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Abstract

This paper describes an integrated system for the
automatic construction of image-based virtual reali-
ties to describe a real environment. A mobile robot
autonomously navigates through the environment and
uses a camera to make observations. At locations that
are deemed sufficiently interesting, panoramic images
are collected that are used to construct a multi-node
VR movie.

Images of the environment are classified in terms
of two features related to human attention: edge ele-
ment density and edge orientation. The system deems
locations interesting if they are sufficiently different
from the surrounding environment. The parameter-
ization of the surrounding environment is computed
either in a pre-computation pass, or on-line using a
technique termed alpha-backtracking. The panoramic
images that describe the environment are automati-
cally joined together in a navigable movie that simu-
lates motion in the real environment.

1 Introduction

It is often valuable to construct an archival record
of a large-scale environment in pictorial form. In this
paper, we describe an automated system that moves
about and collects images that allow it to reconstruct
a photo-realistic virtual reality for later examination.
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Most people have collected vacation snapshots and
then presented them to a friend later to illustrate a
remote location. More prosaically, there are environ-
ments where regular cursory visual inspection by a
person is important, but sending a person on-site is
not desirable on a routine basis. One example might
be the cooling pipes of a nuclear reactor; in some
Canadian reactors regular inspections must be con-
ducted by an operator at some cost in terms of both
radiation exposure and down-time. Another example
is the use of photographs to illustrate historical or aes-
thetic characteristics of a building.

We are developing a mobile robot system that can
autonomously explore an unknown environment, au-
tomatically select viewpoints of interest, and construct
an image-based virtual reality that records the appear-
ance of the environment. This VR model is composed
of a collection of panoramic images through which the
user can navigate. In prior work [1, 2], we have out-
lined our approach to the selection of viewpoints of
interest. In this paper we describe the overall system
architecture which automatically selects and uses such
viewpoints; we will also comment on an elaboration of
our viewpoint selection algorithm.

2 Background

The present work involves a synthesis of techniques
for autonomous robot exploration, navigation, image
registration and virtual reality. In particular, we have
developed a formal description of interesting views
that we use to drive image acquisition. In this paper,
our scope will be limited to considering the overall
system architecture and the image selection process.

Work on human visual attention suggests that a
key attribute of the loci of attention is that they are



Figure 1: Example of the density and orientation op-
erators on a simple 2D image. The black circles repre-
sent the locations chosen by the operators. The den-
sity operator chose the location containing the 2 par-
allel lines whereas the orientation operator chose the
location containing the slanted line. This stimulus and
the results resemble those used and observed in tests
of human attention.

different from their surrounding context [3, 4, 5]. For
short-term attention, several featural dimensions have
been identified that lead to pre-attentive “pop-out”
and, presumably, serve to drive attentional process-
ing [6]. Likely human attention maps include those for
color, edge orientation and edge density, among oth-
ers. In this paper we will concentrate on edge density
and orientation, extending our prior results using edge
density alone. Figure 1 illustrates the results of using
our operator, whose behavior resembles that predicted
by the psychophysical literature.

Panoramic images have been used for documen-
tary purposes from even before photographs were
developed1. By moving about and selecting a set of
panoramic images, we can capture much of the appear-
ance of an environment. In principle, a suitable selec-
tion of panoramic images can serve to capture the light
ray manifold in a scene [7], and perhaps even permit
its reconstruction. The Lumigraph, the Light Field,
and the plenoptic array are related constructions that
couple the reconstruction of the view in a scene to the
capture and sampling of it’s light rays. [8, 9]. Scene
visualization based on such methods is referred to as
image based rendering. Our approach to visualization

1One instance of panoramic imagery that predates photogra-
phy is the art of Hendrik Willem Mesdag and his associates. An
example is a cylindrical room adorned by a panoramic painting
painted c. 1880, on exhibit at Museum Panorama Mesdag in
The Hague.

is based on collecting sample panoramic images at lo-
cations selected by the attentional operator.

