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Abstract

In this paper, we consider the exploration of topolog-
ical environments by a robot with weak sensory capa-
bilities. We assume only that the robot can recognize
when it has reached a vertex, and can assign a cyclic
ordering to the edges leaving a vertex with reference
to the edge it arrived from. Given this limited sensing
capability, and without the use of any markers or addi-
tional information, we will show that the construction of
a topological map is still feasible. This is accomplished
through both the exploration strategy which is designed
to reveal model inconsistencies and by a search process
that maintains a bounded set of believable world mod-
els throughout the exploration process. Plausible mod-
els are selected through the use of a ranking heuristic
function based on the principle of Occam’s Razor. We
conclude with numerical simulations demonstrating the
performance of the algorithm.

Introduction
In this paper we address a fundamental problem in mobile
robotics: the mapping of an unknown environment. In par-
ticular, we are interested in constructing a topological map in
the absence of metric (positional) information and using lim-
ited sensory data. We represent the world as an undirected
graph in which vertices represent discrete places and edges
navigable paths between them. We assume that the robot can
consistently assign a cyclic ordering to the edges leaving a
vertex with reference to the edge it arrived from, however, it
is unable to associate a unique label with any place or edge.
Given this limited sensing capability, and without the use of
any markers or additional information, we will show that the
construction of a topological map is still feasible.

As the wealth of literature addressing the SLAM problem
in mobile robotics suggests, this problem of mapping a pre-
viously unknown environment in the face of imperfect sen-
sory data has proved to be a challenging task. One of the key
problems is that ofclosing the loopor determining whether a
currently observed landmark or region corresponds to a pre-
viously visited location or a new portion of the world being
explored; (e.g. (Newman & Ho 2005) or (Martinelli, Toma-
tis, & Siegwart 2005)). In this work we examine an aspect
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of this problem by considering an extreme case in which the
robot has almost no ability to characterize its surroundings
or obtain meaningful odometry measurements.

The study of a robot equipped only with the sensing
ability to assign a consistent cyclic ordering to edges in a
graph-like world has been examined previously in (Dudek
et al. 1993) and (Dudek, Freedman, & Hadjres 1996). In
this work, a mapping strategy is presented is which the
robot constructs anexploration treethat enumerates consis-
tent world hypotheses at each step of an exploration pro-
cess. The authors classified the potential correspondence er-
rors that could be made during the construction of this tree
into three classes. One, errors of type OLD-LOOKS-NEW,
in which the current location is assumed to be newly ex-
plored, but was actually visited earlier; two, errors of type
MIS-CORRESPONDENCE in which the current location is
thought to be a certain previously visited area, but is actually
a different previously visited area; and three, errors of type
NEW-LOOKS-OLD, in which a location is assumed to have
been previously visited, but is actually new.

The authors discussed the fact that in a complete hypoth-
esis tree, there will always exist a model which assumes that
each place visited is a new location;i.emultiple errors of the
type OLD-LOOKS-NEW. Among the three types, this class
of errors is unique since the models they generate can not
be shown inconsistent given the sensing capabilities consid-
ered. The work concludes by suggesting a heuristic to be
used during the exploration process that prunes all models
of size greater than(γs + C) wheres is the current largest
incomplete model. Later work (Dudeket al. 1997) (Rek-
leitis, Dujmovíc, & Dudek 1999) considered a version of the
problem in which the robot with the same limited perceptual
abilities was capable of placing and recognizing one or more
markers. It was shown, that unlike the marker-less version,
one can resolve potentially incorrect correspondences and
therefore unambiguously map a finite world (given adequate
exploration).

In this paper, we re-visit the marker-less problem. The
main contributions of the paper are:

1. new exploration strategies that attempt to reduce corre-
spondence errors where possible; and

2. a beam-style search through consistent models in the ex-
ploration tree that maintains a bounded set of likely hy-
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Figure 1: Diagram showing relationship of visited vertices
in the context of the transition fuctionδ.

potheses based on the principle of Occam’s Razor.1

We show though simulations that the new exploration strat-
egy combined with the particle filter style of inference per-
forms much better than the earlier approaches.

