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ABSTRACT

We introduce an approach to the representation of curved or polyhedral 3-D objects and apply this
representation to pose estimation. The representation is based on surface patches with uniform cur-
vature properties extracted at multiple scales. These patches are computed using multiple alternative
decompositions of the surface based on the signs of the mean and Gaussian curvatures. Initial coarse
decompositions are subsequently re�ned using a curvature compatibility scheme to rectify the e�ect of
noise and quantization errors.

The extraction of simple uniform curvature features is limited by the fact that the optimal scale of
processing for a single object is very di�cult to determine. As a solution we propose the segmentation
of range data into patches at multiple scales.

A hierarchical ranking of these patches is then used to describe individual objects based on geometric
information. These geometric descriptors are ranked according to several criteria expressing their
estimated stability and utility.

The applicability of the resulting multi-scale description is demonstrated by estimating the pose
of a 3-D object. Pose estimation is cast as an optimal matching problem. The geometric pose trans-
formation is computed by matching two representations, which amounts to �nding the three-patch
correspondence that produces the best global consistency.

Examples of the multi-scale representation applied to both real and simulated range data are
presented. E�ective pose estimation is demonstrated and the algorithm's behaviour in the presence of
noise is validated.

Keywords: scale, curvature, object representation, object recognition, surface patches, pose esti-
mation, range imaging.

1 INTRODUCTION

For many years a key theme of computational vision has been the attempt to recover depth data from
scenes. This has become a practical task in many domains using either active or passive sensing. The
semantic interpretation of such data, however, remains a challenging problem. Two complementary
general-purpose approaches to the description of 3-D objects are the use of either global or local parametric
models.

In this paper, we will discuss the use of local parametric �tting to describe range images. It has been
shown that such \patch models" based on curvature have a variety of attractive properties [12, 3, 20, 14, 2].
The segmentation of objects using patches with simple curvature properties, however, is complicated by

�This paper will appear in the proceedings of SPIE - The International Society for Optical Engineering, Boston '94.
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the fact that not only is the optimal scale of processing for a single object di�cult to determine, but it
may not even be well de�ned [6]. Thus, we propose performing the segmentation at multiple scales.

The use of local parametric �tting to solve the related problems of segmentation, reconstruction, and
modeling of image data has been well established. In this context and to perform image reconstruction or
noise reduction from observed data, Haralick and Watson applied facet modeling which is based on locally
�tting sub-regions of the image [7]. Besl and Jain, developed an approach to surface reconstruction by
segmenting the surface into connected regions that form the seed for a region growing algorithm based on
variable-order bivariate polynomials [2]. The practicality of this approach in 3-D object representation
is limited by the di�culty in selecting the appropriate window of processing for a speci�c object and
the di�culty in using higher degree surfaces (third and fourth orders) in high level computational vision
tasks such as object recognition and localization. In a related approach, Boulanger et al. introduced
a segmentation algorithm based on a hierarchical grouping of simple geometrical primitives into more
complex ones [5]. This hierarchical structure was termed a geometric(al) scale space where the scale
parameter is controlled by the �nal approximation error. The same idea of progressively increasing the
descriptive complexity was common to Besl's variable order polynomial �tting [2] and is, in principle,
related to minimal length encoding.

An alternative to facet modeling that is especially well suited to sparse or noisy data is based on
Tikhonov regularization. Terzopoulos used regularization to solve the inverse problem of visible-surface
reconstruction [19]. This consists of solving a variational problem that is the minimization of the energy
of a physical model. These models are piecewise continuous, i.e. they can break occasionally to allow
for discontinuities. A set of data (e.g. an object surface) is best represented in this scheme with a
small number of pieces that represent the lowest overall energy. Similar energy minimization process was
used by Dudek who used a curvature-tuned-smoothing (CTS) technique to interpolate and smooth the
surface data in the process of describing the surface by patches having di�erent canonical two-dimensional
structure at multiple scales: convex or concave spheroidal, cylindrical, hyperbolic, etc. [6]. One drawback
of such regularization-based methods is their computational cost.

