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Abstract

This paper compares alternative approaches to pose
estimation using visual cues from the environment.
We examine approaches that derive pose estimates
from global image properties, such asprincipal
components analysis(PCA) versus from local im-
age properties, commonly referred to aslandmarks.
We also consider the failure-modes of the different
methods. Our work is validated with experimental
results.

1 Introduction
A considerable amount of research has been conducted on
the problem of using vision to localize a robot in a known
environment. Two basic approaches have emerged; the first
correlates global properties of the image, such as a principal
components subspace projection; whereas the second corre-
lates a set of local properties, or landmarks. Each approach
has its own strengths and weaknesses, and is based on its own
assumptions about the environment. It is often argued that lo-
cal feature-based representations are more robust to scene dy-
namics and illumination variation than globally-derived rep-
resentations. It is also widely assumed that feature-based ap-
proaches require less online computation time than global ap-
proaches.

The goal of this paper is to critically examine a selection
of image-based pose estimation methods and compare them
for their performance under a variety of conditions. We con-
sider accuracy and running time as the two major indicators
of performance.

2 Previous Work
Pose estimation from monocular vision data is non-intrusive
and conceptually appealing as a research direction. Posi-
tion estimation entails a combination of estimating local dis-
placement with recognizing familiar locations. It has been
approached as both a coarse place-recognition problem (e.g.
based on color histograms for familiar locations[Ulrich and
Nourbakhsh, 2000]) and also as a problem of recognizing a
set of local features associated with a specific location (for ex-
ample[Seet al., 2002]). In several approaches, authors have
suggested interpolating between familiar locations to produce

a position estimate more accurate than the density of training
data, using either global image features ([Nayaret al., 1994;
Pourraz and Crowley, 1999]) or sets of local image features
([Sim and Dudek, 2001]). In this paper we compare the per-
formance of some of these alternatives..

3 Localization Methods
Framework We assume the same framework for all of the
methods presented below. First, a set of training images has
been collected from known poses in the environment. A
model, or models, are constructed by building an interpolant
over the set of training poses. We employ bilinear interpola-
tion of the observation space over the Delaunay triangulation
of the pose space. The cost of constructing the triangulation
and any other preprocessing of the training images (such as
tracking features) is referred to as theoffline cost.

When a pose estimate is required, a probability distribution
is computed using a multi-resolution grid-based discretiza-
tion of the pose space. At each grid position a predicted
observation is generated and compared with the actual ob-
servation. The probability is computed using Bayes’ Rule,
whereby, assuming a uniform prior, the probability of a pose
q is proportional to the probability of the observationz given
the pose:

p(q|z) ∝ p(z|q)
Once a cell with maximal probability is determined, a higher
resolution discretization is computed in the neighborhood of
that cell, and the process recurses until a desired level of res-
olution is achieved. By setting the maximum discretization
to a fixed value, we fix the number of times the likelihood
function is evaluated, thus allowing us to benchmark the per-
formance of the method. This running time is referred to as
theonline cost.

3.1 Global Methods
Edge Density Out first globally-based method computes a
map of the local edge density of the image. The density is
approximated by convolving the image edge map with a wide
(33 pixels) Gaussian kernel. The edge map is relatively re-
sistant to illumination changes, and measuring edge density
propagates edge information locally. Depending on the width
of the kernel, a linear combination of neighboring training
edge densities can loosely approximate the motion of edges
as the camera moves.



Principal Components PCA operates by computing a low-
dimensional subspace of the space spanned by the training
images. For this work, we employ the first twenty principal
components. When pose likelihoods are computed online,
only the low-dimensional projections of the training inputs
are interpolated. The input observation must be projected into
the subspace; an operation that is performed once; and subse-
quent comparisons are between low-dimensional vectors.

3.2 Local Methods
The alternative to computing global image features is to ex-
tract a set of local image features, or landmarks, and model
their behavior as a function of position. Local features must
beselectedandtracked, and subsequently they aremodeled.
Finally, when online they must bematchedto features in the
input observation. Once matching is complete, the individ-
ual estimates from different landmarks must be combined in
a robust manner.

We use the landmark-based method proposed by Sim and
Dudek[Sim and Dudek, 2001]. That model selects landmarks
using saliency, and, once they are tracked across the training
space, models the landmark behaviors as a function of pose.
The models compute a linear interpolant of the landmark at-
tributes over the triangulation of the pose space.

We employ two versions of the landmark model; the first,
referred to asDynamicLM models the appearance of the
landmarks as a function of pose, and thus matching may re-
quire several instantiations of the landmark before it is suc-
cessfully matched. The second, referred to asFixedLM , fixes
the landmark appearance, speeding up the matching, but re-
ducing the range of poses that the landmark can model.

4 Experimental Approach

Figure 1: Images from a) the training set (top,left), b)
theNoisyverification set (top,right), c) theOcclusionset with
noisy occluders (middle,left), d) theOcclusionset with solid
occluders (middle,right), and e) theIlluminationset (bottom).
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Loc’zn
(s/img)

Global Methods
Edge Density 8.22 22.4 31.4 0.309 38.1
NN (EdgeDens) 11.1 22.3 n/a n/a n/a
PCA 6.06 12.4 2170 0.234 0.208
NN (PCA) 9.7 22.3 n/a n/a n/a
Local Methods
DynamicLM 8.49 23.09 1581 145 19.8
FixedLM 7.61 19.7 1529 10.6 17.9

Table 1: Localization results forNormalset.

