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Montréal, Québec, Canada H3A 2A7
{ericb,dudek}@cim.mcgill.ca

Proceedings of the Workshop on Perception of Mo-
bile Agents, Conference on Computer Vision and Pattern
Recognition (CVPR), 1998, pages 61-70.

Abstract

We describe an approach to the automated construction
of visual maps of an unknown environment. These maps
take the form of image-based “walk-throughs” rather than
2D or 3D models. Our approach is based on the selection
of informative viewpoints within the environment. These
viewpoints are locations in the environment associated with
views containing maximal visual interest. This approach to
environment representation is analogous to image compres-
sion. Our goal is to obtain a set of representative views re-
sembling those that would be selected by a human observer
given the same task. Our computational procedure is in-
spired by models of human visual attention appearing in
the literature on human psychophysics. We make use of
the underlying edge structure of a scene, as it is largely un-
affected by variations in illumination. Our implementation
uses a mobile robot to traverse the environment, and then
builds an image-based virtual representation of the environ-
ment, only keeping the views whose responses were highest.
We demonstrate the effectiveness of our attention operator
on both single images, and in viewpoint selection within an
unknown environment.

Keywords: image-based virtual reality, environment rep-
resentation, visual attention, mobile robotics

I. Introduction

This paper presents a comprehensive approach to the
graphical modelling of arbitrary environments. Using an
exploring robot we construct a navigable collection of im-
ages that captures the appearance of an environment. This
constitutes, in effect, an image-based map. The task is akin
to that accomplished by many tourists on their holidays:
to recapitulate an excursion using a set of images (let us
refer to this as the “vacation snapshot problem”).

Graphical representations of an environment can be used
for a wide range of applications. When these provide a
realistic visual experience, they are frequently referred to
as virtual reality (VR) representations. The standard ap-

proach to creating VR representations consists of using an a
priori manually-constructed 3D model of the environment
for real-time graphical rendering from a desired viewpoint.
One factor limiting the utility of this type of VR modelling
is that the construction of a realistic synthetic environmen-
tal model can be extremely labour intensive – the modelling
and texturing of a single object can take months.

An alternative technique called image-based virtual re-
ality refers to the use of real image data (photographs)
of an existing environment to create a VR environment.
By using image data from a real environment, rendering
overhead is minimized but data acquisition becomes in-
creasingly important. One of the earliest examples of this
technology was the branching movie: contiguous film clips
that can be played in different orderings to provide a user-
controlled walk-through [1], [2].

The type of image-based VR interface we employ in the
work described here allows a user to view the scene from a
fixed viewpoint, and to jump between pre-computed view-
ing locations. Although the observer motion is currently
constrained, image-based VR permits extremely realistic
scenes to be displayed and manipulated in real time using
commonplace computing hardware. There is also ongoing
research on the image-based rendering of images; that is,
the rendering of images associated with viewpoints that
have never been explicitly sampled by using information
extracted from nearby views [3]. The commercial product
QuickTime VR (a trademark of Apple Computer) exempli-
fies the particular image-based VR user-interface discussed
in this paper.

Several authors have considered the use of exploring
robots to map an unknown environment. While this is a
tantalising objective, it appears that the issues of maintain-
ing metric accuracy, assuring accurate sensing of the sur-
faces and obstacles in the world, and performing the task
efficiently (in terms of time and cost) make construction of
a true 3D representation unsuitable to many applications.
We believe the image-based map described here may serve
as an appropriate substitute in many cases.

A. Building Image-Based Maps

In order to create an image-based virtual reality, (i.e. an
evocative map), solutions are needed for several subprob-
lems:



1. A technique must be available for covering (and explor-
ing) free space.
2. An algorithm is needed to select specific regions discov-
ered during the exploration that will serve as representative
viewpoints.
3. Suitable images must be acquired and combined from
the selected viewpoints.
4. A graphical interface technology is needed to display the
images.

Our current work addresses all of the sub-problems, al-
though this paper concentrates on the second step (select-
ing suitable views).

