
EUROGRAPHICS 2004 / M.-P. Cani and M. Slater
(Guest Editors)

Volume 23 (2004), Number 3

Procedural Texture Matching and Transformation

Eric Bourque and Gregory Dudek

Centre for Intelligent Machines, McGill University, Montréal, Québec, Canada

Abstract

We present a technique for creating a smoothly varying sequence of procedural textures that interpolates between
arbitrary input samples of texture. This texture transformation uses a library of procedural shaders and selects the
correct shaders and associated parameters to accomplish the task.
In general, selecting a procedural texture from a library, or finding the correct parameters to produce a smooth
texture transition can be complex and time consuming. We propose a strategy for automating this process. While
superficially this problem appears intractable for both humans and computational systems, its natural character-
istics make a computational solution feasible. We present an algorithm and experimental results demonstrating
this approach.
Transformation between two textures can then be achieved procedurally, while enforcing perceptual similarity
constraints between adjacent texture frames. We describe a technique for efficiently sampling the parameter do-
main of a shader based on a texture similarity function to create a smooth path through its texture range. In the
case of evolving between several shaders, a method is described to obtain the best jump-points which can be used
to connect different shaders smoothly in texture space. Several examples of the technique are shown, and future
directions as well as potential problems are discussed.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Texture

1. Introduction

This paper addresses the creation of textures and texture
transformations using shaders; that is, programs that gener-
ate a desired shading or texture. Shaders are the de facto

Figure 1: An example of procedural texture matching. An
input texture is acquired from an architect’s drawing, and
a suitable procedural shader and parameters are found to
replicate the appearance of the texture so that the shader
can be applied to an arbitrary model.

standard mechanism for synthesising photo-realistic tex-
tures. Using one can often be superficially easy, but finding
the right shaders from a library, and the right settings for that
shader to produce a sought-for appearance can be astonish-
ingly difficult. In this paper we do not discuss the creation of
shaders, but how to optimise the choice of a shader and its
parameters to produce a desired appearance, as defined by a
sample image. Of course, once such a shader and its parame-
ters have been discovered, a user can modify the parameters
to achieve alternative effects.

To exemplify why this problem needs to be solved, con-
sider that a library of hundreds of shaders can be available to
a sophisticated user (and the number of shaders is constantly
increasing). A typical shader can have five or ten parameters,
and some can have substantially more. Further, the texture
that is produced by a shader can vary substantially over the
range of these parameters. Thus, to find a desired texture, a
user must search over a complicated and high-dimensional
space. Finding the right combination of parameters to define
a point in this space is clearly problematic.

c© The Eurographics Association and Blackwell Publishing 2004. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

E. Bourque & G. Dudek / Texture Matching and Transformation

Our work considers the problem of starting with an initial
description of a target texture (in the form of a sample im-
age) and finding the right shader and shader parameters to
match that sample as well as possible. Once we have solved
this, we can consider the problem of finding a sequence of
shaders and associated parameters that will produce a gradu-
ally varying sequence of textures that accomplish a transition
from the initial texture to a final texture. We refer to this as a
texture transformation. In general, a texture transformation
may involve using more than one shader and using varying
parameters for each. Significantly, a good texture transfor-
mation is one which takes a short path from the initial texture
to the final one. This shortness is not measured with respect
to the variations in the parameters, however, but with respect
to the perceptual variations the texture must traverse.

Note that even with many available shaders, the space of
possible images is far larger than the set of textures that can
be synthesised, so some texture images will be hard to ap-
proximate. Likewise, a good texture transformation will not
always be possible, particularly if the repertoire of available
shaders is limited.

Our texture matching approach is based on four key stages
(Figure 1 shows an example of the process):

1. A global search strategy over shaders to select ones that
might produce interesting results.

2. A global search over a single shader to obtain a rough
estimate of suitable input parameter settings.

3. A local search strategy to optimise parameter settings
given a rough guess.

4. A perceptual texture comparison function that allows us
to estimate the quality of our solution.

Note that by using procedural textures for this work,
we obtain several advantages over either image samples as
texture maps, or the use of stochastic image-based texture
synthesis as proposed by Efros et al. [EL99, EF01], Wei
and Levoy [WL00] and others. Namely, procedural textures
(once we know the parameter settings) can be very compact,
extremely flexible, of dimensionality greater than two (for
solid texturing), can be evaluated in arbitrary order (useful
for variable level of detail applications) and are resolution
independent. Using a procedural texture also allows us to
generate textures that are akin to a target in some desired
way, while allowing us the freedom to make subtle changes.

