recognized correctly. This lead to undetermined states.
Other potential problems occur because the recognition process relies heavily on

the accuracy of the segmentation process. Because of this, errors in the segmentation
of the range data can lead to errors in recognition. In these experiments, there were
several cases where the head was divided into two distinct parts: a \head" and a
\cap". Because the database allowed for only one part for the head, the system
identi�ed the cap part as being as lemon or some other reference model. This was
understandable as the cap was similar in size and shape to these models.
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H N ERL ERR EYL EYR

2.5

5

7.5

10

12.5

15

Undetermined

Incorrect

Correct

Number of Trials

a) Threshold = computational underow

H N ERL ERR EYL EYR

5

10

15

20

25

30

Undetermined

Incorrect

Correct

Number of Trials

b) Threshold = 0.00001

Displayed above are the tables describing the belief distributions of the potato-head measured
from single view-points. The parts of the potato-head are: a head (H), a nose (N), a left ear
(ERL), a right ear (ERR), a left eye (EYL), and a right eye (EYR). Here, labelling one eye as
the other, or one ear as the other was considered to be a correct identi�cation. Zero values are
de�ned by a) numerical underow of system and b) a threshold of 0.00001.

Figure 9. Matching samples of the potato-head taken from single viewpoints.

Most of the incorrect states arose due to the similarity of the reference models.
For example, the eyes resembled the smaller sphere, the nose and the ears. Similarly,
the ears were extremely close to the bigger sphere in size and shape. As a result,
their distributions overlapped signi�cantly, making it di�cult to distinguish between
them using the current modelling scheme. Yet, in the majority of cases, these incor-
rect identi�cations occurred with low beliefs. These uninformative viewpoints were
identi�ed and eliminated by raising the threshold for undetermined states.

4.2. Accumulating Evidence from Sequential Viewpoints. The experiments
described suggest the possibility of an incremental recognition procedure. It is based
in the following observations obtained empirically over successive trials:

i) Viewpoints that provide very little information, or uninformative views, gen-
erally can be detected by their low con�dence levels (beliefs). Because of the
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bi-modality of the belief spread, these can be discovered by application of a
threshold. Detection of such events is a clear indicator that further sampling is
required.

ii) Informative views are generally accompanied by high beliefs, but with the pos-
sibility of a false-positive indication. These can also be detected by threshold
application.

iii) The likelihood of successive false-positive indications is very small. First, this is
a consequence of the high selectivity of the reference distributions which result
in low frequencies of false-positive indications in the �rst place (e.g. Figure 9).
Second, it is unusual for observer motion to result in similar viewpoints in two
successive views (general position assumption).

In order to explore the possibility of an incremental recognition strategy for com-
plex objects, two experiments were devised. In the �rst experiment, evidence from
single-views of the potato-head toy were accumulated. In the second, the alarm clock
parts were added to the database and evidence in the alarm clock was accumulated.
In both experiments, the system binarized the beliefs above the prede�ned threshold
at each view. Evidence at each stage was computed by histogramming the binarized
beliefs accumulated thus far. The results of accumulating evidence in each object
after 32 single-views can be seen in Tables 1 and 2. In Tables 1a and 2a, the cuto�
point was determined by the numerical precision of the system. In Tables 1b and 2b,
thresholds of 0.00001 and 0.0001 respectively were imposed externally.
Tables 1a and 2a indicate distributions from single-views that were relatively

\wide" in that a measured model produced a degree of belief in several reference
models at once. The result is that, in most cases, the accumulated binarized evi-
dence points to several models at once. Attempting to choose a single winner after
several iterations would therefore be a di�cult task. The choice could be limited
to a few candidates, as some of the false-positive indications have been rendered in-
signi�cant due to insu�cient evidence. For example, in the case of recognizing the
potato-head's nose, although evidence in the big sphere, block, cylinder, lemon and
rounded block existed from particular viewpoints, it was signi�cantly lower than the
evidence in the nose after tabulating the votes over several views. This validates the
hypothesis that if the belief in the true model was much higher than the beliefs in the
other models, by raising the threshold to an appropriate value, one could eliminate
the majority of the wrong hypotheses. Over several views, the result would be an
overwhelming accumulation of evidence in the true models.
Tables 1b and 2b further validate the hypothesis by illustrating that the majority

of the evidence in the incorrect models were removed after application of an external
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H N EAR EYE BS B C L SS RB
H 17 0 1 0 0 0 0 0 0 0
N 0 20 20 20 2 2 2 2 10 1

ERL 1 15 25 25 12 2 2 7 18 1
ERR 1 15 21 21 16 3 8 13 20 4
EYL 1 16 17 17 0 1 1 2 4 0
EYR 1 15 15 15 1 5 3 3 5 0

a) Threshold = computational underow

H N EAR EYE BS B C L SS RB
H 1 0 0 0 0 0 0 0 0 0
N 0 16 2 12 0 0 0 0 0 0

ERL 0 1 15 1 0 0 0 0 0 0
ERR 0 1 13 1 2 0 0 0 3 0
EYL 0 3 0 16 0 0 0 0 0 0
EYR 0 3 0 14 0 0 0 0 0 0

b) Threshold = 0.00001

Displayed above are the tables describing the accumulation of evidence from 32 single-view recog-
nition experiments. Each row describes the histogram of the binarized belief distributions for a
particular measured model. In this case, the measured models include the parts of the potato-head
(see Figure 9 for notation.) The columns refer to the reference models, including the potato-head
parts: the head (H), the ears (EAR), the eyes (EYE), and the single-part objects. Zero values are
de�ned by a) numerical underow of system and b) a threshold of 0.00001.

