
A Practical Algorithm for Network Topology Inference

Dimitri Marinakis, Gregory Dudek
Centre for Intelligent Machines, McGill University

3480 University St, Montreal, Quebec, Canada H3A 2A7
{dmarinak,dudek}@cim.mcgill.ca

Abstract— When a network of robots or static sensors is
emplaced in an environment, the spatial relationships between
the sensing units must be inferred or computed for most
key applications. In this paper we present a Monte Carlo
Expectation Maximization algorithm for recovering the con-
nectivity information (i.e. topological map) of a network using
only detection events from deployed sensors. The technique is
based on stochastically reconstructing samples of plausible agent
trajectories allowing for the possibility of transitions to and
from sources and sinks in the environment. We demonstrate
robustness to sensor error and non-trivial patterns of agent
motion. The result of the algorithm is a probabilistic model of
the sensor network connectivity graph and the underlying traffic
trends. We conclude with results from numerical simulations
and an experiment conducted with a heterogeneous sensor
network.

I. INTRODUCTION

We are interested in networks made up of static sensors,
mobile robots, and sensors carried passively on other objects.
In general, if a sensor can move actively there are several
SLAM-like methods that can be used to estimate it’s position.
For a network made up only of passive sensors, the problem
is more difficult. In this paper we address the problem of
inferring the topology, or inter-node connectivity, of a sensor
network given only unlabelled observations of activity in the
environment (i.e. we make the pessimistic assumption that
the objects being observated cannot be distinguished from
one another). We wish to recover the physical connectivity
of the sensors with respect to one another from the point
of view of an agent navigating the environment. We assume
only indistinguishable agents moving in the environment to
allow us to examine the worst-case sensing scenario. This
is the case, for example, if only motion sensors are used.
If more reliable sensors are used (such as cameras that can
identify specific people) then our solution can accommodate
this and shows even better performance.

This topological information we seek differs from a metric
representation which identifies the relative locations of the
sensors but does not provide information about the layout
of the region, or obstructing objects within it. We assume
that we have no prior knowledge of the relative locations of
the sensors and that we have only a limited knowledge of

the type of activity present in the environment. We must use
observational data returned from our sensors to understand
the motion of agents present in the environment. By infering
underlying patterns in their motions we can then recover the
relationships between the sensors of our network.

Our approach is to divide the problem into two inter-
dependent sub-problems: first, inferring the association be-
tween sensor observations and motion sources (agents) mov-
ing though the environment, and second, inferring the net-
work connectivity parameters that best describe these inter-
node transitions. We construct plausible trajectories of agent
motions through the network and augment our observational
data with this information. Since the trajectory information
allows us to determine likely connectivity parameters and the
connectivity parameters suggest possible trajectories, we can
iteratively converge toward a final answer through statistical
methods.

As sensor networks are established in more locations
for monitoring and surveillance purposes, there will be a
demand for algorithms and software approaches that can
make inferences about the environment based on large quan-
tities of highly distributed and possibly low quality sensing
information. This is especially true in areas where we are
unable to venture ourselves, or unwilling to venture for fear
of influencing the data we are collecting. On Great Duck
Island, Maine, for example, a sensor network was success-
fully employed to collect habitat data without disturbing
wildlife with human presence [1], [2]. Another example is the
proposed underwater observing system NEPTUNE [3], which
plans to wire the Juan de Fuca tectonic plate off the coast
of the North-West Pacific ocean. The underwater network
will generate observational data from a variety of distributed
sensors which could be used to infer additional information
about the ocean environment that would be difficult to collect
directly for logistical and financial reasons.

This paper addresses a single aspect of the more general
problem of inferring information about the environment given
distributed sensor data: recovering connectivity parameters.
Monitoring projects that log data for offline analysis should
be able to benefit from our technique. For example, a
vehicle monitoring network distributed about a city could

help make decisions about road improvements which might
best alleviate congestion. Another motivation are applications
using the connectivity information inferred by our technique
for sensor network self-calibration efforts; e.g. the calibration
of a surveillance system. With this work, we are addressing
a type of problem that will grow in importance as distributed
sensing becomes more prevalent.