3 Approach

We can model the sampling of the intensity of light
rays projected to a fixed point in an environment as
follows:

M3D : R3 ⊕ S2 −→ R (1)

or
M3D(x, y, z, φ, θ) = i (2)

In other words, from a fixed location (x, y, z) in the en-
vironment looking in a direction (φ, θ) along the unit
sphere, we can sample the intensity of exactly one light
ray. In practice, we have a mobile robot whose trajec-
tory lies in the plane, and whose intensity sensor (CCD
camera) is able to pan and tilt. This idealized (in
terms of the robot) transformation can be expressed
as:

MCamera : R2 ⊕ S2 −→ Rn (3)

or
MCamera(x, y, φ, θ) = I (4)

Where n denotes the number of pixels in the image I
taken by the camera. This leads to a parameterization
of a set of images Ix,y whose intensities (pixel values)
are denoted by Ix,y(φ, θ). It is this parameterization
of intensities which we will use in our computational
model of visual attention.

4 Computing Attention

Since both psychophysics and intuition suggest that
we wish to concentrate on regions that are unusual or
distinctive, we can evaluate the extent to which re-
gions of an image (or set of images) differ from the
mean as a metric for attention. In order to quantify
the distinctiveness, we concentrate on the information
available from the edge structure of the region un-
der consideration, namely the location of edges, and
their orientation. The edge detection process returns
two maps – an edge map composed of edge elements
and their associated intensities, as well as an orien-
tation map containing the orientations corresponding
to the edge elements. The extraction of information
from these two maps will be discussed separately in
the following sections. We will then demonstrate a
method for combining the information available from
these maps to make appropriate selections in our en-
vironment.



4.1 Density

Our first metric for computing visual attention is
based on edge element density. Each element in the
edge map E(I) of image I has an intensity associated
with the strength of the edge to which it belongs. We
compute a density map D(i, j) over the entire image
by convolving a Gaussian2 windowing operator of size
A × B with the edge map. Each point in the map is
divided by the total possible number of edgels, giving
the following measure of density:

D(i, j)=α
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Since we are interested in unusual locations, we de-
fine the interest, Γ, as the deviation from the mean D̂
over the entire image:

Γ(i, j) = |D(i, j)− D̂| (7)

We then find the extrema of this map, that is, the
locations with the highest deviations from the mean
and define those as the most interesting locations,
based on edge density alone. This involves an im-
plicit assumption that the edgel density distribution
is uni-modal, since otherwise we may occasionally ob-
tain non-intuitive results. The extrema of this opera-
tor will typically be associated with edge junctions and
other geometric “events” in typical indoor images, al-
though they can also be associated with empty regions
in textured images. See section 6.2 for examples of the
use of the density metric.

4.2 Orientation

The second operator we use for computing atten-
tion is edgel orientation. Each entry in the orienta-
tion map Θ(I) is the orientation of the corresponding
edgel in the edge map. We compute a local orienta-
tion signature O(i, j) similar to the density map de-
fined above, as follows. In order to select orientations
that are maximally different from the typical orienta-
tion structure in the scene, we make a noise-insensitive
estimate of the most likely orientation: a robust max-
imum.

2A Gaussian operator has desirable properties in terms of
localization in both space and frequency space.

Given a function,

Φ(k, i, j) k ∈ [0, π) (8)

which returns the number of edgels with orientation
k in the local neighborhood of (i, j), we can compute
the robust maximum orientation as follows:

Φ∗(k, i, j) = Φ(k mod π, i, j) k ∈ R (9)

O(i, j) = max
k∈[0,π)

∫ q+ω
2

q−ω2
Φ∗(k, i, j)dk ω ∈ (0,

π

2
) (10)

where ω is the width of the subsection of the orien-
tation distribution we wish to consider. In practice,
Φ(k, i, j) is also convolved with a Gaussian windowing
operator. Again, we are interested in unusual loca-
tions with respect to orientation, so we define interest
as the deviation from the overall robust maximum ori-
entation Ô:

Ω(i, j) = |O(i, j)− Ô| (11)

We then find the extrema of this map which will
be the local neighborhoods with the highest deviation
from the maximum orientation, and define them as the
most interesting locations based on orientation alone.
Section 6.2 demonstrates the behavior of the orienta-
tion operator.