The use of image-based VR addresses the shortcomings
of limited realism and high computational load imposed
by conventional model-based VR. Unfortunately, it only
partially alleviates the intensive effort needed to create a
VR world model: the acquisition of the requisite images to
construct an image-based VR model still entails effort and
expertise. This paper deals with the automated acquisi-
tion and construction of image-based VR models by having
a robotic system select and acquire images from different
vantage points within an unknown environment. The ob-
jective is to provide a fully or partially automatic system
for both the selection and acquisition of the needed image
data. In principle, this can be augmented by additional
cues provided by a human operator.

Image-based VR modelling appears promising in several
contexts. An obvious class of application for this type of
technique is to summarise a location for entertainment pur-
poses: for example to capture and regularly update a locale
for placement on a web site. A more prosaic application is
the task fulfilled by a security robot: to capture images of
an environment that must be surveyed regularly, either for
threat detection or for data logging purposes.

Work on human visual attention suggests that a key at-
tribute of the loci of attention is that they are different
from their surrounding context [4], [5], [6]. For short-term
attention, several featural dimensions have been identified
that lead to pre-attentive “pop-out” and, presumably, serve
to drive attentional processing [7]. Probable feature maps
used by human attention include those for colour, edge ori-
entation and edge density. In this paper we concentrate
on edge density and orientation, extending our prior re-
sults using edge density alone. This notion of a statistical
measure of image content is closely related to models of
texture segmentation and texture discrimination based on
global statistics, or the global aggregation of local measure-
ments [8], [9], [10].

The image-based VR interface we use requires cylindri-
cal panoramic photographs. These types of images have
been used for documentary purposes from even before pho-
tographs were developed.1 By exploring and selecting a set
of panoramic images, we can capture most of the appear-
ance of an environment. In principle, a suitable selection

1One instance of panoramic imagery that predates photography is
the art of Hendrik Willem Mesdag and his associates. An example
is a cylindrical room adorned by a panoramic painting c. 1880, on
exhibit at Museum Panorama Mesdag in The Hague.

of panoramic images can serve to approximate the light ray
manifold in a scene, and perhaps even permit the scene’s
reconstruction [11]. The Lumigraph, the Light Field, and
the plenoptic array are related constructions that couple
the reconstruction of a view in the scene to the sampling
of its light rays [12], [13]. Scene visualisation based on
such methods is referred to as image based rendering. Our
approach to visualisation is based on collecting sample
cylindrical panoramic images at locations selected by our
attention-like operator.

II. Approach

A primary bottleneck in the use of image-based VR is
that the creation of models is time consuming and requires
specialised expertise. The key issues in VR model devel-
opment are: (1) the selection of suitable vantage points
to cover the interesting aspects of the environment, and
(2) the acquisition of suitably calibrated images. The im-
age data is then post-processed to provide the image-based
VR model. When this model consists of a collection of
viewpoints in the environment, it is referred to as a multi-
node model. The selected viewing locations form the nodes
of a topological graph which determines the set of possi-
ble trajectories available to the user of the model. In the
image-based VR interface we are currently using, the user
experiences discontinuous motion between adjacent nodes
in the topological graph, although the user can look in any
direction from an individual node. In this paper, we de-
scribe an approach to the fully automated creation of image
based VR models of a finite environment with essentially
no human intervention.

Our approach is based on using a small mobile robot to
autonomously explore an unknown environment and collect
the image data of interest. Although many exploration al-
gorithms have been developed in our lab and elsewhere [14],
[15], [16], [17], their details are outside the scope of this pa-
per. The current work simply presupposes that the robot
travels along some trajectory through the environment, and
that it can estimate its current position at any time. In
fact, the exploration could even be manually controlled.

While the robot moves, it maintains an internal model of
its own position. This model, based on dead-reckoning, can
be corrected using external sensing or external landmarks.
In general, it is difficult to determine landmarks that are
sufficiently general to function in any environment. As a
result, while we use estimated metric positions to construct
our VR model, these can be coarse estimates only; the map
is fundamentally topological in nature.