The topological mapping problem has been well explored
in mobile robotics. Early work in this area such as (Kuipers
& Byun 1991) constructed a topological network description
of the environment by identifying and then linking distinc-
tive places and paths based on the sensory input and con-
trol strategies of the robot. Later, work such as (Shatkay &
Kaelbling 1997) addressed the topological mapping problem
with statistical formulations and techniques. The outcomeof
these approaches is generally a graph where vertices repre-
sent distinct locations or landmarks in the region and edges
indicate navigability.

Practical applications of topological mapping must pro-
vide a method for the robot to reliably identify a topolog-
ical node, (or landmark) in the world being explored. In
(Choset & Nagatani 2001), sonar data is used to identify
and position the robot on the Voronoi graph, the vertices
of which correspond to topological nodes. In (Kuipers &
Beeson 2002) place recognition is achieved through a multi-
process bootstrapping technique that includes sensory clus-
tering and probabilistic inference. Other approaches con-
sider the extraction of features from vision or other sensory
data (Se, Lowe, & Little 2001) (Salaet al. 2005) (Giguereet
al. 2006). In this work, we leave for the moment this prob-
lem of identifying when the robot has reached a vertex, and
focus solely on the correspondence problem.

Our approach is similar in concept to work described in
(Ranganathan & Dellaert 2004) and (Ranganathan & Del-
laert 2006). The weighted partial world models we maintain
in our inference technique has some similarity to the concept
of a probabilistic topological map, as defined by these au-
thors. In both our technique and theirs, a multi-hypothesis,
topological space is maintained. The distinguishing differ-
ence is that, while we only apply a ranking heuristic func-
tion, they use odometry measurements to assign relative
probabilities to each of the potential world models.

Problem Specification
We describe the problem of topological mapping in terms of
the inference of an undirected, un-weighted graph in which

1Occam’s Razor is the principle enunciated by William of Oc-
cam that the simplest explanation is the best.

each vertex is given a label corresponding to the degree of
the node. The vertices of this graph correspond to distin-
guishable places in the world and the edges correspond to
connecting bidirectional paths. As the graph is traversed by
the robot, it is able to sense the label of its current vertex
and additionally is able to enumerate the edges of the place
in a systematic way, (e.g.clockwise), relative to the edge by
which it entered.

We refer to the edge by which the robot enters a place
as areference edge. The edge selected for the next move
can be specified in relation to this reference edge. We
define the transition (or motion) functionδ as follows:
δ(vi, ei,j , r) = vj which means leave vertexvi by the edge
that isr edges (e.g.clockwise) after the reference edgeei,j ,
and this takes us to vertexvj . By recording its motions
the robot is capable of retracing any previously taken tra-
jectory since: ifδ(vi, el,i, r) = vj andδ(vj , ei,j , s) = vk

thenδ(vj , ej,k,−s) = vi (Figure 1).
During each step of the exploration process, the robot

records the label (degree) of its current topological node.As
this exploration process continues an exploration tree is con-
structed, the full version of which contains a single world
model for every consistent correspondence among all pre-
viously visited topological nodes. Eachlevelof this explo-
ration tree will be based on the information obtained from
the traversal of a potentially unexplored edge. At any step
t, each of the maintained hypotheses in the tree is consistent
with the observational data collected up to that point. For
all but trivially small observation sequences, the size of the
complete tree quickly becomes intractable to maintain. The
goal of this work is to manage the growth of the exploration
tree so that only those world models that appear of relatively
high likelihood are retained.

Exploration Strategies
Breath-First Traversal (BFT)
Here, for completeness, we briefly describe the original ex-
ploration strategy considered in (Dudek, Freedman, & Had-
jres 1996). The strategy processes new edges in a FIFO man-
ner, based on a breadth-first traversal. BFT may be repre-
sented as a tree where the root is the starting vertexvs (where
the robot starts the exploration), and a leveli in the tree con-
tains theith neighbors ofvs. Theith neighbors of a vertex
v are all vertices terminating distinct paths of lengthi which
originate from nodev. A single vertexu may be present
many times as anith neighbour ofv provided(i > 1). (In
the case ofi = 1, this is only possible if multiple edges are
allowed between the same vertices;i.e. we are exploring a
multigraph.) BFT (breadth-first traversal) will visit all the
vertices in a finite graph after at most depthd, d being the
diameter of the graph.