Table 1. Histogram of binarized belief distributions for the potato-
head after 32 single-view iterations.

threshold. The exceptions to this rule are the potato-head's head and the face of
the alarm clock, where the majority of the evidence in the correct model was elim-
inated as well. This indicates the possibility that the choice of threshold was not
appropriate for these parts (see previous section for discussion). However, even with
a uniform threshold, the results indicate that the correct assertion is obtained with
the combination of a threshold to remove false assertions and the accumulation of
information from a series of views to remove the ambiguous cases. In fact, if one
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F BA BELL LEG H N EAR EYE BS B C L SS RB
F 20 12 23 9 14 10 12 10 6 5 6 7 7 4
BA 16 25 20 8 8 8 8 10 4 7 5 5 4 2
RBL 2 2 21 12 2 15 23 23 12 6 8 9 14 1
LBL 4 4 21 9 2 14 21 21 10 3 8 6 13 1
RL 2 2 22 22 0 15 22 22 1 6 0 0 3 2
LL 6 5 22 22 0 16 22 22 0 5 1 0 0 1

a) Threshold = computational underow

F BA BELL LEG H N EAR EYE BS B C L SS RB
F 1 0 0 0 0 0 0 0 0 0 0 0 0 0
BA 0 6 0 0 0 0 0 0 0 0 0 0 0 0
RBL 0 0 4 0 0 1 2 1 0 0 1 0 3 0
LBL 0 0 6 0 0 3 0 1 0 0 1 0 2 0
RL 0 0 0 13 0 0 0 0 0 0 0 0 0 0
LL 0 0 0 15 0 0 0 0 0 0 0 0 0 0

b) Threshold = 0.0001

Displayed above are the tables describing the accumulation of evidence from 32 single-view recog-
nition experiments. Each row describes the histogram of the binarized belief distributions for a
particular measured model. In this case, the measured models include the parts of the alarm
clock: the face (F), the back (BA), the right bell (RBL), the left bell (LBL) the right leg (RL),
and the left leg (LL). The columns refer to the reference models, including the alarm clock parts:
the face (F), the back (BA), the legs (LEG), and the bells (BELL), the potato-head parts and
the single-part objects (see Table 1). Zero values are de�ned by a) numerical underow of system
and b) a threshold of 0.0001.

Table 2. Histogram of binarized belief distributions for the alarm
clock after 32 single-view iterations.

were to choose a winner based on a maximum likelihood scheme of the accumulated
evidence, the results would be correct for all models4.

4We have treated the left and right eyes of the potato-head as being instances of the same class.
A similar rule was applied to the left and right ears, as well as the left and right bells and the left
and right legs of the alarm clock.
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5. Discussion and Conclusions

In this paper, we have introduced a method for distinguishing between informative
and uninformative viewpoints and for assessing the beliefs associated with a partic-
ular set of assertions based on this data. The importance of this result is that it
provides a basis by which an external agent can assess the quality of the information
from a particular viewpoint, and make informed decisions as to what action to take
using the data at hand. Our approach was based on a generalized inverse theory
[25] using a probabilistic framework where assertions are represented by conditional
probability density functions (belief distributions). The importance of the method is
that it provides a formal recipe for representing and combining all prior knowledge
in order to obtain these distributions. We have illustrated how to apply the theory
to solve a 3-D model-based recognition problem and have shown how the resulting
belief distributions can be used to assess the quality of the interpretation. An im-
portant characteristic of the resulting belief distributions is that they are bi-modal,
simplifying the problem of determining how to distinguish between informative and
uninformative viewpoints.
We have also demonstrated that some viewpoints can give rise to ambiguous in-

formation, where the system has con�dence in more than one hypothesis. Similar to
the motivation behind autonomous exploration in the model-building phase [29], am-
biguous views have spawned the development of an incremental recognition scheme,
where we seek information from a new viewpoint to reduce the overall ambiguity. We
have shown how evidence, in the form of the belief distributions, can be accumulated
from a sequence of views. The experiments have demonstrated that the maximum
likelihood hypothesis is largely viewpoint-invariant, implying that merging votes for
the di�erent hypotheses over a sequence of views should lead to a clear winner. Be-
cause the beliefs are not normalized, we have given equal weighting to all hypotheses
by binarizing the values above a threshold. We have illustrated that by histogram-
ming the binarized beliefs and picking the highest score of the result, we choose the
correct winner in all cases.
A major strength of the method is its potential for a wide variety of applications.

For example, an active recognition agent can choose viewpoints that will maximize
the belief distribution associated with an object of interest. We have not speci�ed
how to choose this viewpoint, but the method can be used to determine if the partic-
ular choice leads to a su�cient level of information. Another important application
of the methodology is a strategy for o�-line computation of a pre-computed set of
characteristic views. One can rank these views according to the belief distributions,
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and then store the n best views. Prede�ning these views speeds up on-line computa-
tions by directing the active agent's attention to informative views, thereby reducing
the search space of viable hypotheses. These and other topics are currently under
investigation in our laboratory.
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