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Abstract

We present a method for learning a set of generative models which are suit-
able for representing selected image-domain features of a scene as a function
of changes in the camera viewpoint. Such models are important for robotic
tasks, such as probabilistic position estimation (i.e. localization), as well as
visualization. Our approach entails the automatic selection of the features,
as well as the synthesis of models of their visual behavior. The model we
propose is capable of generating maximum-likelihood views, as well as a mea-
sure of the likelihood of a particular view from a particular camera position.
Training the models involves regularizing observations of the features from
known camera locations. The uncertainty of the model is evaluated using
cross validation, which allows for a priori evaluation of features and their
attributes. The features themselves are initially selected as salient points by
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a measure of visual attention, and are tracked across multiple views. While
the motivation for this work is for robot localization, the results have impli-
cations for image interpolation, image-based scene reconstruction and object
recognition. This paper presents a formulation of the problem and illustrative
experimental results.

1 Introduction

This paper describes a technique for learning a set of image-domain mod-
els of selected features in a scene, and then using them for camera position
estimation. The models capture not only projective geometry, but also ap-
pearance variation due to perspective and illumination phenomena arising
from changes in viewpoint. We also measure our confidence in each model
so as to deliver likelihood estimates of future observations. Our goal is to
employ these models for a variety of visualization and robotics tasks. In this
paper we consider specifically the task of robot localization.

Robot pose estimation, or localization, is an important prerequisite for
autonomy. A naive approach to localization is to use odometers or accelerom-
eters to measure the displacements of the robot. This approach is subject to
errors due to external factors beyond the robot’s control, such as wheel slip-
page, or collisions. More importantly, dead reckoning errors increase without
bound unless the robot employs sensor feedback in order to recalibrate its
position estimate.

The vast majority of sensor-driven localization methods rely on range
data, typically derived from a laser range-finder or sonar [12, 26, 31, 2].
One issue with most range-finding sensors is that they require the emission
of energy into the environment, either as light or sound. Furthermore, the
data that is collected from such a sensor is often noisy and highly generic in
nature, making the problem of selecting features and disambiguating them
expensive. The typical solution to disambiguation is to employ Markov lo-
calization [7], whereby the robot travels through the environment collecting
data until there is sufficient information to disambiguate between similar po-
sitions. However, it is often the case that a single camera image from the
robot’s current position will be sufficient to accurately localize, given the
richness of the sensor content and the variety of the visual world. One goal
of our work is to enable localization using an uncalibrated monocular vision
system. We avoid stereo-based vision systems, and structure-from-motion



approaches due to the expense of calibration, their dependence on a spe-
cific imaging geometry and their reliance on geometric, rather than visual
properties of the environment.

An important feature of our work is the development of a generative
framework for feature modeling. Generative models make it possible to pre-
dict image feature behavior as a function of robot pose. This fact poses
several advantages, not the least of which are the ability to visualize the
data for diagnostic and demonstration purposes, and their easy applicability
to a variety of existing localization frameworks, including a Bayesian ap-
proach (such as Markov localization), and derived approximations, such as a
Kalman Filter.

Our work is among the first to employ generic image-domain feature
models that do not rely on assumptions concerning feature and/or camera
geometry. We explicitly employ image features, rather than global image
properties, because they provide robustness to limited illumination variation,
partial occlusion due to scene dynamics and possibly even small changes in
camera parameters. Furthermore, the computational complexity of inference
is reduced by using only subregions of an image, a feature that evolutionary
biology has exploited with remarkable success.

An important aspect of feature modeling is the selection and evaluation of
the features themselves. Our approach to this problem is to employ a model
of visual saliency to initially select candidate features, and track them across
an ensemble of training images. Given these tracked feature observations, a
set of feature models are constructed and subsequently evaluated and filtered
using cross-validation. The result is a set of feature models that have been
determined to be reliable for tracking and localization.

The feature models examined in this paper are generative in nature. The
benefit of employing a generative model lies in its wide applicability to the
problem of inference. For example, many robotic tasks include the problem
of evaluating the likelihood of an observation z of the environment given
some piece of relevant information q, such as the location of the camera,
or a particular object model hypothesis. The likelihood function p(z|q) is
useful for the inference of the maximum likelihood location or model q∗ using
Bayes’ Rule:

p(q|z) =
p(z|q)p(q)

p(z)
(1)



where
q∗ = arg max

q
p(q|z) (2)

which in this context relates an observation to the pose from which it was
most likely observed.