Since our objective is to construct a virtual environment
that appears subjectively realistic to human observers, our
approach is inspired by models of human visual environ-
ment exploration. In particular, human exploration of ei-
ther an environment or an image is driven by a shifting
attentional “spotlight” [18]. In building models of human
attention, substantial research has been devoted to the
computational mechanism involved [7], [19]. We concen-
trate here, rather, on the locations to which attention is
driven. One class of attentional processing is characterised



by visual saccades to areas of high curvature, or sharp an-
gles [20]. More generally, things which are “different” or
inconsistent with their surroundings tend to attract visual
attention. Thus, our approach is to compute a map over an
image (perhaps a 3-dimensional image) of how much each
point attracts attention. The extrema of this map provide
a set of attentional features.

Our computational procedure for defining features is de-
pendent on the edges present in an image. Edge struc-
ture has been used extensively in computational vision.
Several extremely promising methods have been developed
for grouping edge elements into high level features such as
curves or closed contours [21], [22]. Doing this in a bottom-
up, robust, stable and environment-independant manner
appears to be a problem that is not yet fully resolved.
The distribution of edge elements is clearly related to basic
scene structure, however. Further, the edge element distri-
bution has the advantage of being robust to variations in
illumination.

It is with this in mind that we have formulated a metric
for visual attention based on the density and orientation of
edge elements without grouping or segmentation. To focus
attention at locales that are notable, our attention mech-
anism is driven to locations where the local edgel density
and/or orientation differ(s) substantially from the mean.

III. Environment-Independent Features

A. Paying Attention To What Is Interesting

Our approach to environment modelling using panoramic
images is based on the idea of capturing views from loca-
tions of interest. This vague but compelling concept natu-
rally leads to three different notions of “interesting” views
in the context of a specific environment. These are:

1. Views which would attract “early” visual attention in
human observers based on preconscious mechanisms. Such
views are those which would be selected by pre-attentive
processing in, for example, a search-light model [23].
2. Views which are relevant to a specific task or functional
model (this is closely related to “high-level” attention).
3. Views which capture the “typical” appearance of the
environment.

In the present work we focus primarily on the first char-
acterisation of what is interesting. This definition has the
advantage of being closely related to existing models of hu-
man visual attention.

B. Attention from Edge Statistics

In keeping with the notion that attention is drawn to re-
gions that are anomalous, and hence informative (in terms
of a maximum entropy encoding), we look for regions that
differ from the typical edge element distribution. Psy-
chophysics as well as neurobiology suggest that edge den-
sity and orientation are two key attributes of image data.
We have thus identified four attributes of images that can
be used to rapidly identify interesting regions.

• Edge element density: to what extent does the edge den-
sity in a local neighbourhood differ from the mean density?

• Edge orientation: does the local edge orientation differ
from the orientation distribution in a larger neighbour-
hood?
• Density of perceptual groups: does the local density of
certain perceptually relevant features differ from what is
typical (for example, is there an unusual density of parallel
lines)?

Each of these attributes appears to be both effective in
practice and relevant to models of biological attention [4].

Models of human pre-attentive visual feature detection
suggest that a multiple-feature winner-take-all computa-
tion is likely to take place in driving biological attention. In
contrast, we have also examined the use a two dimensional
(or multi-dimensional) operator that combines information
across feature maps, as well as a winner-take all scheme.

IV. Calculating Attention in a Single Image

As a precursor to the use of attention for selecting view-
points of interest we will consider the use of attention to
select regions of interest in a 2D image. The 2D analogy
to our environment mapping process is the storage and re-
covery of the content of an image using a selection of sub-
windows. In fact, we can define selecting a suitable window
of a 2D image in a manner notationally isomorphic to the
3D problem. In the case where the distance to the objects
in the environment approaches infinity (and hence we have
parallel projection), the 2D problem and the environment
mapping problem can be reduced to one another.

In order to formulate our attention operator, we must
first devise a notational framework: we define a matrix I
corresponding to the intensities of the image under con-
sideration. We can then define a function Ix,y(φ, θ) whose
value is the intensity at location (φ, θ) in the sub-region of
I starting at (x, y): Ix,y(φ, θ) = Ix+φ y+θ.