4.3 Combining Density and Orientation

A suitable function is needed to combine the in-
formation from the density and orientation operators
such that we achieve results which are stronger than
the results which each operator can provide indepen-
dently. To produce a compound interest operator, we
combine the individual interest ratings due to the in-
dividual measurements using and Ln metric:

C(i, j) = n
√

(γΓ(i, j))n + ((1− γ)Ω(i, j))n (12)

where n is a constant and the value chosen for γ de-
pends on the type of environment being sampled. By
using a large value of n we obtain a behavior that
resembles a winner-take-all scheme, while smaller val-
ues of n exploit combinations of features. We have
also considered the use of multiple attention maps at
multiple spatial scales, leading to feature detections
Ms

f(i, j) where s and f are indices that specify the
scale and feature type. In this case, we combine these
maps using:

C(i, j) = n

√
ΣsΣfγsfMs

f(i, j))n. (13)

Section 6.2 demonstrates the effectiveness of the
combined density-orientation operator with n = 1.



5 System Architecture

Our hardware system is composed of a Nomadic
Technologies Nomad 200 mobile robot with an on-
board computer, and a CCD camera mounted in a 2-
DOF pan and tilt unit on top of the robot. There are
several software components to the entire viewpoint
selection system including robot exploration, image
acquisition, attention processing, image registration,
and graph creation. The specifics of these subsystems
are outlined below.

The final component in the system is a software
package from Apple Computer Inc. which combines
the stitched panoramic photographs and the topologi-
cal representation from the nodal graph component to
form a multi-node QuickTime VR movie.

In principle any exploration algorithm may be used
with the viewpoint selection system so long as the en-
vironment is fully sampled; to exemplify this indepen-
dence the software was designed using a “plug-in” ar-
chitecture. In practice, we have used3 a simple algo-
rithm akin to a bouncing ball: the robot travels in a
straight path until it is obstructed at which point it
rotates by a random angle until it can once again move
forward. Although this algorithm does not exploit the
layout of the environment it still manages to cover
the free space quite well [10]. The motivation for the
plug-in exploration architecture was based on the po-
tential variability in environments one will encounter
and the fact that they might mandate environment-
specific strategies. For example, in an office environ-
ment, exploration based on covering the Voronoi dia-
gram might be more appropriate [11, 12]. Similarly, an
open environment would most likely need to be sam-
pled more evenly, perhaps using a grazing exploration
method [13].

As the robot explores the environment, video im-
ages are collected using the CCD camera. In order to
minimize warping effects during stitching, we rotate
the camera about its optical center or nodal point.

The first phase of the image analysis process per-
forms edge detection on the images acquired using the
Canny operator [14, 15], which returns an edge map,
and an orientation map. The image analysis process
implements the attention metrics outlined in section 4
on all of the images acquired. These are then statisti-
cally analyzed so that the top n extrema of the den-
sity/orientation map(s) can be chosen as the locations
which will be part of the final graph.

To produce a panoramic image at each location,

3We have also developed and tested additional exploration
algorithms but they are outside the scope of this paper.

adjacent images taken with the same (x, y) but dif-
ferent orientations must be fused together to produce
a single cylindrical or spherical image. To solve this
“mosaicing” problem we use cross correlation to find
the best correspondence; observe that the problem is
simplified by the fact that the images are acquired us-
ing only rotations about a fixed nodal point [1, 16].
Once this overlap is found, the intensities of the two
adjacent images are blended (averaged) to remove any
seam which may be present [17].

Because we wish to create a multi-node VR scene,
the relationship between the panoramic photographs
must be established, and a facility provided for the
user to move between these photographs. As men-
tioned above, QuickTime VR provides a facility for
moving between nodes called hot-spots. These are en-
coded using a mask over the panoramic image, with
the value of the mask at the current location of the
user’s pointer determining which node will next be
visited should the user to decide to move. In order
to automate the creation of these masks, we construct
a fully connected graph representing the virtual en-
vironment. Because each image is associated with a
known pose (x, y, θ) in the plane4 we are able to deter-
mine the arc lengths and positions in the mask which
correspond to other nodes in the graph. Although lo-
calization errors will, even with correction techniques,
corrupt these pose estimates, we only require approx-
imate positions to construct the topological represen-
tation. Consider figure 2: assuming the radius of each
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Figure 2: Calculating arc length on viewpoint A.

node is fixed5 we can compute the intersection range

4We assume planar environments, although our approach
could be readily extended to 3D environments.

5In practice the radii are fixed to a certain amount of vertical
lines (pixels).