2. Previous Work

This paper deals with the selection of one or more
procedural textures and associated parameters given
a specification in terms of an image. This is loosely
related to research which seeks to synthesise a large
texture field given only a small sample of the desired
texture [HB95, De 97, EL99, WL00, HJO∗01, DMLG02].
While texture synthesis methods share with our work the
ability to generate arbitrary texture fields from a small

sample, they differ in terms of the compactness of the
description, the scientific objectives, and the manner in
which the results can subsequently be re-configured.

If we consider, for example, methods based on Markov
models of texture [EL99, WL00, EF01] then although these
techniques produce compelling results they have several lim-
itations. For instance, the Markov framework does not allow
for minor changes in the characteristics of the texture be-
ing generated (wider bricks, puffier clouds, etc.), except in
some limited cases [ZZV∗03]. In addition, the synthesised
texture is generally limited to have a resolution no greater
than the original texture, unlike those generated using proce-
dural techniques, and are therefore not well suited to photo-
realistic rendering.

In the psychophysics of texture modelling, a large body
of research indicates that texture similarity can be mod-
elled using statistical methods particularly in the Fourier
domain [Jul62]. An alternative formulation of the problem
uses banks of band-pass filters, for example, in the form of
a Laplacian pyramid [AS87]. More recently several authors
have observed that many textures can be directly synthesised
from these statistical similarity measures [HB95, GF01].

A rather different approach to texture synthesis is to
explicitly model the bi-directional texture function (BTF)
which describes the interaction between texture and lighting
as a function of angle. This can be accomplished either di-
rectly [DVNK99] or via subspace modelling [SH00] to yield
highly realistic reproductions of specific physical surfaces
once the requisite measurements have been acquired.

Liu et al. [LLSY02] propose a method for morphing be-
tween two texture samples using a pattern-based approach
which requires the end-user to specify feature correspon-
dence landmarks. Like the traditional sample-based texture
synthesis techniques described above, this method is not
well suited to photo-realistic rendering.

In the specific case of wood or brick textures it is possi-
ble to estimate domain-specific texture attributes to permit
good quality synthesis from procedural descriptions [LP00].
How to generalise the methods to arbitrary textures is not
readily apparent, but very positive results have been shown
in restricted domains.

3. Texture Matching

3.1. Approach

We wish to approximate a given input target texture T us-
ing a procedural texture p(u,v, . . .). We will later show that
given two sample textures, T1 and T2, we can produce a
smoothly varying sequence of textures generated by one or
more shaders.

Consider a set P of procedural textures {p1, . . . , pn},
where each element, pi, is a shader taking an arbitrary num-
ber of parameters. Given a texture target T , we wish to find

c© The Eurographics Association and Blackwell Publishing 2004.

E. Bourque & G. Dudek / Texture Matching and Transformation

the element pi ∈ P , and the associated parameter vector
xi such that pi(xi) produces a texture perceptually similar
to T . That is, we want to maximise a similarity measure
S() between the procedural candidate and the target tex-
ture: S(T, pi(xi)). The implementation of S() is discussed in
Sec. 3.3.

The process for finding pi and xi are outlined below.

3.2. Searching in Texture Space

To find the right shader and parameters, we need to search
across the range of each shader’s input parameters. Unfor-
tunately, it is unlikely that the (similarity) surface resulting
from evaluating the target texture against the texture range of
a particular shader will be convex. Of course, if there is a par-
ticular parameter setting which provides a good match, the-
oretically, exhaustive search of the parameter domain would
eventually find it; however, we desire a tractable solution.
This suggests a two-stage approach: a preliminary search us-
ing pre-computed data and an on-line refinement stage.