As an illustrative example, Figures 1 a) and c) depict images from a
laboratory environment from two known poses q0 = 0 and q1 = 1. Given the
image in Figure 1 b), taken from an unknown pose q which lies somewhere
on the line connecting q0 and q1, the task of localization is to find a q∗ which
maximizes the likelihood of the image according to Equation 1.

(a) (b) (c)

Figure 1: Laboratory Scene: a) known pose q=0, b) q unknown, c) known
pose q=1

Rather than computing the likelihood of the entire image, which is a com-
putationally complex problem, a set of models of local image features can
be used to compute the likelihood of observations of these features from a
particular pose. This is accomplished for any given feature f by computing
the maximum likelihood observation z∗ given the pose of the camera q, and
employing an associated model uncertainty to compute the likelihood func-
tion p(z|q) based on ||z − z∗|| over some metric space. The resulting set of
distributions (one for each feature) can be combined in a robust manner and
a distribution over pose space computed according to Equation 1.

Our approach operates by automatically selecting potentially useful fea-
tures {fi} from a set of training images of the scene taken from a variety of
camera poses (i.e. samples of the configuration space of the sensor). The fea-
tures are selected from each image at each position on the basis of the output
of a visual attention operator and are tracked over the training images. This



results in a set of observations for each feature, as they are observed from
different positions. For a given feature f , the reconstruction task then be-
comes one of learning the imaging function Ff (·), parameterized by camera
pose, that gives rise to the imaged observation z∗ of f :

z∗ = Ff (q) (3)

Clearly, the imaging function is also dependent on scene geometry, light-
ing conditions and camera parameters, which are difficult and costly to re-
cover [25]. Traditional approaches to the problem of inferring Ff (·) have
either focused on recovering properties of the feature under strict surface
or illumination constraints (c.f. [1]), or developed implicit appearance-based
representations (for example, principal components analysis) derived from
the entire image, which often ignore the effects of geometry, and hence lead
to blurred interpolations between views. Our work addresses the problems
inherent in appearance-based representations by implicitly capturing feature
geometry, as well as appearance. That is, both the appearance and geometric
attributes of the feature are captured in a single regularization framework.
We accomplish this by representing geometry in the space of affine trans-
formations of the image in the neighborhood of the feature. The best-fit
transformation parameters are clearly dependent on the camera position,
and can be applied as a precursor to developing an appearance-based rep-
resentation, which is better suited to representing variation due to radiosity
and illumination conditions. The resulting models recover the viewpoint-
dependent behavior of the features without explicit parameterizations of the
feature geometry or illumination. Furthermore, the application of an atten-
tion operator allows one to focus on the local behaviors of features, which
themselves may be easier to model than global properties, while providing
robustness to errors arising from scene dynamics and sensor occlusion.

In the next section we consider prior work on the problem of vision-based
robot localization.

2 Prior Work

Our work is motivated by a need to address the task of probabilistic robot
mapping, localization and navigation using a vision sensor. Prior work on
this task has been successful using sonar and other range-sensing modali-
ties [12, 26, 31]. Recent work by Nayar et al. and Pourraz and Crowley



have examined an appearance-based model of the environment and per-
form localization by interpolation in the manifold of principal components
(PCA) [19, 16]. In other work, Dellaert et al. have demonstrated the feasi-
bility of employing an optical sensor in the Markov framework [4]. In that
work the model of the environment is reduced to an overhead planar mosaic,
and the sensor model is reduced to a single intensity measurement derived
from the center of the image at each camera location. While these approaches
demonstrate the utility of appearance-based modeling, they can suffer due to
the dependency of the result on global sensor information and any assump-
tions they make concerning the structure of the environment. Furthermore,
it is not clear that a standard PCA-based representation can scale easily for
larger environments.

Recent work by Se et al. [22], by Lowe [14], by Jugessur and Dudek [5]
and by Schmid [21] in the problem domains of object recognition and of robot
localization demonstrate that object descriptions are captured well by local
pseudo-invariants. In these works, an attention-like mechanism is employed
to extract a set of local object features, and the features are matched against
previously learned features for each object class or robot pose. The benefits
of local representations include robustness to partial occlusion and sensor
noise. An important aspect of these works is the task of recognizing pseudo-
invariants under changes in viewing conditions. In particular, the attention
operators developed are robust to changes in scale and planar rotation. For
the localization problem, it is not only important to be able to recognize
pseudo-invariants, but to be able to parameterize the effects that changes in
pose have on the feature. While our current work considers only translation
invariance, these prior works indicate the feasibility of readily including other
parameterizations.