A. Density

Our first metric for computing visual attention is based
on edge element density. Each element in the edge map
E(I) of image I has an intensity associated with the
strength of the edge to which it belongs. We compute a
density map D(i, j) over the entire image by convolving a
Gaussian2 windowing operator of size A×B with the edge
map. Each point in the map is divided by the total possible
number of edgels, giving the following measure of density:

D(i, j)=α

∫
j+B

2

j−B
2

∫
i+A

2

i−A
2

e
− (φ−i)2+(θ−j)2

2σ2 E(Ix,y(φ, θ))dφdθ

(1)
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α =
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2

−A2

∫ B
2

−B2
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l2+m2

2σ2 dldm

(2)

Since we are interested in unusual locations, we define
the interest, Γ, as the deviation from the mean D̂ over the

2A Gaussian operator has desirable properties in terms of localisa-
tion in both space and frequency space.



entire image:
Γ(i, j) = |D(i, j)− D̂| (3)

We then find the extrema of this map, that is, the loca-
tions with the highest deviations from the mean and de-
fine those as the most interesting locations, based on edge
density alone. This involves an implicit assumption that
the edgel density distribution is uni-modal, since otherwise
we may occasionally obtain non-intuitive results. The ex-
trema of this operator will typically be associated with edge
junctions and other geometric “events” in typical indoor
images, although they can also be associated with empty
regions in textured images. See section VII-B for examples
of the use of the density metric.

B. Orientation

The second operator we use for computing attention is
edgel orientation. Each entry in the orientation map Θ(I) is
the orientation of the corresponding edgel in the edge map.
We compute a local orientation signature O(i, j) similar to
the density map defined above, as follows. In order to
select orientations that are maximally different from the
typical orientation structure in the scene, we make a noise-
insensitive estimate of the most likely orientation: a robust
maximum.

Given a function,

Φ(k, i, j) k ∈ [0, π) (4)

which returns the number of edgels with orientation k in
the local neighbourhood of (i, j), we can compute the ro-
bust maximum orientation as follows:

Φ∗(k, i, j) = Φ(k mod π, i, j) k ∈ R (5)

O(i, j) = max
k∈[0,π)

∫ q+ω
2

q−ω2
Φ∗(k, i, j)dk ω ∈ (0,

π

2
) (6)

where ω is the width of the subsection of the orientation
distribution we wish to consider. In practice, Φ(k, i, j) is
also convolved with a Gaussian windowing operator.

Again, we are interested in unusual locations with re-
spect to orientation, so we define interest as the deviation
from the robust maximum orientation Ô:

Ω(i, j) = |O(i, j)− Ô| (7)

We then find the extrema of this map which will be the
local neighbourhoods with the highest deviation from the
maximum orientation, and define them as the most inter-
esting locations based on orientation alone. Section VII-B
demonstrates the behaviour of the orientation operator.

C. Combining Density and Orientation

A suitable function is needed to combine the information
from the density and orientation operators such that we
achieve results which are stronger than the results which
each operator can provide independently. To produce a
compound interest operator, combine the individual inter-
est ratings due to the individual measurements using and
Ln metric:

C(i, j) = n
√

(γΓ(i, j))n + ((1− γ)Ω(i, j))n (8)

where n is a constant and the value chosen for γ depends
on the type of environment being sampled. By using alarge
value of n we obtain a behaviour that resembles a winner-
take-all scheme, while smaller values of n exploit combi-
nations of features. Section VII-B demonstrates the effec-
tiveness of the combined density-orientation operator with
n = 1.

V. Selecting Locations of Interest in the

Environment

A. System specification

Our image-based VR model is based on approximating
a continuous set of spherical images with a discrete set
of representative samples in the environment. In practice,
image based VR allows a user to move between specific
locations and look in (almost) any viewing direction from
any of these locations.

To construct an image-based model, we must first gather
a set of images from each point Pi = (xi, yi) in the envi-
ronment we wish to model. These images are then tiled
into a mosaic which can be subsequently mapped onto a
viewing volume [24], [25]. In practice, the mosaic is pro-
duced by “stitching” or fusing all of the individual images
from one sample location into a single composite image [24].
This involves registering consecutive images with one an-
other using methods analogous to those used in stereo cor-
respondence. In practice, this implies that camera rotation
should be about the nodal point of the camera, that the
scene should be static (or the sequence should be acquired
as quickly as possible), that lighting should remain con-
stant, and that camera motion must be minimised. These
types of constraints, while conceptually trivial, substan-
tially complicate the manual acquisition of image data for
VR mosaics.