The results reported here di�er from those mentioned above in several respects. The most important
is the fact that the objective is not to recover or reconstruct the original scene data. Our representation
is explicitly focussed on reducing the image data to stable descriptors that can be e�ectively used in
localization and recognition, perhaps with substantial information loss. Further, the segmentation we
obtain through local parametric �tting and region growing at any single scale need not be completely
correct. Nevertheless, by virtue of the the multi-scale nature of the representation, regions that are poorly
described at one scale are typically more easily described at another (as observed by Besl, Boulanger,
Witkin and many others). The surface descriptors we extract are selected to have simple curvature
properties since a substantial literature suggests that curvature properties are closely associated with the
necessary cues for many types of generic object recognition [1, 11, 13, 8, 15, 21, 10].

The key aspects of our approach are:

� initial surface segmentation at multiple scales,

� re�nement of the segmentation into regions with uniform curvature properties,

� property estimation and quality estimation of the resulting segments, ranking of the segments across
all scales.

The extraction algorithm that we propose for object representation consists of a number of steps:
An initial coarse surface estimation based on a KH-mapping1 guarantees an initial segmentation. The

1KH-mapping is �nding the surface shape at image samples based on the signs of the mean and Gaussian curvature.
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resulting segments constitute seed regions for the �tting of second order bivariate polynomials. These
seed regions are grown based on a curvature compatibility scheme. The segmentation is performed at
multiple scales by subsampling and processing the surface in a way to reveal its multi-scale aspect [6].
Patches at multiple scales are selected and ranked according to signi�cance criteria, and their properties
are then calculated. A set of best patches is used as an object representation. A block diagram of this
process is shown in �gure 1.
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Figure 1: Stages of multi-scale object representation.

The object representation can be used to describe complex objects (not only polyhedral objects and
simple machine parts). Furthermore, e�ective matching can be performed by selecting critical points o�
the object surface (to reduce the complexity and the number of features). Only these critical points, that
consist of the centroids of the most stable patches, serve as the basis of a point-based matching algorithm.
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2 DECOMPOSITION AND PROPERTY CALCULATION

2.1 Surface curvature

For object localization and recognition purposes, we seek features that are invariant with respect to rigid
transformation and associated with perceptually relevant object properties. For these reasons, we use
surface curvature as the basis for our representation.

The maximum and minimum normal curvatures at a point de�ne the principal curvatures, �max and
�min. The Gaussian curvature, K, at a point is de�ned as the product �max�min, whereas the mean
curvature, H, is (�max + �min)=2. Surface mean and Gaussian curvatures are invariant to rigid motion
and re-parameterization.

A range image [16], considered a sampled graph surface, can be parameterized as follows: ~x(u; v) =
[u v f(u; v)]T . Through mathematical manipulation, the mean and Gaussian curvatures can be written
in the following forms:

K =
fuufvv � f2uv
(1 + f2u + fuv )

2
; (1)

H =
(1 + f2v ) + (1 + f2u)fvv � 2fu � 2fufvfuv

2(
p
1 + f2u + f2v )

3
; (2)

where the subscripts designate �rst and second order partial derivatives. In practice, these derivatives are
computed using discrete local central-di�erence approximations. This formulation allows the curvatures
to be computed directly from range data from our sensor.

Mean and Gaussian curvatures are the basis for the segmentation of the surface into patches of constant
curvature (i.e. patches de�ned such that the sign of H and K is constant for all adjacent pixels in a
patch). Equations 1 and 2 are used to calculate H and K at every point on the surface. For noisy data,
comparing measurements exactly to zero is inappropriate. The signum function

sgn�(x) =

8><
>:

+1 if x > �
0 if jxj � �

�1 if x < ��

(3)

is used to compute the surface curvature sign images sgn�(H(i; j)) and sgn�(K(i; j)) using a preselected
threshold �, where � is one standard deviation above the mean noise level. This pair of \images" which
de�nes a preliminary segmentation is called the KH-map.