3.2.1. Global Search

As a pre-computation step, we generate a catalogue of sam-
ples in the parameter domain of each procedural texture pi.
Because it is possible that several parameter vectors will pro-
duce similar textures, we choose to adaptively sample the
parameter domain of each procedural shader using a sys-
tematic subdivision technique. This allows us to avoid the
costly generation of samples which do not give any novel
information about the interesting areas of the parameter do-
main. A key issue, of course, is to sample densely enough to
capture the expressiveness of the procedural texture, and to
avoid getting caught in local minima during the next stage of
our search. The texture samples in the catalogues are stored
in an image database using a lossless compression format.
Each sample is rendered at 256×256 pixels, with most cat-
alogues containing on the order of 200 samples, combining
for an average storage cost of 11MB per catalogue.

During the global search to match a target texture T , our
algorithm evaluates the texture similarity function S over
each of the pre-computed samples of pi ∈ P . The most
promising parameter vectors xg which give maximum values
for S(T, pi(xg)) for each of the pi are then used as starting
points during the local search in order of their admissibil-
ity as described below. If a large disparity for the best global
match in pi is detected, then that particular shader is not used
in the next stage of the search.

As mentioned above, it is possible that multiple points in
the parameter domain of a particular shader will generate
similar textures, yet the local similarity surfaces surrounding
these points can have different characteristics. Since search-
ing in smoother spaces is both more efficient and tends to
yield better results, we would like to prioritise our search
based on an admissibility factor of the local smoothness.

Given a reference point x and a set of points D =
{d1, . . . ,dn} distributed in the local neighbourhood of x, we
can compute the admissibility of x as follows:

A(x) =
1

||D|| ∑
di∈D

S(P(x),P(di))

||x−di||2

This measure can be refined incrementally by adding new
points, as compute time permits, and can in fact be pre-
computed when the shader is initially added to the library.

3.2.2. Local Search

Starting with each of the pi(xg)’s from the global search,
we perform a local optimisation to find a parameter vector
which will produce a texture which best represents the tar-
get texture. For the results presented in this paper, we have
used both simplex optimisation, and a gradient ascent based
optimisation.

The evaluation of the similarity function S(T, pi(xg)) with
a new parameter vector x′g entails the rendering of a tex-
ture sample since x′g is not contained in the sample cata-
logue. Consequently, computing ∇S(T, pi(xg)) is something
we would like to avoid, motivating our desire to use the sim-
plex method when possible as it does not rely on computing
derivatives. In particularly unforgiving cases, however, the
user can select to use gradient based methods.

When the local search is no longer able to take a max-
imising step, the parameter vector which results in the great-
est similarity to the target texture determines the final shader
and parameter vector. The user may terminate the search at
any point if the current match is to their liking, thus avoid-
ing searching other shaders, or other starting points within
the same shader.

3.3. Evaluating Texture Similarity

In order to match a synthetic texture to a target, an impor-
tant requirement is a distance function to indicate the qual-
ity of a candidate match, i.e., a texture similarity function
that operates on pairs of images. While a naive solution to
this problem might be based on the difference between im-
ages, that would fail to capture the notion of texture fields
that look the same even when the individual pixels are dif-
ferent. For example, two images of snow falling may have
the same apparent textures yet no two pixels may be iden-
tical. Luckily, there is a substantial body of literature on
the psychophysics of texture similarity. A key observation
is that the local power spectrum of a texture is critical to
distinguishing or segregating textures [Jul62] (recall that the
power spectrum describes the mixture of spatial frequencies
in an image and it can be obtained readily using a Fourier
transform). Precisely how the power spectrum (and perhaps
even the phase information) relates to texture discrimination
is a matter of some debate, but using the two simple schemes

c© The Eurographics Association and Blackwell Publishing 2004.

E. Bourque & G. Dudek / Texture Matching and Transformation

described below provides a good approximation of our nat-
ural intuition.

More specifically, current theories of texture discrimi-
nation maintain that when two textures produce a simi-
lar response to frequency-selective oriented linear filters
they are perceptually similar and perhaps indistinguish-
able [BA88, MP90, Ber91, HB95]. This can be demon-
strated through texture segregation – the notion that it is dif-
ficult to identify the borders of similar textures when they
are juxtaposed.