Breadth-First Ears Traversal (BFET)
For our purposes, an good exploration strategy will limit, as
much as possible, the number of world hypotheses that need
to be considered. Of the three types of errors originally iden-
tified by Dudeket al., it is possible to show inconsistent the
second and third variety; MIS-CORRESPONDENCE and



NEW-LOOKS-OLD. The first type, OLD-LOOKS-NEW, in
which the current location is assumed to be a new node,
can only be suspected by considering the implausibility of
the world model suggested. We can do no better than this
since there is no method of detection for errors of type OLD-
LOOKS-NEW. The strength of the original BFT exploration
strategy is its guarantee of eventual coverage given a finite
world, however, it appears that strategies employing more
passes through the potentially previously explored areas can
help reveal correspondence errors of the second and third
type better than BFT.

We first present a deterministic exploration strategy called
breadth-first ears traversal (BFET) that, like BFT, is guaran-
teed of eventually visiting all vertices (and edges) of a finite
world. In the next section we will describe a simple stochas-
tic variant.

BFET works as follows. Embedded within the original
BFT is a sub-exploration strategy that attempts to traverse
eachear2 leading from the current vertexv. For each poten-
tial ear leading from the vertexv, the robot explores the path
p1 beginning withv in one direction (e.g. clockwise) for
some number of steps (until, for example, a node with the
same degree asv is encountered). The robot then backtracks
and explores the pathp2 beginning withv in the opposite
direction (e.g. counter-clockwise) for the same number of
steps. This process is continued with larger and larger sets
of steps taken in both directions until the degree trace for the
path taken in two directions matches up;i.e. pathp1 visits
its vertices in the reverse order of those inp2. This process is
guaranteed to terminate given a finite graph since there is a
bound on both the largest cycle in the graph and the number
of cycles that any nodes can belong to.

Once the two paths taken by the robot in its attempted
exploration of the ear match up there is at least the potential
for these two paths to actually represent visits of the same
vertices is opposite order. Therefore, in the exploration tree,
there must now exist a model of the world which reflects the
fact that we have found a cycle leading from and back to the
node we are currently investigating. Of course, there will
also be other models, which, we suggest, are less likely.

Loop-Based Exploration (LBE)

Essentially BFET works by eliminating inconsistent models
through the re-visiting of previously explored vertices ina
cyclic manner. Our loop-based exploration strategy (LBE)
attempts to capture the spirit of this approach.

LBE works as follows. If the robot is currently visiting a
vertex of degree three or higher, then it selects with a prob-
ability p the first edge,r = 1, from the incoming reference
edge for its next traversal (e.g. the first clockwise). Oth-
erwise, it takes with probability(1 − p), the second edge,
r = 2, from the incoming reference edge (e.g. the second
clockwise). If the current vertex is of degree two, then it se-
lects the edge that is not the reference edge, and if the edge
is of degree one, then it backtracks.

2Any connected planar graph can be decomposed into a set of
cycles which are called ears.
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Figure 2: Examples of closed graphs which could explain
an endless sequence of observations recording the visiting
of alternate vertices of degree 2 and 3.

If a relatively large value ofp is selected, this algorithm
has the effect of visiting cycles in the graph one at a time,
and having much the same effect on the exploration tree as
the BFET algorithm for each of cycle examined. The larger
the value ofp, the better, on average we explore a particular
cycle, but this comes at the cost of the average coverage time
for the graph. Although LBE can not guaranteed coverage
of a finite graph, we will show that given a good choice for
p, in practice this strategy performs as well or better than the
more complex BFET strategy.

Heuristic Weighted Search
In this section we describe a beam-style search algorithm
which bounds the number of hypotheses maintained at each
step of the exploration process based on heuristic evaluation
function. We assume that the simplest models capable of
explaining the observed data are the best ones and rank them
accordingly. The principle, known as Occam’s razor, states,
“if presented with a choice between indifferent alternatives,
then one ought to select the simplest one.” The concept is a
common theme in computer science and underlies a number
of approaches in AI;e.g. hypothesis selection in decision
trees and Bayesian classifiers.