II. BACKGROUND

It is recognized that self-calibration and other more general
self-configuration algorithms are important issues for both
multi-robot systems and for sensor networks [4] [5]. The
main point is that a network must operate autonomously in an
dynamic environment. It should be capable of re-organizing
itself to handle network changes such as individual node
failures or changes in communication range.

A key requirement for many network applications is the
ability to self-localize in the absence of GPS data [6], [7];
i.e. recovering the relative metric location of each node
of the network in cases where GPS is too expensive, not
available, or otherwise impractical. In general, localization
efforts are based on methods for estimating the distances
between sensors. Common techniques include the use of
received communication signal strength in radio networks [8],
or time-of-arrival ranging using ultrasound [9], [10].

The problem of inferring the topology of a sensor network
is closely related to that of metric self-localization. In self-
localization, the goal is to recover the relative locations of
the nodes independent of the layout of the space in which
the network is embedded. Topology inference as we define it,
however, must take into account the spatial constraints of the
environment since they determine the inter-node connectivity
parameters. These two tasks could complement one other.
Information regarding the spatial locations of the nodes as
well as their communication connectivity can make it easier
to determine topologically adjacent nodes and vica versa,
although, in many cases, the information can be misleading
(Figure 1).

In this work, we attempt to solve for the topology of a net-
work, accounting for spatial constraints, without relying on
traditional self-localization techniques such as time-to-arrival
and signal strength. However, along with target signatures,
these methods could be incorporated into our approach as
part of the probabilistic framework.

Although much of the research conducted in self-
configuration efforts is based on developing distributed, com-
putationally efficient algorithms appropriate for low-power
sensor network platform, some recent work has looked at
the self-calibration of multi-sensors networks by exploiting
motion in the environment [11], [12], [13], [14], [15]. These
efforts generally assume vision-based sensors and place less

(a) (b)

Fig. 1. Examples where communication signal strength is misleading: a)
thin interior wall prevents passage but signal is strong b) blocking exterior
wall prevents signal but nodes are topologically adjacent

emphasis on the traditional sensor network concerns of
efficiency and distributed processing. Instead, they focus
on research issues regarding the processing of observations
collected from distributed sensors.

Of relevance is the work of Ellis, Makris, and Black
[14] [15] on the topology inference of camera-networks.
They described an approach in which they use temporal
correlations in observations of agents’ movements to identify
links between network components. They used a thresholding
heuristic to identify peaks in the temporal distribution of
travel times between nodes. Like Ellis, Makris, and Black, we
are interested in exploiting motion to recover information re-
garding our environment. However, we employ considerably
different methods.

Some related work [16] has shown the validity of an
MCEM-based algorithm for recovering the connectivity in-
formation of a network using only detection events from the
deployed sensors. The technique was based on reconstructing
plausible agents trajectories, but made some unrealistic as-
sumptions about their motions. In this paper we present a new
algorithm for network topology inference that is more robust
to observational noise than previously developed approaches,
hence making the technique more applicable to real world
situations. We assess our new algorithm with simulations and
experiments conducted on a heterogeneous sensor network.

III. PROBLEM DESCRIPTION

We formalize the problem of topology inference in terms
of the inference of a weighted directed graph which cap-
tures the connectivity relationships between the positions of
the sensors’ nodes. The motion of multiple agents moving
asynchronously through a sensor network region can be
modeled as a semi-Markov process. The network of sensors is
described as a directed graph G = (V,E), where the vertices
V = vi represent the locations where sensors are deployed,
and the edges E = ei,j represent the connectivity between
them; an edge ei,j denotes a path from the position of sensor
vi to the position of sensor vj . The motion of each agent

in this graph can be described in terms of their transition
probability across each of the edges An = {aij}, as well
as a temporal distribution indicating the duration of each
transition Dn. The input to the system are the observations
O = {ot}, which are a list of events detected at arbitrary
times from the various vertices of the graph. Each event
indicate the likely presence of an agent at that position at
that time.

The goal of our work is to estimate the parameters describ-
ing this semi-Markov process. We assume that the agents’
probabilistic behavior is homogeneous; i.e. the motion of all
agents are described by the same A and D. In addition, we
assume that the distribution of the inter-sensor (i.e. inter-
vertex) transition times can be described by a windowed
normal distribution. We will show later, however, that we
can relax this assumption in some situations.