In order to compare the results of our synthesis process
with the target texture, we need a measure of the perceptual
similarity of two textures, T1 and T2:

S∗(T1,T2) ∈ (0,1]

where a value of 1 indicates that they are indistinguishable,
and as values approach 0 the two textures are considered to
be increasingly distinct. The definition of this ideal measure
is the subject of ongoing research in the psychophysics com-
munity. We wish to define a computational texture similarity
function S, to approximate our ideal measure S∗. One func-
tion we have used with success is:

SF (T1,T2) = 1−||Fm(T1)−Fm(T2)||2

where Fm(T) is the magnitude of the amplitude image of the
Fourier transform of T ; the differences are weighted radially
and are normalised.

In addition to the power spectrum of the texture sample,
we have also considered the use of the histogram of the en-
ergy distribution in a Laplacian pyramidal representation of
the images, as used by several authors for texture analy-
sis and synthesis [AS87, HB95, De 97]. Pairs of textures are
then compared by computing the histogram difference be-
tween the corresponding levels in their Laplacian pyramids:

SL(T1,T2) = ∑
i

wi |H (Li(T1))−H (Li(T2))|

where H is the histogram of an image, Li is level i in the
Laplacian pyramid of a texture, T1 and T2 are the textures
being compared, and wi is a weighting factor.

This representation also captures the band-pass energy
distribution in the image. In practise, we find the difference
in both the Laplacian histograms and the Fourier power spec-
trum have advantages as texture similarity functions. We re-
port illustrative results using both functions in the text be-
low. More generic perceptually motivated image difference
algorithms [NMP98] might also be well suited to the texture
domain. In the context where the particular choice of texture
metric is not significant, we refer to it simply as S().

3.4. Examples

Textures are often divided into two classes, namely, stochas-
tic and deterministic. Stochastic textures generally do not

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2: Examples of procedural texture matching us-
ing Brodatz textures as targets, and a small repertoire of
shaders. The images on the left are the texture targets, and
the images on the right are procedurally generated using
the automatically recovered shader and parameters. In ev-
ery case the synthesised texture appears to be the best which
could be achieved with the available shaders.

c© The Eurographics Association and Blackwell Publishing 2004.

E. Bourque & G. Dudek / Texture Matching and Transformation

(a) (b)

(c) (d)

(e) (f)

Figure 3: Examples of procedural texture matching using
synthetic images as targets. Using procedurally generated
textures as targets should guarantee a good match since we
know beforehand that the desired texture lies within the tex-
ture range of the shaders being searched. However, only the
first (a) target generated a match with the exact same pa-
rameters. The second example (c) is a close match, but with
entirely different parameters, and in the last example (e), the
match is poor. This is discussed further in Sec. 3.4.

contain any easily identifiable primitives, whereas determin-
istic textures largely consist of well-defined primitives com-
bined with a set of rules governing their placement. In prac-
tise, many textures exhibit some combination of properties
from both classes. Prior work in the field of texture syn-
thesis tends to focus on only one of these texture classes,
the predominant methods being based on Markov random
fields which assume that the desired targets are stationary,
local, stochastic textures. The deterministic texture synthesis
methods attempt to measure domain specific attributes, and
therefore can not be used to synthesise stochastic textures.

In order to demonstrate our method of procedural texture
matching, we have chosen some sample target textures from
the Brodatz album [Bro66]. These textures are commonly
used as a reference point for various texture algorithms in the

perception community, and are therefore equally well suited
to exemplify our procedural texture matching framework.
The matching examples shown in Fig. 2 demonstrate pos-
itive results for both stochastic and deterministic textures.
The average match time was 12 minutes, with under 100 it-
erations for all cases.

While most of the examples show matches which are per-
ceptually very similar to their targets, there is one texture
(Fig. 2(i)) for which a less suitable match was found. It will
not always be the case that we can find a close match if the
target texture is not contained in the texture ranges of the
procedural textures which we are searching. In this situa-
tion, we can only hope to find a procedural texture p and a
parameter vector x such that p(x) is as perceptually similar
as possible to the target texture T .