Our prior work has demonstrated the utility and potential accuracy of
feature-based models for localization [23]. In that work, features were mod-
eled using linear subspace analysis and pose estimates determined by pro-
jection into the space spanned by the feature observations. However, this
framework presupposed a one-to-one mapping between feature observations
and pose. A voting mechanism was employed to disambiguate between poses
with similar observations, but a description of the resulting probability dis-
tribution over the pose space was not produced. This paper addresses these
issues by reconsidering the problem in the context of producing generative
models of feature behavior, and considering the full posterior distribution
over the pose space.



Several authors have addressed the problem of appearance-based model-
ing [10, 3, 13, 15, 29, 1], and in particular the problem of inferring appearance
from novel viewpoints. Several of these approaches assume knowledge of the
geometric structure of the environment, while others operate only over very
limited distances, with very simple image variations or very specific object
models (such as faces). In this paper we employ a technique that can func-
tion with very few assumptions with respect to the scene structure and which
can recover image structure even over large variations in viewpoint.

In the subsequent sections we provide an overview of the feature learning
framework, discuss the feature model, feature detection and feature track-
ing, and finally consider the application of the model to the tasks of scene
reconstruction and robot localization. We subsequently present experimental
results to validate our approach.

3 The Learning Framework

In this section we present our approach to collecting and extracting obser-
vations of scene features. This process is necessary in order to a) instantiate
models in the first place, and b) consider a wide variety of potential features.

3.1 Overview

The learning approach operates as follows (Figure 2):

1. The robot explores the environment, collecting images from a sampling
of positions. It is assumed that a mechanism is available for accurate
pose estimation during the exploratory stage (such as assistance from
a second observing robot [20], or the utilization of an expectation-
maximization approach to map building [26]).

2. A subset of images are selected that span the explored pose space, and
candidate features are extracted from them using a model of saliency.

3. For each extracted feature, a generative feature model is initialized.

4. The generative model is applied in conjunction with the saliency mea-
sure to locate a match to each feature in each of the collected images
(as described below). As new observations (matches) are found, the
generative model is updated.



Figure 2: Learning framework: An ensemble of images is collected (top rect-
angles) sampling views of the scene. Candidate features fi are extracted and
matched, and subsequently modeled using a generative model Fi(·). Refer to
text for further details.

5. When the matching is complete, a confidence measure is computed for
each feature model, and the models are stored for future use.

Note that while we have presented our approach as a batch computation
over the training images, it is sequential in nature and the matching and
model updating can be performed in conjunction with the collection of new
training images. Our method is in fact an anytime algorithm and the map
can be used for localization before it is completed.

In the following sections we will discuss the details of how features are de-
tected and tracked in order to collect training observations, and subsequently
how the features are modeled from the training data.

3.2 Feature detection

Potential features are initially extracted from a subset of the training images
using a model of visual saliency. In this work we employ edge density as our
attention operator.



The details of the density operator are as follows. We define the measure
of local edge density as the operator Ψ(x), where x = [u v]T is an image
location. The magnitude image computed from the Canny edge detector is
convolved with a Gaussian kernel and local maxima of the convolution are
selected as salient features. Define X = {∀x ∈ I} as the set of points in the
image I, and the initial set of features, M0 = {arg maxx∈X Ψ(x)}, that is,
the point in the image where the saliency function Ψ is maximal, then define
the set of candidate points at the ith iteration to be

Ui = {x ∈ X : ∀mj∈Mi
||x−mj||2 > σ} (4)

where σ is the standard deviation of the Gaussian mask used to define Ψ,
and the set of features at the ith iteration to be

Mi = Mi−1 ∪ {arg max
x∈Ui

Ψ(x)} (5)

Iteration halts when maxx∈Ui Ψ(x) falls below a threshold which is defined
as t = µD + kσD, representing a user-defined k standard deviations from the
mean density. In this paper we use σ = 8 for the Gaussian convolution and
k = 1.0 for the saliency threshold.

Figure 3: Detected features in an image. The original image, and the con-
volved edge map or density function. The extracted features are marked by
squares.

Figure 3 depicts the selected features from an image as superimposed
squares over the original, and the convolved edge map. Our experience with
this operator suggests that it is reliable for candidate feature selection. How-
ever, in some circumstances a more sophisticated operator, such as a corner



detector or other measure of saliency, may be required. These circumstances
include images where maxima in edge density are not well-localized, such as
the presence of long prominent edges where edge density is roughly the same
along the length of the edge.