A label or surface type is then associated with every pixel in the image based on the signs of the mean
and Gaussian curvatures according to the following equation:

T (i; j) = 1 + 3(1 + sgn�H (H(i; j)))+ (1� sgn�K(k(i; j))): (4)

These labels are associated with the basic fundamental shapes which are eight in total (planar, convex
or concave spherical, cylindrical, hyperbolic, etc.).

Coarse initial segmentation is obtained by �nding connected regions (where the connectivity relation-
ship is four-connectedness); that is, pixels with similar pixels adjacent to them. The coherence property
of piecewise smooth surfaces makes pixels with the same label cluster together at the appropriate scale.

2.2 Surface description

After the range data has been segmented into regions with uniform curvature (KH-map), a re�nement
to the initial coarse segmentation can be performed by merging consistent segments. The resulting
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regions of constant curvature are �t with approximating surface functions to validate the goodness of the
segmentation and to scale down the data needed to represent the surface. Hereafter, surface regions and
surface �ts will be referred to as patches.

We use biquadratic polynomials as approximating functions. These polynomials de�ned as:

fl(x; y) =
mX
i=0

nX
j=0

aijx
iyj (5)

where i+j � 2, are representable by a small amount of data. They are well de�ned over arbitrary regions
in the image, and are useful for extrapolation into neighbouring regions for region growing purposes.

2.2.1 Growing Seed Patches

Curvature estimation is sensitive to noise and quantization error because it involves second order deriva-
tives (refer to equations 1 and 2 used in calculating patch curvature). Therefore, the raw curvature
estimates must be re�ned to be rendered meaningful and a global curvature compatibility scheme is used
to do so. This is accomplished by merging and re-�tting segments determined by coarse curvature es-
timation when their curvatures and positions match. Surface approximating functions for seed patches
are extrapolated, and the patches with the most compatible shapes are merged. In addition, a standard
noise removal pass is made to remove isolated pixels assumed to be artifacts due to noise or quantization
errors.

The largest patches from the initial segmentation (those larger than a threshold size �) serve as seed
regions for the merging process. Quadric surfaces represented by equation 5 are �t to each seed patch
obtained by initial coarse estimation and the �t error is calculated. The algorithm for merging compatible
segments is explained below:

� Regions of signi�cant size (e.g larger than � pixels) are selected for growing, labeled !b.

� The quantity
(1=na)

X
(x;y)2!a

(z(x; y)� f(x; y; bk))
2

which is the average sum of the square di�erence between the function f(x; y; bk) representing region
!bk extrapolated to predict region !a while na is the number of points in the region !a, is calculated
for all the selected regions !b. !a is merged to the region that produces the lowest extrapolation
residual if it is lower than a threshold proportional to an estimate of the noise.

� The process is repeated for all the region !a.

2.3 Property Calculation

Once an object is segmented into surface patches that represent curvature primitives, the geometric
shape of these patches must be encoded explicitly. Geometric properties consisting of moments and other
attributes constitute our description of patch shape. Our objective is to coarsely approximate the main
characteristics of each patch.

The following attributes are calculated:

� ptype(Si): surface type, there are eight basic types.

� psize(Si): size, the area of a silhouette determined by the projection of the 3-D patch points on a
plane �tting the patch.
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� pcompactness(Si): compactness (4� �A=l2), a measure of how close to a circle the silhouette is, where
A is the size of the patch and l is perimeter.

� pmax�radius(Si): maximum radius.

� pmin�radius(Si): minimum radius.

� pelongation(Si): elongation (pmax�radius(Si)=pmin�radius(Si)).

� pfit(Si): goodness-of-�t.

Minimum and maximum radii are determined by the eigenvalues of the covariance matrix that represents
the segment's points. Whereas, the goodness of �t is determined by the average residual (mean-squared
error) between the polynomial approximation and the surface points.

Surface decomposition and polynomial description is applied to synthetic range data in �gure 2. The
robustness of surface extraction in the presence of noise is apparent in this example, where merging based
on curvature compatibility has produced two stable patches from noisy initial estimates.

(a) shaded synthetic image (b) coarse image segmentation (c) surface reconstruction

Figure 2: Results for synthetic range data.