In addition to the natural texture examples, we have in-
cluded some examples of searching for particular instances
of synthetic textures which were themselves generated pro-
cedurally (Fig. 3). One of these examples fails to find a con-
vincing match (Fig. 3(f)), and this is due to the fact that one
of the parameters determines the number of points in the star
which is intended to be an integer value. For this shader, the
sampling phase did not produce the desired value of 4 but
rather produced floating point values close to 4. This shader
gives degenerate results when given non-integer parameters
which means that the energy space between integer values is
highly non-convex, thus preventing our algorithm from find-
ing the exact result.

All of the results shown in this paper were obtained us-
ing a small collection of publicly available general purpose
shaders, none of which were specifically written to replicate
the appearance of any of the given natural target textures.

4. Texture Transformation

Once we are able to recover a procedural texture and suit-
able parameters to replicate a given texture sample, we can
consider transforming those textures over time. We would
like to be able to specify the starting and ending textures, as
well as optional key-textures (specific textures that the trans-
formation must contain) which can be placed in between the
starting and ending textures.

The main goal of procedural texture transformation is to
vary a shader’s parameters over time so that the perceived
difference between adjacent texture samples is minimised.
This kind of smooth transition in a controlled environment
has several applications in the field of graphical animation.

4.1. Approach

As a first step, the texture transformation algorithm must
identify the initial and final shaders and their respective pa-
rameters. These are typically recovered from real or syn-
thetic images using the texture matching approach described

c© The Eurographics Association and Blackwell Publishing 2004.

E. Bourque & G. Dudek / Texture Matching and Transformation

above, although they can also be specified manually. The fol-
lowing temporal framework is desired: given a series of in-
put textures T1, . . . ,Tn, find a corresponding set of procedural
shaders and their associated parameters p1(x1), . . . , pn(xn).
Using the pi, we want to produce a continuously chang-
ing texture C(t), t ∈ [0,1] such that C(0) = p1(x1), C(1) =
pn(xn), each Ti is used as a key-texture and S(C(t),C(t +
∆t)) (the similarity of adjacent frames) is maximised.

Transformation between two texture samples can be di-
vided into two classes: (1) transformation within the same
shader, and (2) transformation between different shaders.
These will each be discussed separately below.

4.2. Transformation Within a Shader

In order to evolve between two parameter vectors within the
same shader, we again use a two-stage algorithm with some
pre-computed data. After creating a catalogue of samples
during the pre-computation step when a new shader is added
to the library, a fully connected graph is constructed where
the nodes are the samples from the catalogue, and the edge
weights correspond to the similarity measure.

In the first stage of the transformation, we find the closest
sample from the catalogue for the end-point parameter vec-
tors as described in Sec. 3.2.1 above. We then compute the
shortest path along the edges ei through the sample graph
using Dijkstra’s algorithm [Dij59] with a path cost function
of n

√

en
1 + . . .+ en

m. This cost function allows paths which go
through more samples from the catalogue to be encouraged
by increasing the value of n.

To refine the chosen path, our second stage uses an adap-
tive linear subdivision technique. While the similarity mea-
sure between adjacent samples is less than a pre-specified
value, another sample is inserted at the midpoint between
the two samples in the shader’s parameter space. This recur-
sive solution assures that no two adjacent samples will have
a large perceptual disparity.

There is, of course, the possibility that with a particularly
uncooperative shader, repeated bisection of the parameter
values will not result in adjacent samples falling below the
perceptual threshold. While this has not been the case with
the shaders we have tested thus far, we describe a possible
approach for this situation in Sec. 5.

With this framework, key-textures are easily specified.
If it is desirable to use a particular parameter vector at
some point for a shader p(xb) while evolving from p(xa) to
p(xc) (denoted by), the approach described above can be
used to compute the paths from p(xa) p(xb), and from
p(xb) p(xc). These paths can then simply be concate-
nated. This can be repeated for as many key-textures as nec-
essary.