3.3 Feature matching

Once an initial set of features have been extracted, the next phase involves
matching the detected features over the entire training image set. The train-
ing images are sorted in order of distance from the centroid of the training
poses, and each training image is searched in sequence for each feature. The
camera pose of any given training image is known and therefore we compute
the generative model of the feature (described below) to predict the inten-
sity image lf of the feature for the training image being searched. We define
the best match to lf in the image to be the image sub-window l∗ centered
at position t∗ = (x∗, y∗) that has maximal correlation ρ with the predicted
image lf :

ρ = cos θ =
l(x,y) · lf
||l(x,y)|| ||lf ||

(6)

Rather than search the entire image for an optimal match to lf , we
stochastically sample image locations by weighting them according to the
saliency operator Ψ(x), and perform gradient ascent in the neighborhood of
each sampled point. Sampling repeats until 50% of the total image saliency∑

x Ψ(x) is considered. This approach enables matching in neighborhoods
beyond the set of local maxima in Ψ(·), while avoiding the cost of computing
ρ over the entire image.

When the sub-window maximizing Equation 6 is determined, the corre-
sponding intensity neighborhood and position [i∗ t∗] is added to the feature
model for f . When every training image has been considered, we have a set
of matched features, each of which is comprised of a set of observations from
different camera poses. Figure 4 depicts one such set, where each observa-
tion is laid out at a grid intersection of an overhead view of the pose space
corresponding to the location from which it was obtained; grid intersections
where there is no observation correspond to locations in the pose space where
the feature was not found in the corresponding training image. Note that
the generative nature of the matching mechanism allows the appearance of
the feature to evolve significantly over the pose space.



(a)

(b)

Figure 4: a) A set of observations of an extracted scene feature. The grid
represents an overhead view of the pose space of the camera, and feature
observations are placed at the grid intersection corresponding to the pose
where they were observed. Note that the observations capture variation in
feature appearance. The lower-left thumbnail is highlighted in scene from
Figure b), below.



C = <n The n-dimensional pose-space of the robot.
Z = <m The m-dimensional observation-space of each feature.
f A feature.
q ∈ C A robot pose.
z ∈ Z An observation.
k The number of training observations of a given feature.
t ∈ <2 The transformation component of an observation z.
l ∈ <m−2 The appearance component of an observation z.
Z ∈ <k×m The row-wise set of k observations of a feature.
G ∈ <k×k The radial-basis design matrix for a given feature.
W ∈ <k×m The learned weight matrix relating G and Z (Z = (G+ λI)W ).
wi The i-th row of W .
wij The (i, j)-th element of W .
R The cross-validation covariance associated with a feature model.

Table 1: Notation and definitions for the generative feature model

3.4 The generative feature model

We are interested in learning a pose-dependent model of a scene feature,
given a set of observations of the feature from known camera positions. The
model will be capable of producing maximum-likelihood virtual observations
(predictions) of the feature from previously unvisited poses. It will also be
capable of estimating the likelihood of a new observation, given the (hypo-
thetical) pose from which it might be observed. For reference, a summary of
the notation employed in this section is provided in Table 1.

We will represent an observation z ∈ <m of a feature f by the vector

z =

[
t
l

]

where t ∈ <2 is a vector representing the parameters that specify the affine
transformation of the image sub-window of f within the image, and l ∈ <m−2

is a vector corresponding to the local intensity image of f , unrolled in raster-
scan order. In this paper, we consider only the translation of the feature
in the image plane as the space of possible transformations- one can also
consider rotation and scaling, but we will defer this issue to future work.
The observation z is a vector-valued function of the pose of the camera q.
We seek to learn an approximation F (·) of this function, as expressed in



Equation 3. In this work, we define the space of robot poses as q = [x y]T

and orientation recovery as a separate problem.
The approach we take to learning F (·) is by modeling each element of

z as a linear combination of radial basis functions (RBFs), each of which is
centered at a particular robot pose determined by the set of training poses.

Formally, given a set of observations from known poses (zi,qi), a predicted
observation z from pose q is expressed as

z = F (q) =
∑
i

wiG(q,qi) (7)

where G(·, ·) is a scalar exponential function centered at the locus qi of
observation i,

G(q,qi) = exp(−||q− qi||2

2σ2
) (8)

and the wi’s are vectors of weights that are learned from the training
observations. The RBF width σ is set by hand.