We define a simple hypothesis as one with as few vertices
as possible and, for tie breaking purposes, one with as few
singly connected ordanglingedges as possible;i.e minimal
number of edges leading to unexplored areas. The second
factor rewards those models which are approaching aclosed
model of the environment and ultimately assume that the
entire region has been explored.

For example, consider a situation in which the robot has
observed the node degrees:(2, 3, 2, 3, 2, 3, 2, 3, . . . ) while
following an arbitrary exploration strategy. We must surmise
that we are in a cycle of some multiple of length two, or
that our world contains a large component in which each
adjacent topological node alternates between degree two and
three. If we have done enough exploration to suggest that we
should have covered the entire environment, then we might
suspect a world that looks like one of the ones depicted in
Figure 2. In most applications, there is probably some prior
knowledge that can be exploited to give a rough idea of the
size of the region being explored, and therefore, some guess
of the probability of having achieved coverage of the area in
question when using a given exploration strategy.
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Figure 3: Examples of graphs solved previously in a.)
(Dudek et al. 1993) and b.) (Dudek, Freedman, & Had-
jres 1996). Each of these graphs were solved by our ap-
proach using LBE (p = 0.99) in less than half a second with
N = 1; i.e. only one model was maintained throughout the
exploration process (which was the correct one).

At each traversal of an edge during the exploration pro-
cess, we first enumerate the new models that can be gener-
ated from each of the currently maintained world hypothe-
ses, and we then rank them using our heuristic function. The
top N of these models are then selected for maintenance
and the rest are discarded. This approach can be considered
conceptually similar to a particle filter. Instead of a motion
model, we enumerate every possible option leading from the
currently maintained particles, and instead of a probabilistic
weighting and re-sampling, we cull all but the top proportion
of the new particles (assign them a weight of 1 or 0) based
on their ranking according to the heuristic function.

This approach allows online exploration, but risks throw-
ing away the correct solution. Off-line variants could run
the same algorithm repeatedly on the same observational se-
quence but employing an iteratively larger value forN until
a believable solution was obtained.

Discussion of Results
We examined our approach to topological mapping in this
problem domain through a number experiments conducted
in simulation. Our simulation tool takes as input: 1.) an
undirected graph representing the world to explore; 2.) the
exploration strategy employed by the robot; 3.) the num-
ber of observations to gather; and 4.) the number of world
hypothesesN to maintain. The simulator then determines if
the robot, after its exploration, maintains in its world hypoth-
esis space a graph that is isomorphically equivalent to the
input graph (and its ranking in our hypothesis space). The
graphs considered were randomly generated planar graphs
produced by selecting a connected sub-graph of the Delau-
nay triangulation of a set of random points.

For medium sized, sparse graphs, our particle-filter style
approach with an adequate number of maintained hypothe-
ses was generally successful at retaining the correct solution
in its exploration tree by the time coverage of the graph was
achieved. Figure 4 shows an example of a successful out-
come on a 10 node graph. Figure 3 compares our approach
to graphs considered in previous work. The difficulty of the
problem increased with the density and size of the graph, and
the better performance of the new exploration strategies was
more apparent under these circumstances. For example, Fig-

Figure 5: Example of a 50 node graph with an edge to node
ratio of 1.2 that was solved by our approach in less than an
hour. the correct graph was maintained by the algorithm
(with n = 1000) as the first ranking model from the point of
coverage onwards. LBE was used as the exploration strategy
(p = 0.99) and achieved coverage at step 3918.
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Figure 7: Ratio of graphs solved for different numbers of hy-
potheses maintained by the algorithm (value ofN ). Results
obtained from 100 trials of 10 node graphs with an edge to
node ratio of 1.6. For LBE, the parameterp was assigned a
value of0.99.

ure 6 shows a comparison of the different exploration strate-
gies over ten node and thirty node graphs of various den-
sities. Although the ranking results are not shown in these
experiments, generally the correct graph was the first ranked
model among those retained once coverage was achieved.
Interestingly, the stochastic LBE exploration with a large
enough value assigned top, performed as good or better than
the BFET strategy. For these experiments, a typical graph
was usually solved (or not) in the order of a few minutes on
a 2.2GHz P4 with 1.00 GB of RAM using un-optimized mat-
lab code. Running time was dependent both on the number
of hypotheses maintained, and the cover time of the graph
which depended on the exploration strategy (Figure 9).