This approach provides a perceptually smooth path in

the texture range of the particular shader due to the adap-
tive sampling of the parameter domain. This ensures that
the shader is sampled more densely where the correspond-
ing texture range is more volatile, thus avoiding the large
changes between successive frames commonly associated
with uniform sampling. Conversely, fewer samples are used
when the texture range is more static – just enough to show
a minimal change between frames.

4.3. Transformation Between Different Shaders

The technique described in Sec. 4.2 is only well suited to
evolving within a procedural shader since different shaders
no longer share a common parameter domain. In order to
evolve between distinct shaders, we must first find the points
in each shader’s parameter domain whose associated tex-
tures are (perceptually) closest to each other. These jump
points allow the technique described above to be used to
evolve each texture to the closest jump point in its respec-
tive shader. For example, to evolve from pk(xa) pl(ya),
we would first find the best jump point between pk and
pl , that is, the point in each shader’s parameter domain
(x j and y j) which gives a maximum similarity measure
S(pk(x), pl(y)) ∀ [x,y]. The paths from each shader to their
respective jump point can then be concatenated:

pk(xa) pk(x j) : pl(y j) pl(ya)

Since finding these jump points via exhaustive search is
prohibitively costly, an approach similar to that described
in Sec 3 can be used to reduce the computational burden.
By adaptively sampling each shader sparsely, and comparing
each sample to the (also sparse) samples of the other shader,
the best candidate jump regions can be found. To narrow
these regions to the actual jumps points, local optimisations
of the similarity between the current candidate and the can-
didate in the other shader’s jump region are performed. This
is repeated in alternation until the distance travelled during a
step for each candidate is negligible.

In the case where the shaders have limited texture ranges,
or share little resemblance, the best jump points may not be
very similar. Various strategies for dealing with this situation
are presented in Sec. 5.

4.4. Examples

Several example frames from procedural texture transforma-
tions are shown in Fig. 5. For the first example (Fig. 5(a)),
the real world targets shown in Fig. 4 were used to spec-
ify the starting and ending frames. In this particular case,
the best jump point between the cloud shader and the star
field shader results from parameters which produce a simple
coloured background. This is actually the best match from a
perceptual viewpoint since clouds and stars are distinct tex-
tures.

c© The Eurographics Association and Blackwell Publishing 2004.

E. Bourque & G. Dudek / Texture Matching and Transformation

(a)

(b)

(c)

Figure 5: Some example texture transformations. (a) is a transformation from the matches corresponding to the real world
images shown in Fig. 4. (b) is a transformation from manually specified starting and ending textures. (c) is a transformation
from Fig. 2(f) to Fig. 2(h).

(a) (b)

Figure 4: Texture targets used for the first and last frames
shown in the transformation in Fig. 5(a).

The second example (Fig. 5(b)) shows how the transfor-
mation can be used to create smoothly varying intermedi-

ate texture frames when the conditions for the endpoints are
manually specified.

The third example is a transformation based on two of the
Brodatz textures (Figs. 2(e) and 2(g)). All of these examples
exhibit the smooth perceptual transition desired for effective
texture transformation.

5. Discussion

We have presented a technique that encompasses the auto-
mated selection of procedural textures and also creates se-
quences of procedural textures given only a pair of images.
Accomplishing this depends on pre-computing an automat-
ically selected catalogue of representative samples of each
shader. It also requires a perceptual texture similarity mea-
sure, an on-line search algorithm, and a perceptually-driven
iterative subdivision procedure.

c© The Eurographics Association and Blackwell Publishing 2004.

E. Bourque & G. Dudek / Texture Matching and Transformation

In order for the parameter estimation technique to suc-
ceed, the ensemble of procedural shaders must be large
enough to approximate the specified texture target. If this
is not the case, it will be detected by a large residual error in
the similarity measure.

In the present work we assume that the transitions (jump
points) between shaders can be determined without using
an intermediate shader. In more difficult cases, to achieve
a smooth transition from one shader to another may entail
a longer trajectory by way of one or more other shaders.
We are currently investigating this problem using stochas-
tic search methods. As an alternative to planning a trajec-
tory through disparate shaders, it is also possible to select
a jump point between shaders and then use morphing tech-
niques to smooth the transition. We find this latter approach
less appealing since it entails a challenging correspondence
problem to automate the morph.