The shape of the panoramic image that is used can vary:
both spherical and cylindrical projections have attractive
properties, while cylindrical projections are predominant in
existing applications. The latter gives the viewer a limited
viewing hemisphere, in that information is lacking at the
vertical extremes. For any viewing vector v = (r, φ, θ)
where r represents the zoom factor, and φ, θ are the Euler
angles, the appropriate field of view can be mapped onto a
planar surface for display [25].

The sampling location Pi in the environment now en-
compasses all possible viewing directions, within the con-
straints of the cylindrical map, and is defined as a node.
To construct a navigable environment, several such nodes
must be created, as well as a method defined for inter-nodal
movement. In practice, one can define hot-spots within the
images to create links in the topological graph. The de-
sired result is to obtain a graph composed of nodes which
encompass all the distinctive regions in the environment,
as well as to provide a means of smooth navigation. That
is, if two nodes are chosen which have no overlapping vi-
sual information, it would be desirable to have a node in



between which would allow a smooth transition. It is the
automated selection of the nodal positions Pi which we will
now develop further.

B. Notation

The set of all possible views or images obtainable from
a fixed location in the environment can be described as a
viewing sphere or spherical image. More specifically, for
every ray projected from a location in R3, in a direction
along the unit sphere S2 we can sample an intensity from
the environment. This transformation can be expressed as:

M3D : R3 ⊕ S2 −→ R+ (9)

or

M3D(x, y, z, φ, θ) = i (10)

where (x, y, z) are spatial coordinates, (φ, θ) refer to the
orientation of the light ray, and i is the intensity observed.
This parameterisation of light rays is related to the light
ray manifold defined by Langer and Zucker [26] and the
Lumigraph [12].

In our particular case, we have a camera mounted on a
pan and tilt unit at a fixed location on a mobile robot. For
the purposes of this paper, let us assume that the robot is
constrained to a flat floor, and thus we restrict the camera
to a plane. This limits the origin of the ray to R2, and we
have the idealised 2-D observer in a 3-D world:

M2D : R2 ⊕ S2 −→ R+ (11)

or

M2D(x, y, φ, θ) = i. (12)

A minor variation is the case of an idealised camera which
only pans, which is the case for the bulk of image-based VR.
Since we are now dealing with a camera, as opposed to a
single ray, the result of the transformation is an image or a
set intensities given by a cone about the camera direction:

MC : R2 ⊕ S −→ Rn (13)

or

MC(x, y, φ) = I (14)

where I now denotes an n pixel-indexed image implicitly
dependent on the field of view of the camera. Each pixel
is, of course, also specified by Eq. 12. An entire spherical
panoramic image Ix,y where each pixel is a ray correspond-
ing to Eq. 12 is given by

MS : R2 −→ Rn (15)

where n is the number of pixels in the image, thus leading
to a parameterisation of a set of images Ix,y whose pixels
are specified by Ix,y(φ, θ) resembling the notation used in
section IV.

C. Calculating Attention Revisited

We are now able to define a method for calculating atten-
tion for various viewpoints in the environment, as opposed
to the framework for single images presented in section IV.
Our goal is to provide a map over the environment similar
to the maps defined earlier for an individual image, such
that the visual interest can be determined for each loca-
tion. We accomplish this task by applying our operator
not to sub-regions of an image, but to the entire cylindri-
cal panorama corresponding to the current (x, y) location
in the environment. We then select the extrema of this map
as the comprising nodes of the nodal graph. The latter will
be further developed in section VI-E.

D. Sampling & on-line performance

In the image-based mapping problem presented up to
this point, we have presupposed that a characterisation of
the environment (in terms of typical statistics) is available
at all times (this would suggest an off-line algorithm). In
practice, as the robot moves through the environment it
would be highly advantageous to make decisions when lo-
cations are encountered so that there is no need to either
acquire and store immense amounts of data, or backtrack
to re-visit selected locations to obtain the panoramic im-
ages. To do this, nodes must be selected based only on
partial information of the statistical distribution of image
content over the environment giving rise to an on-line al-
gorithm. An on-line algorithm is one that can be used
incrementally without a complete a priori problem specifi-
cation. Assuming that the off-line algorithm performs well,
we seek an on-line algorithm whose performance is a good
approximation of that obtained with the off-line method.