IAB of the panorama B on the panorama A (in A’s
local orientation frame):

φ = tan−1

(√
(Ax −Bx)2 + (Ay −By)2

r

)
(14)

γ = tan−1

(
By −Ay
Bx −Ax

)
(15)

IAB = [γ − φ−Aθ, γ + φ−Aθ] (16)

where r is the radius of the panoramas. A compli-
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Figure 3: Viewpoint A’s view of location B is obscured
by intermediate location C.
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Figure 4: The connectivity mask associated with view-
point A as depicted in figure 3.

cation arises if we have a situation similar to that of
figure 3. This suggests an algorithm for creating the
masks – process adjacent nodes in order of their in-
creasing distance from the source node. If the arcs
of two nodes overlap, only keep the non-overlapping
remainder of the arc for the occluded node. The re-
sultant mask can be seen in figure 4.

This pre-computation provides a fully connected
graph; however, since we do not build a map of the

environment in the current exploration model, some
adjacent nodes may be occluded by the environment
itself. Although we do not consider this to be a limi-
tation, edges in the graph could be easily removed by
the user.

6 A Visit to the Art Gallery

6.1 Overview

The experimental data discussed in this paper was
obtained at the Canadian Centre for Architecture, lo-
cated in Montréal. Due to the sensitive nature of the
environment, the exploration was carried out manu-
ally.

The gallery floor contained pedestals holding ex-
hibits encased in glass, which were scattered about
the environment. The walls contained many exhibits,
usually of uniform size, spread around a room.

The path followed by the robot covered several
rooms of the gallery, and included 3 rooms which were
not part of the exhibit. The robot acquired 36 images
at each of the 17 different locations along the trajec-
tory. These images were then edge detected, analyzed,
and registered as outlined in section 5.

6.2 Results

The individual locations chosen in the panoramic
images according to the density and orientation op-
erators are shown in figure 5. The top three pho-
tographs demonstrate the effectiveness of the density
operator. The images whose edgel density variance
is highest show the two rooms in the gallery which
were substantially different from the remainder of the
gallery. Furthermore, the candidate with the lowest
variance shows a region of a wall which contains little
more than a brick-like texture. The effectiveness of
the edgel orientation operator is displayed in the next
three images. Here, the candidates containing mul-
tiple curves such as the pattern in the painting, the
frosted glass pattern in the door, or the marble fire-
place, have the highest variance. This is due to the
fact that the remainder of the gallery is mostly recti-
linear as shown by the candidate whose variance was
lowest. The latter shows a series of photographs in
frames, which are all organized adjacently.

We also looked at the candidates from the com-
bined density-orientation operator. Here we see an
interesting and positive result – the top candidate in
the distribution is the image just between the top den-
sity candidate, and the second orientation candidate.



Equally appealing is the operator’s choice represent-
ing minimal variance – the last image is convincingly
boring!

7 Discussion

We have outlined the structure of an intelligent
robotic system that can automatically construct an
image-based model of an environment. Once the
model is built, it can be inspected at leisure by a
human. Such a model could be used for inspection,
teleoperation, or tourism. The results obtained from
our approach appear to be surprisingly well suited to
such tasks, even without environment specific tuning.
In practice, however, one might wish to augment the
approach with either domain-specific rules on what
views are most interesting, or specific locations that
embody required views. For example, in constructing
a tour of an art museum it might be desirable tune the
system to acquire fronto-parallel views of rectangular
objects (paintings) while in a nuclear reactor facility
one might like to acquire an image looking at the cool-
ing pipes no matter how boring they appear.

In the work described here, we have not not ad-
dressed how the required “mean” estimates of the local
environment are computed: that is, our presentation
presupposed that all the data is available (i.e. it is
an off-line algorithm). In fact, it is possible to per-
form on-line estimation of the environmental parame-
ters and use an on-line algorithm referred to as alpha-
backtracking to select the viewpoints in real time [1].
While a detailed discussion of this is outside the scope
of this paper, there is a natural tradeoff between the
extent to which the final viewpoints match the the-
oretically optimal ones, and the computational and
physical resources used in the task [18, 1, 2].

In ongoing work we are addressing the above issues.
A related issue is the reconstruction of viewpoints that
have never actually been sampled. This is an active
research problem in it’s own right, and may eventu-
ally provide a useful complement to the approach de-
scribed here.
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Figure 5: Selections made by the viewpoint selection system. Images (a) and (b) were the top selections using
the density operator, while (c) was the lowest. Images (d) and (e) were the top selections using the orientation
operator, and (f) was the lowest. Images (g) and (h) were th top selections for the combined density-orientation
operator, and (i) had the lowest variance.