The computation of the weight vectors wi is well understood in the
context of regularization and interpolation theory and is described else-
where [27, 18, 9]. In brief, the optimal weights ŵij are the solution to the
linear least squares problem

(G+ λI)W = Z

where the elements Gi,j of the design matrix G correspond to Equation 8
evaluated at observation pose i and RBF center j, the matrix W corre-
sponds to the matrix of unknown training weights, and the rows of matrix
Z correspond to the training observations. When λ is 0 and G−1 exists, the
computed weights result in a network whereby Equation 7 interpolates the
observations exactly. However, the presence of noise and outliers and the
complexity of the underlying function being modeled, can result in an inter-
polation which is highly unstable. The solution can be stabilized by adding
a diagonal matrix of regularization parameters λI to the design matrix G.
In our work, these regularization parameters and the RBF width σ are set
by hand at the outset. While ridge regression can be employed to compute
the optimal regularization parameters, we do not find that this is necessary
for the kinds of measurements we are interpolating.

If the design matrix employs every observation pose as a center for a
RBF, the computational cost of computing the weights for n observations is



that of an O(n3) singular values decomposition of an n by n matrix, followed
by an O(n) back-substitution for each element of the feature vector zi.

Figure 5 depicts three generated instances of the same feature from dif-
ferent poses. The predicted feature image l is plotted at the predicted image
location t. Note the variation in both appearance and position of the feature
in the image.

(a) (b) (c)

Figure 5: A single feature as generated from three different camera positions.

3.5 Visibility

As the robot or other observer moves through the environment, features will
move in and out of view due to both camera geometry and occlusion. There-
fore it is valuable to explicitly model feature visibility ; that is, whether or not
a particular feature is visible from a particular location in pose-space. This
information aids the task of localization and is important for the problem
of reconstructing the scene. We employ the same regularization framework
to learn a visibility likelihood function p(visible(f)|q), training the function
with the binary-valued observability of each feature from each visited pose in
the training set1. This information is also useful for informing the question
of where to collect new training examples.

1The computed model could produce likelihood values less than zero or greater than
one– we clamp these outputs when they occur



3.6 Model uncertainty and evaluation

Given an observation zi of feature fi, we can compute the likelihood that it
came from pose q by computing a maximum likelihood observation z∗ using
the generative model and comparing the actual and predicted observations
using some distance metric ||z− z∗||. It is not clear, however, how a metric
in the space of observations should be defined (recall that an observation is
a combination of pixel intensities and transformation parameters). Nor is it
clear that the observation space is smooth and/or continuous. Furthermore,
how does the likelihood behave as a function of the metric? In order to
address these issues, we evaluate the computed models using leave-one-out
cross-validation, and model the likelihood function p(z|q) as a Gaussian with
a covariance R defined as the cross-validation covariance [17, 30, 11].

Cross validation operates by constructing the model with one data point
excluded, predicting that data point using the construction and measuring
the difference between the actual point and the prediction. By iterating over
several (ideally all) of the training data, and computing the covariance of the
resulting error measures, we can build up a measure of how well the model
fits the data and, more importantly, how well we might expect it to predict
new observations.

Given the very high dimensionality of the observation space, the covari-
ance R, when computed over a Euclidean metric over the observation space, is
highly likely to be rank-deficient. This poses problems for numerical stability
in the presence of noisy observations. To overcome this problem, we reduce
the dimensionality of the error space by computing the disparity between an
observation and it’s prediction as a vector composed of the Euclidean error in
the image component l combined with the vector error in the transformation
component t. Specifically, if z = (l, t) is an observation and z∗ = (l∗, t∗)
is the prediction of that observation from the cross-validation model (the
feature model computed with z omitted), then the error vector ze is defined
as

ze(z, z
∗) =

[
||l− l∗||2

t− t∗

]
. (9)

Given this definition of ze, the cross-validation covariance R is defined as

R =
1

k

k∑
j=1

zez
T
e (10)



Given R, the observation likelihood function is then expressed as

p(z|q) = c exp(−0.5zTe R
−1ze) (11)

where c = ((2π)M detR)−1/2, ze is the transformed z − z∗, M is the dimen-
sionality of the transformed observation space and exp(x) = ex.

The covariance R is not only useful as a model parameter, but is also
a useful measure of model fit. Trained features whose model covariance
has a large determinant can be eliminated from the set of features on the
basis that the feature is not modeled well and will not be useful for feature
reconstruction or camera localization.