Consider the set of paths (for example hallways) that the
robot navigates in a given environment and the locations
at which sample views may be acquired. These locations
can be used to define nodes (vertices) of a geometric tree
over the trajectories of the robot. Such a tree provides a
one dimensional description of the trajectory of the robot
(as it traverses the tree). In addition, we can index points
on the tree by the fraction t of the total traversal already
completed when a node is first encountered. Thus, the
index t associated with a node indicates how much of the
total knowledge of the environment is already available.

We can assure that the on-line algorithm exhibits arbi-
trarily good performance, as compared to the ideal of the
off-line algorithm, by permitting the robot to backtrack.
We can define the forward interest of a point from partial
information as

Ct(i, j) = |Ĉt − C(i, j)| (16)

where the subscript t denotes statistics computed from the
initial fraction t ∈ (0, 1] of the entire data set. We define
on-line viewpoint selection with α-backtracking as a vari-
ant of the off-line algorithm such that the best K non-
overlapping points are selected as the exploration proceeds.

As each point is selected, a corresponding panoramic
node is constructed. Density values are also stored for



all other points visited. As the exploration proceeds t in-
creases and the forward interest values of previously visited
locations may evolve. If a prior unselected point which is
no further back than a fraction α of the current trajec-
tory length becomes more interesting than one of the K
selected points, the robot backtracks and uses it instead of
the point it replaces. Clearly, the performance (in terms of
the points selected) of this algorithm approaches the ideal
as α approaches one.

While tight bounds that relate expected performance
and the magnitude of α appear to be available only in ar-
tificial instances, it appears that good performance can be
expected even for moderate values of α.

Final QTVR Movie Creation

Image Acquisition

Creation of Hot Spot Images

Exploration

Image AnalysisEdge Detection

Statistical Selections

Elimination of EdgesCreation of Fully Connected Graph

Image Registration

Fig. 1. System Architecture.

VI. Exploration and Modelling

Our hardware system for environment viewpoint selec-
tion is composed of a Nomadic Technologies Nomad 200
mobile robot with an on-board computer, and a CCD cam-
era mounted in a 2-DOF pan and tilt unit on top of the
robot. There are several software components comprising
the entire viewpoint selection system (figure 1):

• robot exploration: an environment-specific algorithm
moves the robot through the environment,
• image acquisition: images are acquired at each vantage
point to sample all possible orientations,
• attention processing: a statistical measure of distinctive-
ness is computed and images are selected as locations where
attention should be focussed,
• image stitching: sets of images from selected locations
are joined together in a single cylindrical mosaic,
• nodal graph: a topological map is created and used to
connect the cylindrical images producing a user interface
in which a user can pan, tilt, zoom or translate (to an
adjacent location).

The specifics of these subsystems are outlined below.

The final component in the system is a software package
from Apple Computer Inc. which combines the stitched
panoramic photographs and the topological representation
from the nodal graph component to form a multi-node
QuickTime VR movie.

A. Robot Exploration

In principle any exploration algorithm may be used with
the viewpoint selection system so long as the environment
is fully sampled. To exemplify this independence the soft-
ware was designed using a “plug-in” architecture. In prac-
tice, we have used a simple algorithm akin to a bouncing
ball3: the robot travels in a straight path until it is ob-
structed at which point it rotates by a random angle until
it can once again move forward. Although this algorithm
does not exploit the layout of the environment it still man-
ages to cover the free space quite well [27]. The motiva-
tion for the plug-in exploration architecture was based on
the potential variability in environments one will encounter
and the fact that they might mandate environment-specific
strategies. For example, in an office environment, explo-
ration based on covering the Voronoi diagram might be
more appropriate [28], [29]. Similarly, an open environ-
ment would most likely need to be sampled more evenly,
perhaps using a grazing algorithm [30].

PTU

Lens Camera

Centre Of Rotation

Centre Of Rotation

Centre Of Rotation

Robot

Fig. 2. Camera position on the mobile robot.