The path planning process in texture space is based on
graph search, and refinement using adaptive linear subdivi-
sion. In some cases the adaptive linear subdivision may not
succeed, or we may wish to have more precise control over
the sequence of textures. For example, we might want to
avoid some types of appearance or shader parameter vectors
while guaranteeing we evolve in a specific fashion. We are
currently exploring the use of high-dimensional path plan-
ners to enable this type of control.

References

[AS87] ADELSON E., SIMONCELLI E.: Orthogonal
pyramid transforms for image coding. In SPIE
Visual Communications and Image Processing
II (1987), vol. 845, pp. 50–58.

[BA88] BERGEN J., ADELSON E.: Early vision and
texture perception. Nature 333 (1988), 363–
364.

[Ber91] BERGEN J.: Spatial Vision, vol. 10. CRC Press,
1991, ch. 5: Theories of visual texture percep-
tion, pp. 114–134.

[Bro66] BRODATZ P.: Textures – A Photographic Album
for Artists and Designers. Dover, 1966.

[De 97] DE BONET J.: Multiresolution sampling pro-
cedure for analysis and synthesis of texture im-
ages. In SIGGRAPH (1997), pp. 361–368.

[Dij59] DIJKSTRA E. W.: A note on two problems
in connexion with graphs. Numerische Math-
ematik 1 (1959), 269–271.

[DMLG02] DISCHLER J.-M., MARITAUD K., LÉVY B.,
GHAZANFARPOUR D.: Texture particles. Com-
puter Graphics Forum 21, 3 (2002).

[DVNK99] DANA K., VAN GINNEKEN B., NAYAR S.,

KOENDERINK J.: Reflectance and texture of
real-world surfaces. ACM Transactions on
Graphics 18, 1 (January 1999), 1–34.

[EF01] EFROS A., FREEMAN W.: Image quilting for
texture synthesis and transfer. In SIGGRAPH
(2001), pp. 341–346.

[EL99] EFROS A., LEUNG T.: Texture synthe-
sis by non-parametric sampling. In Interna-
tional Conference on Computer Vision (ICCV)
(September 1999), vol. 2, pp. 1033–1038.

[GF01] GURNSEY R., FLEET D.: Texture space. Vi-
sion Research 41, 6 (2001), 745–757.

[HB95] HEEGER D., BERGEN J.: Pyramid-based tex-
ture analysis/synthesis. In SIGGRAPH (1995),
pp. 229–238.

[HJO∗01] HERTZMAN A., JACOBS C., OLIVER N.,
CURLESS B., SALESIN D.: Image analogies.
In SIGGRAPH (2001), pp. 327–340.

[Jul62] JULESZ B.: Visual pattern discrimination.
IRE Transactions on Information Theory IT-8
(1962), 84–92.

[LLSY02] LIU Z., LIU C., SHUM H.-Y., YU Y.: Pattern-
based texture metamorphosis. In Pacific Graph-
ics (2002), pp. 184–191.

[LP00] LEFEBVRE L., POULIN P.: Analysis and syn-
thesis of structural textures. In Graphics Inter-
face (May 2000), pp. 77–86.

[MP90] MALIK J., PERONA P.: Preattentive texture
discrimination with early vision mechanisms.
Journal of the Optical Society of America 7, 5
(May 1990), 923–932.

[NMP98] NEUMANN L., MATKOVIC K., PURGATH-
OFER W.: Perception based color image differ-
ence. In Proceedings of Eurographics (1998),
vol. 17, pp. 233–241.

[SH00] SUEN P., HEALEY G.: The analysis and recog-
nition of real-world textures in three dimen-
sions. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 22, 5 (May
2000), 491–503.

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthe-
sis using tree-structured vector quantization. In
SIGGRAPH (2000), pp. 479–488.

[ZZV∗03] ZHANG J., ZHOU K., VELHO L., GUO B.,
SHUM H.-Y.: Synthesis of progressively-
variant textures on arbitrary surfaces. ACM
Transactions on Graphics 22, 3 (2003), 295–
302.

c© The Eurographics Association and Blackwell Publishing 2004.