The cross-validation error associated with a particular learned feature
represents a measure of the reliability of the model and the feature it has
tracked. We are interested in examining the reliability of the particular
feature representation we have chosen- that is, the attributes that we aim to
model generatively. By cross validating over individual potential attributes,
such as the affine transformation t, intensity image, l, or other attributes such
as the edge distribution E(·) of l, one can determine which feature attributes
in particular are well-modeled.

Table 2 summarizes the quality of the three attributes mentioned here
for three different scenes (Figure 6) and the results are depicted graphically
in Figure 7. The first two scenes were imaged using a camera mounted on
the end-effector of a robot arm, and the third was imaged using a camera
mounted on a mobile robot. The number of training images for each scene is
recorded in the table. For any given feature, the image position t, intensity
distribution l and edge distribution E(l) of the features are each used to
generate a separate model and cross-validation error. For each attribute
a ∈ {t, l, E(l)}, the cross-validation error e(a) is defined as

e(a) =
k∑
j=1

||ze||2 (12)

where ze is defined appropriately as above, for each attribute.
Tabulated are the mean cross-validation error of these properties over all

observed features. The smaller the value, the more reliable the attribute can
be considered to be. It is important to note that the units for defining the
error in each attribute differ (pixels2, for the position attribute, and gray-level
intensities2 for appearance and edge distribution, respectively). As such, it
is somewhat difficult to compare these measures. In the figure, the error
measures are grouped by Scene.



(a)

(b)

(c)

Figure 6: Images from scenes I, II and III used for evaluating feature at-
tributes.

It is interesting to note that the affine transformation of the feature in the
image is in general the most accurately modeled whereas the edge distribution
is poorly modeled. The order-of-magnitude difference between the affine
transform error and the intensity distribution error is due in part to the
significant difference in the dimensionality of the attributes. We can conclude
that for the purposes of inference, in most circumstances the affine transform
will be the most useful attribute.



Attribute Scene
I II III

Training images 256 121 121
Affine Transform 17.1 143 33.7

Intensity Distribution 2105 5230 2531
Edge Distribution 17268 21960 13283

Table 2: A priori mean cross-validation error by attribute for the scenes in
Figure 6. Refer to the text for details.

3.7 Scene evaluation

In addition to measuring feature quality, it is also possible to evaluate the
ability of the model to represent the environment as a function of pose. We
do this by computing a quality estimate for the subset of features observable
from a given position. At each training pose q, we can compute a measure
of reliability

rq =
∑
fi∈Γ

1

|Rfi|
(13)

where Γ is the set of tracked features which are observed from pose q, and
|Rfi| is the determinant of the feature uncertainty covariance. Note that for
poses other than the training poses, a similar measure can be computed by
weighting the terms of rq by their visibility likelihood, p(visible|q), since the
determinant of the feature covariance is an indication of how weak the pose
constraint for a given feature may be. Clearly, larger values of r should lead
to more reliable pose estimates. Figure 9 plots r as a function of pose for
Scene III, depicted in Figure 8. In this plot, the orientation of the camera is
fixed to face in the negative y direction while the robot moves over a 2m by
2m pose space. Note that the reliability is particularly low for small values of
y. This is due to the fact that images in that region of the pose space change
dramatically under small changes in pose, leading to difficulty in tracking
the features.

4 Applications

The real benefit of constructing a generative model is realized in the abil-
ity to predict observations from an arbitrary pose. This ability enables a
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wide variety of tasks, including partial scene reconstruction from previously
unvisited poses, and robot navigation and localization. In this section we
elaborate on these potential applications.

4.1 Scene Reconstruction

Given a set of trained features and a particular pose q, one can generate a
maximum likelihood reconstruction of the scene features. Given the gener-
ated observations, the full image is reconstructed by positioning each feature
according to its predicted transformation and mapping the generated inten-
sity image in the image neighborhood. We model a large image neighborhood
in order to predict as much of the image as possible. Where features over-
lap, the pixel intensity I(x, y) is determined by selecting the pixel intensity



Figure 8: The scene evaluated for a priori training reliability.

corresponding to the feature that maximizes the weighting function

v =
p(visible(f))

cf
e−

∆p2

2σ2

where cf is the total cross-validation error for the feature, ∆p is the
Euclidean distance between the pixel (x, y) and the predicted position of the
feature, and σ is a parameter describing the region of influence of each feature
in the image. This winner-takes-all strategy selects a feature for whose pixel
prediction we are most confident.