Given the observations O and the number of agents N , the
problem is to estimate the network connectivity parameters
A and D, subsequently referred to as θ.

IV. TOPOLOGY INFERENCE ALGORITHM

In this section we will briefly describe the fundamental
topology inference algorithm that takes non-discriminating
observations and returns inferred network parameters. The
technique assumes knowledge of the number of agents in the
environment and attempts to augment the given observations
with an additional data association that links each observation
to an individual agent.

In the next section, we will present a new version of
the algorithm that can operate under weaker assumptions
regarding the motion of agents through the environment.

A. Monte Carlo Expectation Maximization

We use the EM algorithm [17]. to solve the connectiv-
ity problem by simultaneously converging toward both the
correct observation data correspondences and the correct
network parameters. We iterate over the following two steps:

1) The E-Step: which calculates the expected log likeli-
hood of the complete data given the current parameter
guess:

Q
(

θ, θ(i−1)
)

= E
[

log p(O,Z|θ)|O, θ(i−1)
]

where O is the vector of binary observations collected
by each sensor, and Z represents the hidden variable
that determines the data correspondence between the
observations and agents moving throughout the system.

2) The M-Step: which then updates our current parameter
guess with a value that maximizes the expected log
likelihood:

θ(i) = argmax
θ

Q
(

θ, θ(i−1)
)

We employ MCEM [18] to calculate the E-Step because of
the intractability of summing over the high dimensional data
correspondences. We approximate Q

(

θ, θ(i−1)
)

by drawing
M samples of an ownership vector L(m) = {lmi } which
uniquely assigns the agent i to the observation oi in sample
m:

θ(i) = argmax
θ

[

1

M

M
∑

m=1

log p(L(m), O|θ)

]

where L(m) is drawn using the previously estimated θ(i−1)

according to a Markov Chain Monte Carlo sampling tech-
nique, explained in the next section.

At every iteration we obtain M samples of the ownership
vector L, which are then used to re-estimate the connectivity
parameter θ (the M-Step). At every iteration of the algorithm
the likelihood of the ownership vector increases, and the
process is terminated when subsequent iterations result in
very small changes to θ.

In general, we make the assumption that the inter-vertex
delays are normally distributed and determine the maximum
likelihood mean and variance for each of the inter-vertex dis-
tributions along with transition likelihoods. In a subsequent
section, we will describe how we occasionally reject outlying
low likelihood delay data and omit it from the parameter
update stage.

B. Markov Chain Monte Carlo Sampling

We use Markov Chain Monte Carlo sampling to assign
each of the observations to one of the agents, thereby
breaking the multi-agent problem into multiple versions of a
single-agent problem. In the single agent case, the observa-
tions O specify a single trajectory through the graph which
can be used to obtain a maximum likelihood estimate for
θ. Therefore, we look for a data association that breaks O

into multiple single agent trajectories. We express this data
association as an ownership vector L that assigns each of the
observations to a particular agent.

Given some guess of the connectivity parameter θ, we
can obtain a likely data association L using the Metropolis
algorithm; an established method of MCMC sampling [19].
From our current state in the Markov Chain specified by our
current observation assignment L, we propose a symmetric
transition to a new state by reassigning a randomly selected
observation to a new agent selected uniformly at random.
This new data association L′ is then accepted or rejected
based on the following acceptance probability:

α = min

(

1,
p(L′, O|θ)

p(L,O|θ)

)

However, the acceptance probability α can be expressed
in a simple form since the trajectories described by L′

differ from those in L by only a few edge transitions.
Consider L as a collection of ordered non-intersecting sets
containing the observations assigned to each agent L =
(T1 ∪ T2 ∪ . . . ∪ TN), Tn = {wjk} where wjk refers to the
edge traversal between vertices j and k. The probability of
a single agent trajectory is then the product of all of its edge
transitions. Therefore a proposed change that reassigns the
observation on from agent y to agent x must remove an edge
traversal w from Ty and add it to Tx. Only the change in the
trajectories of these two agents need be considered since all
other transitions remain unchanged.