Training We used a robot to collect 121 images in a grid
pattern at 20cm intervals, over a 2m by 2m area (Figure 1a)).
Ground truth was obtained by mounting a laser pointer on the
robot and measuring by hand the position of the laser point
on the floor. As such, the ground truth is accurate to ˜0.5cm.

The same set of training images was provided to each lo-
calization method for preprocessing and training, and the run-
ning times for this phase were recorded.

Verification A set of 29 verification images were collected
with the robot from random locations at the same orientation
as the training images. Ground truth was measured by hand.
The images were collected under the same illumination con-
ditions and observed the same static scene. These images
constitute ourNormalverification set. Gaussian white noise
was added to these images to create aNoisyverification set
(Figure 1a)), and a set of occluders were randomly painted
into the images to generate twoOcclusionsets (Figure 1b)
and 1c)). The first set of occluders consists of white noise,
and the second consists of solid tiles.

A second set of ten images was collected under low-
light conditions from random locations. Ground truth was
recorded by hand. These images are referred to as theIllumi-
nationverification set (Figure 1d)).

Each localization method was applied to each verification
set, and the mean error between the maximum-likelihood
(ML) estimate and ground truth was compiled on a per-
method, per-set basis. The computational cost of preprocess-
ing the input images and computing the ML estimate was also
recorded. For each image, the multi-resolution grids were
evaluated at a total of 2300 distinct poses.

Measuring performance Consider the expected error us-
ing a method that selects the nearest training image with
100% accuracy. Thismagic numbercan be computed to be
7.6cm for our experiments. A mean error of less than 7.6cm
could be considered to be successful at interpolating over the
training set. In practice a nearest-neighbor implementation
is unlikely to be perfect, and will generate larger errors. We
have applied a nearest neighbor (NN) approach to the two
global methods on theNormalset.

5 Experimental Results
Table 1 depicts the results for theNormalset. The mean lo-
calization error, maximum outlier, and offline and online run-



Mean
(cm)

Max
(cm) Estimates

Global Methods
Edge Density 8.4 21.9 29/29
PCA 5.9 11.9 29/29
Local Methods
DynamicLM 11.8 26.4 29/29
FixedLM 11.0 27.9 6/29

Table 2: Localization results forNoisyset.

Mean
(cm)

Max
(cm) Estimates

Global Methods
Edge Density 60.3 215 29/29
PCA 11.2 21.7 29/29
Local Methods
DynamicLM 22.0 205 29/29
FixedLM 27.3 180 28/29

Table 3: Localization results for noisyOcclusionset.

ning times are depicted. For the two global methods, near-
est neighbor results are also tabulated for comparison. Only
the PCA and FixedLM methods approach the magic number.
The nearest neighbor approaches perform poorly against the
magic number. As expected, PCA presents a large offline
computational cost, but very low online cost.

Table 2 depicts the results for theNoisyset. In the case
of the landmark-based approach, we have indicated error re-
sults for only those images where at least one landmark was
successfully matched. The number of estimates is indicated
in the last column, out of the total number of verification im-
ages. Both global methods saw an improvement in perfor-
mance.

Table 3 depicts the results for theOcclusionset with noisy
occluders. The local methods perform significantly worse,
despite improved matching output in the FixedLM case. PCA
continues to perform well, but the edge density approach is
confounded by the introduction of regions of high edge den-
sity.

Table 4 depicts the results for theOcclusionset with solid
occluders. The local methods demonstrate a degradation in
performance, although not as great as for the white noise oc-
cluders. There is also a reversal in performance for PCA ver-
sus Edge Density.

Table 5 indicates the results under altered illumination con-
ditions. While all of the methods perform poorly, the Edge
Density approach suffers the least degradation.

Mean
(cm)

Max
(cm) Estimates

Global Methods
Edge Density 10.5 30.8 29/29
PCA 96.3 222 29/29
Local Methods
DynamicLM 12.1 48.6 29/29
FixedLM 15.6 100 28/29

Table 4: Localization results for solidOcclusionset.

Mean
(cm)

Max
(cm) Estimates

Global Methods
Edge Density 30.9 103 10/10
PCA 149 217 10/10
Local Methods
DynamicLM 105 204 10/10
FixedLM 138 271 9/10

Table 5: Localization results forIlluminationset.

6 Discussion and Conclusions
Both PCA and the landmark-based methods present signifi-
cant offline costs, calling into question their practicality for
applications such as simultaneous localization and mapping.
However, PCA was robust to some types of adverse imaging
conditions, and was demonstrably faster in computing online
pose estimates.

While the Edge Density method was less accurate than
PCA, it took significantly less time to train, at the cost of
slower online performance. However, the ongoing increase
in CPU speeds makes global methods such as these increas-
ingly practical.

Finally, the landmark-based methods presented a smooth
degradation in performance as the imaging conditions be-
came increasingly adverse. In general, these methods per-
formed well, but were significantly more expensive online
due to the cost of matching and frequent invocation of the
landmark prediction model. Online performance of these ap-
proaches depends to a large extent on the nature of the pre-
diction model itself.

We have presented a comparison of several localization
methods in a known environment against a variety of imaging
conditions. The results challenge some widely held assump-
tions about the various advantages and disadvantages of local
and global methods.
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