For example, Figure 3 a) shows a training image from a laboratory scene
for which training images have been collected at 25cm intervals over a 6.0m
by 3.0m pose space; Figure 10 depicts the reconstruction of the same scene
from a nearby pose. Note that the reconstruction cannot predict pixels for
which there is no feature model, and as such, the lower edge of the image is
left unshaded. It may also be possible to interpolate limited amounts of the
unshaded regions using Markovian reconstruction methods [6, 8].

4.2 Localization

Given a set of feature models, the task of robot localization can be per-
formed by applying Bayes’ Rule, as per Equation 1. When the camera is
at an unknown position, an observation is obtained and optimal matches to
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Figure 9: A priori training reliability r as a function of pose for the scene
depicted in Figure 8. The camera faces in the negative y direction.

the learned features are detected in the image, Z = {zf}. Each feature ob-
servation zf then contributes a probability density function p(zf |q), which
is defined as the product of the distribution due to the maximum likelihood
prediction of the model (Equation 11) and the feature visibility likelihood
p(visible(f)|q). In the absence of informative priors, the pose q∗ that maxi-
mizes the joint likelihood of the observations is considered to be the maximum
likelihood position of the robot, as illustrated by Equation 1. Numerically,
the joint likelihood can be difficult to compute, as it requires summing over
all permutations of successful and unsuccessful feature matches. Instead,
we approximate the joint posterior using a mixture model of the individual
feature-derived distributions:

p(Z|q) ≈ 1

n

∑
zf∈Z

p(zf |q) (14)

This model takes an extreme outlier approach whereby it is assumed that
the probability of an incorrect feature match is high. A complete description



Figure 10: A reconstruction of the laboratory scene depicted in Figure 3, as
predicted from a nearby camera pose.

of the probability density function should take into account the likelihood of
the match between each detected feature and all possible generated observa-
tions. Our empirical experience indicates that the mixture model provides
resistance to outlier matches without the need for computing a full joint
posterior, as we demonstrate in the next section.

5 Experimental Results

In this experiment, we evaluate the performance of the learning framework
and feature models on the task of robot localization. The laboratory scene
depicted in Figure 3 was explored by taking 291 training images at uniform
intervals of approximately 25cm over a 3.0m by 6.0m pose space. A second
observing robot was deployed to estimate the ground-truth position of the
exploring robot to an accuracy of approximately 4cm, as described in [20].
The observer employed a laser range-finder to accurately determine the cam-



Figure 11: Robots employed for data collection. The three-plane target
mounted on the exploring robot is sensed by the stationary robot, allowing
for the computation of pose estimates for the explorer. The pose estimates
are employed as an approximation to ground-truth, both for training and
evaluating the vision-based localizer.

era position from the range and orientation of a three-plane target mounted
on the exploring robot (Figure 11). For the purposes of this experiment, the
robot attempted to take training images at the same global orientation. How-
ever, uncertainty in the robot’s odometry, as well as the observing robot’s
estimate, led to some variation in this orientation from pose to pose.

A set of initial features were extracted from a small subset of the training
images, and more than 117 feature models were trained. Those models with
high uncertainty, or with too few observations were removed, resulting in 80
reliable feature models.

To validate the learned models, an additional set of 93 images were col-
lected from random poses, constrained to lie anywhere within the 3.0m by
6.0m training space. These test images were used to compute maximum-
likelihood (ML) estimates of the camera’s position, and the ML estimates
were compared against the ground truth estimates provided by the observ-
ing robot. The estimates themselves were computed by exhaustive search



over a multi-resolution discretization of the training space, selecting the hy-
pothesized q that maximized Equation 14. In particular, the training space
was discretized into a 40 by 40 grid covering the entire training space and
Equation 14 was evaluated at each position in the grid. Subsequently, at the
maximal grid location a new 10 by 10 grid was instantiated over a neigh-
borhood spanning 7 by 7 grid positions in the larger grid and Equation 14
was evaluated over the new grid. This process recursed to a pre-determined
resolution and the maximal grid pose at the highest resolution was returned.
Note that in a production environment, a more efficient estimator, such as
Monte Carlo sampling, could be deployed.