B. Image Acquisition

As the robot explores the environment, video images are
collected using a camera mounted on the top of the mobile
robot. In order to minimise warping effects during stitch-
ing, we rotate the camera about its optical centre or nodal
point. To preclude the robot itself appearing in the im-
ages, the pan and tilt unit (PTU) is mounted above the
front face of the robot (figure 2). This constrains the ac-
quisition of the images to two half-cylinders since the robot
itself would appear in the images of the back half. We ac-
quire the images covering a span of 180 degrees with the
PTU, rotating the robot 180 degrees, translating the robot
by its diameter, and acquiring the remaining 180 degrees
with the PTU. This method provides minimal error about
the optical centre of the camera, and removes possible ob-
structions posed by the robot itself [31].

C. Attention Processing

The first phase of the image analysis process performs
edge detection on the images acquired using the Canny op-
erator [32], [33], which returns an edge map, and an orien-
tation map. The image analysis process then convolves the

3We have also developed and tested additional exploration algo-
rithms but they are outside the scope of this paper.



images with the kernels outlined in section IV. The values
for the resulting images are sorted by their decreasing ab-
solute deviation from the mean, and the top n points (rep-
resenting the extrema) in the density/orientation map(s)
are chosen as the locations which will be part of the final
graph.

D. Image Registration

To produce a panoramic image at each location, adja-
cent images taken with the same (x, y) position but differ-
ent orientations must be fused together to produce a single
cylindrical or spherical image. To solve this “mosaicing”
problem we use cross correlation to find the best correspon-
dence. Observe that the problem is simplified by the fact
that the images are acquired using only rotations about a
fixed nodal point [34], [24]. Once this overlap is found, the
intensities of the two adjacent images are blended (aver-
aged) to remove any seam which may be present [31].

E. Graph Creation

Because we wish to create a multi-node VR scene, the
relationship between the panoramic photographs must be
established, and a facility provided for the user to move be-
tween these photographs. As mentioned above, QuickTime
VR provides a facility for moving between nodes called hot-
spots. These are encoded using a mask over the panoramic
image, with the value of the mask at the current location
of the user’s pointer determining which node will next be
visited should the user to decide to move. In order to au-
tomate the creation of these masks, we construct a fully
connected graph representing the selected locations in the
virtual environment. Because each image is associated with
a known pose (x, y, θ) in the plane4 we are able to deter-
mine the arc lengths and positions in the mask which cor-
respond to other nodes in the graph. Although localisation
errors will, even with correction techniques, corrupt these
pose estimates, we only require approximate positions to
construct the topological representation.

Consider figure 3: assuming the radius of each node is
fixed5 we can compute the intersection range IAB of the
panorama B on the panorama A (in A’s local orientation
frame):

φ = tan−1

(√
(Ax −Bx)2 + (Ay −By)2

r

)
(17)

γ = tan−1

(
By −Ay
Bx −Ax

)
(18)

IAB = [γ − φ− Aθ, γ + φ−Aθ] (19)

where r is the radius of the panoramas.
A complication arises if there are viewpoints which oc-

clude other viewpoints in the scene (figure 4). To account

4We assume planar environments, although our approach could be
readily extended to 3D environments.

5In practice the radii are fixed to a certain amount of vertical scan
lines (pixels).
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Fig. 3. Calculating arc length of viewpoint B on viewpoint A.
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Fig. 4. Viewpoint A’s view of location B is obscured by intermediate
location C.
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Fig. 5. The connectivity mask associated with viewpoint A as de-
picted in figure 4.

for this, we must process adjacent nodes in order of their
increasing distance from the source node. If the arcs of two
nodes overlap, we only keep the non-overlapping remain-
der of the arc for the occluded node. The resultant mask
generated following this algorithm on the graph depicted
in figure 4 is shown in figure 5.

This pre-computation provides a fully connected graph;
however, since we do not build a map of the environment
in the current exploration model, some adjacent nodes may



be occluded by the environment itself. Although we do not
consider this to be a limitation, edges in the graph could
be easily removed by the user.

VII. Experimental Data

A. Overview

The experimental data for environmental selections dis-
cussed in this paper was obtained at the Canadian Centre
for Architecture, located in Montréal.