2.4 Resampling and multi-scale representation

For object representation, the surface is multiply resampled and smoothed, and the resampled surfaces
are described using surface patches. A collection of patches and their attributes extracted from an object
at multiple scales are denoted as the object's multi-scale representation.

An object's surface resampled to a uniform grid is multiply subsampled in the process of curvature
calculation. Zero to multiple pixel skipping is applied in the i and j directions and the sampled pixel values
are a linear average of the skipped pixels. Although the surface is subsampled in the curvature calculation
process, the full surface grid is preserved for subsequent patch merging and attribute calculation.

Smoothing, which is necessary for �ltering out noise and local uctuation of the surface, has the un-
wanted e�ect of blurring the surface at discontinuities. Several investigators explored \adaptive smooth-
ing" to eliminate the e�ect of blurring. In our case, we use �xed window operators and we aim at
preserving the discontinuity by preserving the whole of the regions that border it.
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3 MATCHING MULTI-SCALE REPRESENTATIONS

In what follows, we demonstrate the usability of multi-scale object representations by matching such
representations to estimate the pose of an object in a scene.

3.1 Motion transformation

We will examine matching in terms of estimating the motion of a rigid object. In that respect, the motion
parameter computation task requires the settling of four issues [17]:

1. selecting and representing the features to be used for the task,

2. representing the motion transformation,

3. establishing the correspondence between features,

4. computing the transformation in a stable and e�ective manner.

We select surface patches as features for matching representations. These features are represented by
their geometric attributes where the centre of mass (or centroid) is considered the control point in a
point-based geometric transformation. Such a transformation is represented by the equation:

p0 = Rp +T; (6)

where the rotation matrix is parameterized in terms of an axis of rotation and a rotation angle about the
axis. The axis and angle of rotation are found using the \adapted spherical projection" method described
by Blostein and Huang [4].

3.2 An algorithm for matching

A three-point correspondence is necessary to �nd a geometric transformation between two three-dimensional
objects. Therefore, the centroids of three patches in each representation are selected to be used as control
points. The correspondence of such triplets is used for the calculation of a transformation matrix whose
validity is weighted by its overall matching cost, where a low cost explains a good match. From the
calculated overall costs, the pose is determined by the transformation that produces the least overall
matching cost, or in other words, the best global consistency. A matching cost can be a sum of squared
errors as in Mohan [9], or a sum of a special distance metric. This new distance measure involves the
di�erence between all the properties of two patches (not simply the Eucledian distance between the two
centroids) and it captures the geometric equivalence between surface patches. A precise description of
the algorithm is as follows:

Select N best signi�cant patches in each view;
For all possible sets of three correspondence pairs,

S = f(S11; S21); (S12; S22); (S13; S23)g;
LOOP

Find the pose T from the correspondence S;
Compute the overall matching cost based on all

possible correspondences with respect to pose T ;
Save the pose T with the smallest cost as the best pose;

END LOOP
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Signi�cant patches are those patches with a size higher than � (e.g. 50 pixels) and with a �t residual
lower than some threshold � (� is proportional to the noise estimate). A set of N best patches is selected
from signi�cant patches based on the measure called reliability that we de�ne below:

reliability(Si) = !1pscale(Si) + !2(psize(Si)=�) + !3pcompact(Si) + !4pgood�of�fit(Si): (7)

The weights in this measure are set such that a \good" patch is typically a large, compact, low �t residual
patch at a high scale.

4 RESULTS AND DISCUSSION

In our experiments we used range data from our movable laser range scanner (the NRC/McGill scanner);
a synchronized triangulation-based scanner using a laser beam to produce a matrix of discrete depth
values zij = ~g(i; j) from a surface S [16]. A PUMA 560 robot arm �xed to the ceiling was used to control
the position of the scanner with respect to the scene.

With these experiments, we evaluated the suitability of our representation for computing object pose.
This was accomplished by either moving the range �nder about the object to alter the viewpoint and hence
the relative pose, or by moving the object with respect to the range �nder. Multi-scale representations of
the multiple views are found, and the motion is consequently calculated based on the match of the two
representations at the two time instances. Below, we report the results on two distinctly di�erent types
of objects.