In practical settings, one is not always interested in the ML pose estimate,
but rather the entire probability distribution over the pose space, which
can provide more information about alternative hypotheses in environments
which exhibit significant self-similarity. Figure 12 depicts the probability
density function, modulo a normalizing constant, resulting from evaluating
Equation 14 for a single test image over a uniform grid of poses. The figure
clearly indicates a region where the pose is more probable, as well as a second,
less probable region. The second region may be due to a mis-classified feature
(a failure in the matching stage), or some self-similarity in a trained feature.

Given that each ML estimate has a particular likelihood, it is possible
to reject pose estimates that do not meet a particular confidence threshold.
In this way, four of the 93 estimates in the test set were rejected. Interest-
ingly, the majority of these estimates were associated with images that were
obtained when the robot was very close to the wall it was facing, where it
was difficult to reliably track features at the selected training sample density.
This behavior coincides with that predicted by our a priori evaluation of a
similar scene, as exhibited in Figure 9.

Figure 13 plots the location of the unrejected ML estimates for the test
images (’x’) against the ground truth camera position (’o’) by joining the
two points with a line segment. The length of each line segment corresponds
to the magnitude of the error between the corresponding pose estimate and
ground truth. The mean absolute error is 17cm, (7.7cm in the x direction
vs 15cm in the y direction). The larger error in the y direction corresponds
to the fact that the camera was pointed parallel to the positive y axis, and
changes in observations due to forward motion are not as pronounced as
changes due to side-to-side motion. The smallest absolute error was 0.49cm,
which is insignificant compared to the ground truth error, and the largest
error was 76cm. Note that most of the larger errors occur for large values of
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Figure 12: Likelihood function of pose of robot over 3.0m by 6.0m pose space.
Note that the distribution is not unimodal, possibly due to a mis-recognized
feature, or model self-similarity at different poses.

y. This is due to the fact that the camera was closest to the wall it was facing
at these positions y, and as has been mentioned, tracking scene features over
25cm pose intervals became a difficult task.

6 Discussion and Conclusions

We have presented a method for learning generative models of visual fea-
tures that are useful for robot pose estimation and scene reconstruction.
The method operates by matching image features over a set of training im-
ages, and learning a generating function parameterized by the pose of the
camera which can produce maximum likelihood feature observations. We
train a radial basis function network for modeling each feature. The system
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also models the uncertainty of the generated features, allowing for Bayesian
inference of camera pose.

A comparative study of running times and robustness for this algorithm
versus other standard localization methods would be valuable. While it is
beyond the scope of this paper to include such an undertaking, we refer the
reader to recent work in which we conducted a study comparing a method
similar to the one presented here with principal components analysis [24].
In that work, we compared running times of the algorithms and demon-
strated robustness to a variety of adverse conditions, such as partial image
occlusion. An interesting result from that study indicated that while there
are arguments to be made for exploiting visual attention to reduce compu-
tational complexity (e.g. [28]), the additional overhead involved in feature
extraction, tracking and modeling can yield running times comparable to



PCA-based representations.
There remain several outstanding questions for future work. First, it is

not clear how many training images are sufficient to cover the pose spaces
studied. Empirically, we have found the limiting factor to be the problem of
reliable feature tracking– decreasing the sampling density inevitably results in
lost features. One approach to addressing this question would be to compute
an on-line estimate of how far the robot can travel before collecting a new
training image. Such a measure might be based on the number of successful
features tracked, or perhaps a measure of optical flow. Second, the prob-
lem of recovering orientation can be addressed. While the framework does
not preclude learning feature models in a three, or higher, degree-of-freedom
pose space, the number of training images required can be prohibitive. One
proposed solution is to learn feature models at a small number of selected
orientations, and localize the robot by taking images at several orientations
(ideally, a sufficient number to enable generation of a panorama), and locat-
ing the image that maximizes the confidence of the ML pose estimate. This
approach is similar to an active vision approach whereby a robot must travel
until it locates landmarks that disambiguates its position.

The experimental results in this paper demonstrate the utility of using
learned feature models for pose estimation, as well as other tasks, such as
scene reconstruction. Our experiments have demonstrated the stability and
smoothness of the resulting posterior distribution over camera pose, and we
were able to detect most outliers by thresholding the likelihood of the ML
estimates. However, important issues are raised in this work with respect
to the density of training samples. In order to capture aspects of the scene
that change significantly, one must sample at higher densities. One possible
solution is to select the robot’s viewing direction before sensing in order to
take in more stable parts of the environment (for example, point the camera
at the farthest wall). Our future work is addressing some of the issues raised
here, as well as expanding the approach to much larger environments.
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