The gallery floor contained pedestals holding exhibits en-
cased in glass, which were scattered about the environment.
The walls contained many exhibits, usually of uniform size,
spread around a room.

The path followed by the robot covered several rooms of
the gallery, and included 3 rooms which were not part of
the exhibit. The robot acquired 36 images at each of the
17 different locations along the trajectory. These images
were then processed as outlined in section VI. While the
process could, in fact, have taken place on-line in real time,
image processing was completed off-line to allow alternative
strategies to be evaluated on the same data set.

B. Results

The individual locations chosen in the panoramic im-
ages according to the density and orientation operators are
shown in figure 6. The top three photographs demonstrate
the effectiveness of the density operator. The images whose
edgel density variance is highest show the two rooms in the
gallery which were substantially different from the remain-
der of the gallery. Furthermore, the candidate with the
lowest variance shows a region of a wall which contains lit-
tle more than a brick-like texture. The effectiveness of the
edgel orientation operator is displayed in the next three
images. Here, the candidates containing multiple curves
such as the pattern in the painting, the frosted glass pat-
tern in the door, and the marble fireplace, have the highest
variance. This is due to the fact that the remainder of
the gallery is dominated by rectilinear structures, as illus-
trated by the candidate whose variance was lowest: a series
of photographs in frames.

The top candidates from the combined density-
orientation operator provide an interesting and positive
result – the top candidate in the distribution is the im-
age just between the top density candidate, and the second
orientation candidate. Equally appealing is the operator’s
choice representing minimal variance – the last image is
convincingly boring! Figure 8 shows the entire panoramic
images corresponding to the top two viewpoints in the en-
vironment chosen using the combined density-orientation
operator.

VIII. Discussion

In this paper we have presented an approach to envi-
ronment mapping without the use of scene reconstruction.
Our approach is based on using an exploring mobile robot
to capture the appearance of the environment using a con-
nected series of panoramic images in the form of an image-

(a) (b)

Fig. 8. Fully stitched cylindrical panoramic images corresponding to
the images (a) and (b)} in figure 7.

based virtual reality. The key issue becomes one of how to
automatically select the viewpoints to be used in the final
model. In our work, these viewpoints are selected using
an interest operator which selects viewpoints whose char-
acterisation in terms of visual features is atypical. While
our results are highly satisfying, there remain several in-
teresting issues to be resolved. Foremost among these is
the need for a formal characterisation of performance for
such an approach. Especially since we can now achieve
effective and useful results, it is important to be able to
evaluate alternative approaches in a consistent and repro-
ducible manner.

A separate, more technical issue, is that our character-
isation of interesting views explicitly ignores the spatial



(a) (b) (c)

(d) (e) (f)

Fig. 6. Selections made by the viewpoint selection system. Images (a) and (b) were the top selections using the density operator, while (c)
was the lowest. Images (d) and (e) were the top selections using the orientation operator, and (f) was the lowest.

(a) (b) (c)

Fig. 7. Selections made using the combined density-orientation operator. Images (a) and (b) were the top selections, while (c) had the lowest
variance.

sampling of the environment. For many real tasks, it may
be desirable to achieve a somewhat uniform coverage of
the environment (in terms of stored views). This seems

like it can be readily achieved in practice, for example by
constraining the minimum and maximum proximity of the
stored sample views.



In this paper, we have only touched briefly on the is-
sue of scale. In ongoing work we are exploring this issue
more fully. In practice, it appears that while a single-scale
operator works surprising well for an environment with a
limited depth range, interesting views should be selected
across multiple spatial scales. This, in turn, suggests that
it may be desirable to classify regions of observed views
with respect to their content: textures of different types,
geometric structures, or shading phenomena.

A final issue is the relationship between the active envi-
ronment exploration carried out by the robot and the set
of interesting locations selected. At present, our approach
uses an exploration mechanism decoupled from viewpoint
selection. A related interest operator is used in our lab,
however, to select landmarks that can be used for robot
localisation [35]. The use of the interest operator to explic-
itly drive exploration is something that might be of value
in certain task domains, and we are exploring it further.
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