If not enough models were maintained throughout the
exploration process, (the value assigned toN ), then the
chances of discarding the true solution increased (Figure 7).
However, for small graphs, good results could be obtained
using LBE and BFET with just a handful of models. By in-
creasing the number of models maintained, it was possible
to correctly infer quite large graphs (Figure 5).
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Figure 4: Example of the top three ranking world models, fromleft to right, inferred by the algorithm withN = 20 after
running the BFET exploration strategy for 1000 steps on a 12 node graph with an edge to node ratio of 1.6. (Actual coverage
was achieved at step 284.) The first ranking model is the correct one. Incorrect edges shown in dotted red.
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Figure 6: Ratio of graphs for which the true solution was retained in the hypothesis space after the exploration strategyunder
consideration reached edge coverage of the graph. Results were obtained from 100 trials at each edge density for graphs of
size: a.) 10 nodes; and b.) 30 nodes. In this experiment 100 hypotheses were maintained by the mapping algorithm (N = 100).
For LBE, the parameterp was assigned a value of0.99. (BFET results were unobtainable for the larger graphs because of its
poor cover time.)

The distribution of the size of the hypotheses generated
by the various exploration algorithms reveals that the newer
strategies are better at discriminating among the smaller
sized models, presumably by showing inconsistent errors
of the MIS-CORRESPONDENCE and NEW-LOOKS-OLD
types. For example, BFET quickly generates many hypothe-
ses, a few of which are small and have stayed consistent
through much exploration, and many which are in relation
quite large and therefore less believable (Figure 8). Table1
reveals the differences in the mean hypothesis size obtained
over a number of trials for the different exploration strate-
gies.

Although the BFET algorithm is guaranteed to cover a
finite region, its cover time in practice was relatively poor
(Figure 9). Unfortunately, this makes its use difficult for en-
vironments which are suspected to be large, since the prob-
ability of coverage would be low even after considerable ex-
ploration. In the environments we consider here, the LBE
strategy does much better in practice, even with an aggres-
sive value ofp.

Conclusion and Future Work
In this paper we have considered the topological mapping
problem given a robot with extremely limited sensory ca-

Strategy Mean Node Coverage Normalized
Model Size

BFT 8.48 +/-(1.11) 1.22 +/-(0.19)
BFET 6.86 +/-(1.78) 1.67 +/-(0.30)

LBE (p = 0.95) 5.57 +/-(2.46) 2.15 +/-(0.57)
LBE (p = 0.99) 4.33 +/-(1.86) 2.56 +/-(0.79)

Table 1: Mean and standard deviation for coverage and
model size normalized by coverage for the first 1000 hy-
potheses generated by the different exploration strategies.
Results obtained from 100 trials on random 10 node graphs
with an edge to node density of 1.6.

pabilities. We have shown that even in the case of highly
ambiguous, non-unique topological ‘signatures’ it possible
for such a robot to infer a set of hypotheses for its envi-
ronment that likely includes the true model. Our approach
combines an exploration strategy that attempts to eliminate
inconsistent models with a beam style search that bounds
the number of models maintained at each step based on the
principle of Occam’s razor.

In future work, we would like to look at handling more re-
alistic sensory data. For example, incorporating additional,
but still relatively poor, sensory data such as range only
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Figure 8: Distribution of the first 1000 hypotheses generated
for a.) the BFT exploration strategy and b.) the BFET explo-
ration strategy. The result was obtained from a typical run
of the algorithm on a 10 node graph with an edge to node
density of 1.6. BFT covered 7 of the 10 nodes in this time,
while BFET covered only 5.

odometry. Additionally, we would like to consider the ef-
fect of sensor errors;i.e missing or spurious observations.
It’s possible that these aims could by accomplished by shift-
ing our heuristic based evaluation method to a probabilistic
one. Such an approach could weigh the relative likelihood of
the maintained models at any time based on previously cal-
ibrated measurement models and some prior over potential
environments.
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