In between each complete sample of the ownership vector
L, each of the observations are tested for a potential transition
to an alternative agent assignment. This testing is accom-
plished in random order and should provide a large enough
spacing between realizations of the Markov Chain that we can
assume some degree of independence in between samples.
The resulting chain is ergodic and reversible and should thus
produce samples representative of the underlying probability
distribution.

C. Delay Model

In this section we present a re-working of the fundamental
algorithm that allows for the transition of agents to and from
sources and sinks and which therefore is more robust both
to shifting numbers of agents in the environment and to
agents that pause or delay their motion in between sensors.
Additionally, assuming the existence of sources and sinks,
we can recover their connectivity to each of the sensors in
our network.

1) The Source/Sink Node: In addition to the maintaining
a vertex that represents each sensor in our network, we
introduce an additional vertex that represents the greater
environment outside the monitored region: a source/sink
node. We then modify our current trajectory sampling and
parameter updating methodology to allow transitions to and
from this additional node.

During the E-Step of our iterative EM process in which
we are evaluating potential changes to agent trajectories, we
replace our initial assumption of normally distributed inter-
vertex delay times with a more sophisticated model that
additionally allows for uniform but low probability jumps
of almost arbitrary lengths. In other words, a mixture model
is employed in which an inter-vertex delay time is assumed
to arise from either a Gaussian distribution or from a uniform
distribution of fixed likelihood (Figure 2).

During the M-Step, in which we use the data generated by
M samples of the observation vector L to update our network
parameters, the data assigned to the Gaussian distribution are
assumed to be generated by “through-traffic” and are used to
update our belief of the inter-node delay times and transition

Si Sj

Source/Sink
Node

"Through Traffic"

High Probability Gaussian Fit Delay Data

Low Probabability Uniformly Fit Delay Data

Fig. 2. Algorithm delay model.

likelihoods. However, the data fit to the uniform distribution
are believed to be transitions from the first vertex into the
sink/source node and then from the sink/source node to the
second vertex. Therefore they are not used for updating inter-
vertex delay parameters of the two nodes, but rather are used
only for updating the belief of transitions to and from the
source/sink node for the associated vertices.

While the Gaussian assigned delays are expected to be
within a realistic temporal range for direct inter-vertex agent
motion, the delay data fit to the uniform distribution is more
loosely bounded. This gives the inference technique a manner
of temporarily removing agents from the system by assigning
them to long transitions and also can be used to explain
events that would otherwise seem extremely unlikely such as
the disappearance of an agent from one node and its almost
immediate appearance at a second.

2) Parameter Tuning: The new algorithm works by dis-
carding outliers in the delay data assigned to each pair of ver-
tices and explaining their existence as transitions to and from
a source/sink node. The key to this process is determining
whether or not a delay value should be considered an outlier.
This is implemented using a probability threshold called a
Source Sink Log Likelihood (SSLLH) that determines when
delay data should be incorporated into parameter updates
(Figure 3). If the probability for an inter-vertex delay, as
calculated given the current belief of the (Gaussian) delay
distribution, is lower than the probability threshold specified
by the SSLLH parameter, then this motion is interpreted
as a transition made via the source/sink node. Transitions
explained in this manner are not used to update the network
parameters associated with the origin and destination vertices.

An effective value for the SSLLH parameter somewhat
depends on the traffic patterns in the monitored environment
and may have to be determined partially through experimen-
tal methods. Although a full discussion of the calibration
technique is outside the scope of this paper, we consider
the effect of different SSLLH parameter values in the next
section.

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise Level

H
am

m
in

g
E

rr
or

 /
Tr

ue
 N

um
be

r o
f D

ire
ct

ed
 E

dg
es

SSLLH = −inf
SSLLH=−5
SSLLH=−25

(a)

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

20

Noise Level

D
el

ay
 E

rr
or

SSLLH = −inf
SSLLH=−5
SSLLH=−25

(b)

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

D
at

a
E

xp
la

in
ed

 b
y

S
ou

rc
e/

S
in

k
N

od
e

Noise Level

True SS Ratio
SLLH=−5
SLLH=−25

(c)

Fig. 4. Average over 10 graphs using the simulator with 4 agents on 12 node, 48 edge graphs. The X axis indicates proportion of both white and systematic
delay noise. Y axis shows: Hamming error per edge (a); delay error in seconds (b); and ratio of data explained by souce/sink node transitions(c).