4.1 A collection of simple objects

A scene containing a collection of simple objects (fruits and vegetables) presents di�erent patches that
appear in the segmentation at multiple scales (refer to �gure 3). To �nd the motion estimates for di�erent

Figure 3: 3-D plot of the scene of fruits and vegetables.

rotations and to calculate the errors involved, we perform the following set-up. The objects are �xed
to the top of a rigid plate that rotates on a horizontal table. The camera is pointing perpendicular to
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rotation (deg.) 10 20 30 40 50 60 70 80

error in estimate (deg.) 1.87 0.90 1.19 0.09 4.25 0.11 0.55 1.62

Table 1: Error in rotation estimates.

the table, which is assured by scanning the plate and verifying that di�erent points on the plane are
equally distant from the camera. The scene is rotated around the z axis at �xed increments. This test is
performed with the camera �xed because robot motion estimates are not very accurate.

Figure 4 shows one matching case. In this �gure, two distinct views are shown separate in shaded
gray. Then, the two views are shown in the same coordinate system after performing the matching and
the motion estimation. These views are rendered di�erently (black grid and shaded gray) for display
purposes. The errors in the estimated rotations are shown in Table 1 for successive rotations of 10
degrees. The mean error in the estimate of orientation was 1.32 degrees.

(a) �rst view (b) second view (c) after matching

Figure 4: Matching experiment for a scene of simple objects. The two scenes match well despite the large
motions involved.

4.2 Complex object

This experiment involves the estimation of the rigid motion of a complex object such as a human face.
The surface complexity evident in faces makes it very hard to extract a representationally complete set
of features from a single scale. One notable characteristic of human faces in terms of segmentation and
modeling is the di�culty of automatically assigning stable parts or surface descriptors at any single scale.
Regions that can be extracted consistently may often be of too large a scale to provide su�cient positional
constraint. Therefore, a representation that encompasses features from a wide range of scales, such as
the multi-scale representation seems appropriate.

The matching of two views of the face with the camera performing a large motion between the views
was performed. Key features for matching were selected automatically. These play the role of landmarks
that constrain the calculation of the global geometric pose transformation. Small scale features and less
stable patches serve to tune the global transformation when matched.

Although the segmentations of the two surface views are not identical, the correspondence between
patches produces good results, as shown in Figure 5. Notice that the robot's motion estimate (see
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Figure 5(c)) is not used as an initial estimate for the matching algorithm and is clearly much worse
than our algorithm's performance. Such an estimate is used for most point-based matching algorithms
to restrict the search space for point correspondences.

(a) �rst view (b) second view

(c) robot's estimate (d) algorithm's estimate

Figure 5: Fusion of the views using the robot's motion estimate as compared to using the algorithm's
estimate. The results show that much better estimates are obtained through the multi-scale
matching algorithm.

5 CONCLUSION

We have presented a method for the representation of 3-D objects from range measurements. We use the
representation as the basis for relative viewpoint (pose) estimation. A system that successfully matches
such representations to robustly estimate large-scale motions in the presence of noise has been developed.
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The object representation technique is based on extracting uniform curvature surface patches and
it performs the extraction at a range of scales. These multi-scale patches are obtained by alternative
decompositions of the surface based on the signs of the mean and Gaussian curvatures. The initial coarse
decompositions are consequently re�ned using a curvature compatibility scheme to rectify the e�ect of
noise and quantization errors. Geometric attributes are then calculated for the patches. These attributes
are used to rank the patches, a selection of which is used to describe individual objects.

The results obtained show that multi-scale representations can be successfully used in the localization
and pose estimation of curved objects in the presence of noise. They permit pose estimation with
substantial accuracy and with no prior position estimate even in cases where the data and any single
scale appears unusable. This is in contrast to methods that perform accurate pose estimation from dense
data but require a good a priori estimate [18]. As with all surface-based representations, occlusion of
large parts of the object will negatively a�ect performance.

We have also used this representation for constrained object recognition experiments. This work is
ongoing.
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