Delay Time

P
ro

ba
bi

lit
y

SSLLH

Accept Zone
Data not used for
Parameter Updates

Fig. 3. Graphical description of the SSLLH Parameter

V. SIMULATION RESULTS

A. The Simulator

We have developed a tool that simulates agent traffic
through an environment represented as a planar graph. Our
simulation tool takes as input the number of agents in the
system and a weighted graph where the edge weights are
proportional to mean transit times between the nodes. All
connections are considered two ways; i.e. each connection
is made up of two uni-directional edges. The output is
a list of observations generated by randomly walking the
agents through the environment. Inter-node transit times are
determined based on a normal distribution with a standard
deviation equal to the square root of the mean transit time.1

Two types of noise were modeled in order to assess
performance using data that more closely reflects observa-
tions collected from realistic traffic patterns. First, a ‘white’
noise was generated by removing a percentage of correct
observations and replacing them with randomly generated
spurious observations. Second, a more systematic noise was

1Negative transit times are rejected.

generated by taking a percentage of inter-vertex transitions
and increasing the Gaussian distributed delay time between
them by an additional delay value selected uniformly at
random. The hope is that small values of both these types of
noise simulate both imperfect sensors and also the tendency
for agents to stop occasionally in their trajectories; e.g. to
talk, use the water fountain, or enter an office for an period.

A number of experiments were run using the simulator
on randomly generated planar, connected graphs. The graphs
were produced by selecting a sub-graph of the Delaunay
triangulation of a set of randomly distributed points.

For each experiment, the results were obtained by com-
paring the final estimated transition matrix A′ to the real
transition matrix A. A graph of the inferred environment was
obtained by thresholding A′. The Hamming error was then
calculated by measuring the distance between the true and
inferred graphs normalized by the number of directed edges
m in the true graph:

HamErrA =

(

1

m

)

∑

aij∈A,a′

ij
∈A′

[

thr(aij) − thr(a′

ij)
]2

where thr(a) = daij − θe.2

B. Performance Results

Our experiments show that in the absence of significant
measurement noise, the network structure can be determined
very reliably with a handful of agents and a sufficient number
of observations (e.g. 4 or 10 agents). This appears to be true
for various graph sizes, although for this low noise condition
we have only tested graphs of limited size. For example, the
topology of 95 per cent of 12 node graphs was perfectly
inferred with zero Hamming error for 200 simulations with

2A threshold value of θ = 0.1 was selected for our experiments.

(a) (b)

Fig. 5. a) Complete setup and, b) close up of a deployed photocell-based
sensor constructed out of a flashlight and a Crossbow wireless sensor. (Plastic
containers were used as protective covering during experiments.)

4 agents. Generally, the algorithm converged quickly, finding
most of the coarse structure in the first few iterations and
making incrementally smaller changes until convergence.

In the presence of sensor noise (Figure 4) the performance
of the algorithm depends, as expected, on the SSLLH thresh-
old. Recall that this parameter controls the model’s ability to
discard inconsistent data. When used with a high SSLLH
value, the mixture approach for modeling delays was very
successful at minimizing the effects of noise. Even when 10
per cent of the delay times were uniformly increased, the
Hamming error of the inferred transition matrix was still quite
low (Figure 4(a)). The reduction in error for inferred mean
delay times was especially dramatic (Figure 4(b)). However,
under conditions of extreme noice the advantage of our new
delay model became less apparent.

The performance of the algorithm under conditions of
moderate error reflect the ability of the new delay model to
successfully identify and discard low probability transitions
and explain them as transitions to the source/sink node
(Figure 4(c)). Since the SSLLH parameter can be tuned to
expected levels of noise in the environment, the algorithm
should perform well under real world conditions.

VI. EXPERIMENTAL RESULTS

In order to test our technique under real-world conditions,
we setup an experiment using a real sensor network of
nine nodes and analyzed the results using our approach.
The sensor nodes were built up of photocell-based sensors
running on low-powered commercial devices and vision-
based sensors running on single board computers (Figure 5).
Both types of sensors were programmed to act as simple

A

G

C

B D

E

F

H I

(a)

A

G

C

B D

E

F

H I

(b)

A

G

C

B D

E

F

H I

SS

(c)

Fig. 7. Topological maps of the environment that were: a) analytically
determined based on the layout; b) inferred by the algorithm; c) inferred by
the algorithm including the source/sink node.

motion detectors sending event messages to a central server,
which logged the origin and time of the activity.

The experiment was conducted in the hallways of one wing
of an office building (Figure 6). The data were collected
during a six and a half hour period from 10:00am to 4:30
pm on a weekday. In total, approximately 4700 timestamped
events were collected.

Ground truth values were calculated in order to assess
the results inferred by the approach. A topological map of
the environment was determined (Figure 7(a)) based on an
analysis of the sensor network layout. In addition, inter-vertex
transitions times for the connected sensors were recorded
with a stopwatch for a typical subject walking at a normal

A

G

C

B

D

H I

F

E

Fig. 6. The layout of the nine senor (heterogeneous) network used for the experiment. Labeled triangles represent vision-based sensor positions (A-F) and
labeled rectangles represent low-powered photo-based sensors (G-I). The circle represents the location of the central server.

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

Delay in Seconds

C
ou

nt

(a)

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

Delay in Seconds

C
ou

nt

(b)

Fig. 8. Examples of delay distributions inferred for: a) sensor D to sensor
H; b) sensor F to sensor D.

Connection Timed Inferred
A,G 6 8 / 11

A,C 9 12 / 10

B,C 5 6 / 8

C,G 5 5 / 5

C,H 5 6 / 6

D,F 14 15 / 17

D,H 5 5 / 6

D,I 6 7 / 7

E,F 13 13 / 13

E,I 13 15 / 14

H,I 4 4 / 4

TABLE I
A COMPARISON OF TIMED AND INFERRED DELAY TIMES (BOTH WAYS)

BETWEEN SENSORS. ALL VALUES ARE ROUNDED TO THE NEAREST

SECOND.

speed (Table I).
Except for a few small differences, the network parameters

inferred by our topology inference algorithm closely corre-
sponded to the ground truth values. Figure 7 compares the
analytically determined and inferred topological maps. Dis-
regarding reflexive links, the difference between the inferred
and ‘ground truth’ results amounted to a Hamming error of 2.
The two significant errors are: an extra edge found between
sensors A and B; and a missing one-way edge from sensor
D to I . The missing edge from D to I is likely due to the
tendency of people to go straight rather than turn right when
navigating the corridor on the bottom right of the region
(heading left) as shown in Figure 6 while the extra edge
found leading from sensor A to sensor B is likely due to
a correlation in the detection intervals between these two
nodes.

The mean transition times produced by the algorithm
were consistent to those determined by stopwatch (Table I,
Figure 8). Additionally, the number of reflexive links or self-
connections inferred by the algorithm also seem consistent
with expected results. Except for node D, the other reflexive
links all occur on sensors that are on the boundary of the
monitored region (Figure 7(b)). Traffic passing node G, for
example, might be correlated to the arrival of the elevator.
(The elevators are located to the right, immediately below
sensor G. See Figure 6.)

Note that the connections to the source/sink node also oc-
cur only for boundary nodes (Figure 7(c)) and are therefore
consistent with an analytical assessment of the traffic pat-
terns. Since traffic commonly enters and exits the monitored
region via one of the boundary nodes, the inference algorithm
should commonly employ the source/sink node in order bring
the agent back into the system. One might also expect a
connection to the source/sink node for nodes such as F which
are near offices which could function as a sink or source of
agent motion. During our experiment, however, this type of
activity was presumably overshadowed by ”through” traffic
in that region.

VII. CONCLUSION AND FUTURE WORK

We have developed a practical algorithm for learning the
connectivity information of a sensor network based on a
stochastic trajectory sampling technique that incorporates a
realistic model of inter-sensor delay distributions. This algo-
rithms was developed and refined using a simulator and then
implemented and tested on a sensor network emplaced in an
office environment, using a mixture of heterogeneous sensors.
An important component of the model that distinguishes it
from related work is the presence of an explicit process for
handling “noise” in the system, including agents that become
undetectable (e.g. people that go into offices). Results from
an experiment conducted on an emplaced sensor network as
well as supporting simulation data demonstrate the robustness
of the technique to realistic variations in traffic patterns and
observational noise in general.

Future work will look at removing the current dependence
of the algorithm on a priori knowledge such as the number
of agents in the environment and assumptions regarding
traffic patterns (the SSLLH parameter). We have had some
success by considering an ‘Occam’s Razor’ type of approach
that favors assumptions about input parameters that both
lead to simplistic solutions and explain the majority of the
observational data.

VIII. ACKNOWLEDGMENTS

We would like to thank Ionnis Rekleitis, Philippe Giguere,
and others of the Mobile Robotics lab, along with the CIM

administration for their technical help and good ideas. Thank-
you in addition to to Michelle Theberge for the photo, proof
reading, and valuable assistance during the experiment.

REFERENCES

[1] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in ACM Inter-
national Workshop on Wireless Sensor Networks and Applications
(WSNA’02), Atlanta, GA, Sept. 2002.

[2] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao,
“Habitat monitoring: Application driver for wireless communications
technology,” in 2001 ACM SIGCOMM Workshop on Data Communi-
cations in Latin America and the Caribbean, April 2001.

[3] C. R. Barnes, J. R. Delaney, B. M. Howe, and N. Penrose, “Neptune: A
regional cabled observatory in the northeast pacific,” in White paper for
Ocean Research Interactive Observatory Networks (ORION) meeting,
January 2004.

[4] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann, “Scalable co-
ordination for wireless sensor networks: self-configuring localization
systems,” in Sixth International Symposium on Communication Theory
and Applications (ISCTA-01), Ambleside, Lake District, UK, July
2001.

[5] N. Correal and N. Patwari, “Wireless sensor networks: Challenges and
opportunities,” in MPRG/Virgina Tech Wireless Symposium, 2001.

[6] S. Capkun, M. Hamdi, and J.-P. Hubaux, “GPS-free positioning in
mobile ad-hoc networks,” in HICSS, 2001.

[7] A. Savvides, C. Han, and M. Strivastava, “Dynamic fine-grained
localization in ad-hoc networks of sensors,” in 7th annual international
conference on Mobile computing and networking, Rome, Italy, 2001,
pp. 166–179.

[8] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low cost outdoor
localization for very small devices,” IEEE Personal Communications
Magazine, vol. 7, no. 5, pp. 28–34, October 2000.

[9] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” in Mobile Computing and Networking, 2000,
pp. 32–43.

[10] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using
AoA,” in Proc. of INFOCOM, San Francisco, CA., 2003.

[11] C. Stauffer and K. Tieu, “Automated multi-camera planar tracking
correspondence modeling,” in Proceedings of the IEEE Computer
Vision and Pattern Recognition, vol. 1, July 2003, pp. 259–266.

[12] A. Rahimi, B. Dunagan, and T. Darrell, “Simultaneous calibration and
tracking with a network of non-overlapping sensors,” in CVPR 2004,
vol. 1, June 2004, pp. 187–194.

[13] O. Javed, Z. Rasheed, K. Shafique, and M. Shan, “Tracking across
multiple cameras with disjoint views,” in The Ninth IEEE International
Conference on Computer Vision, Nice, France, 2003.

[14] T. Ellis, D. Makris, and J. Black, “Learning a multicamera topology,”
in Joint IEEE International Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance, Nice, France,
October 2003, pp. 165–171.

[15] D. Makris, T. Ellis, and J. Black, “Bridging the gaps between cameras,”
in IEEE Conference on Computer Vision and Pattern Recognition
CVPR 2004, Washington DC, June 2004.

[16] D. Marinakis, G. Dudek, and D. Fleet, “Learning sensor network
topology through monte carlo expectation maximization,” in IEEE Intl.
Conf. on Robotics and Automation, Barcelona, Spain, April 2005.

[17] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical
Society, vol. 39, pp. 1–38, 1977.

[18] G. Wei and M. Tanner, “A monte-carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms,” Journal
of the American Statistical Association, vol. 85(411), pp. 699–704,
1990.

[19] M. Tanner, Tools for Statistical Inference, 3rd ed. New York: Springer
Verlag, 1996.

