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Abstract

In this paper, we consider a hybrid solution to the sensor net-
work position inference problem, which combines a real-time
filtering system with information from a more expensive,
global inference procedure to improve accuracy and prevent
divergence. Many online solutions for this problem make use
of simplifying assumptions, such as Gaussian noise models
and linear system behaviour and also adopt a filtering strategy
which may not use available information optimally. These
assumptions allow near real-time inference, while also limit-
ing accuracy and introducing the potential for ill-conditioning
and divergence. We consider augmenting a particular real-
time estimation method, the extended Kalman filter (EKF),
with a more complex, but more highly accurate, inference
technique based on Markov Chain Monte Carlo (MCMC)
methodology. Conventional MCMC techniques applied to
this problem can entail significant and time consuming com-
putation to achieve convergence. To address this, we propose
an intelligent bootstrapping process and the use of parallel,
communicative chains of different temperatures, commonly
referred to as parallel tempering. The combined approach is
shown to provide substantial improvement in a realistic sim-
ulated mapping environment and when applied to a complex
physical system involving a robotic platform moving in an of-
fice environment instrumented with a camera sensor network.

Introduction

We propose a technique whereby the individual sensing
nodes that make up a distributed sensor network can de-
termine their respective positions and configuration in 2D
space without having any a priori knowledge of where they
are. We address this instance of the sensor network local-
ization problem by augmenting the stationary nodes of the
network with a mobile robot, as illustrated in figure 1. As
we discuss below, several authors have considered the maxi-
mum likelihood estimation of a network configuration in this
context, but this does not account for either the certainty of
the estimates or a strategy for how to improve it. A small
number of authors have also considered methods for esti-
mating the probability distribution over node locations, but
at substantial computational cost. This paper exploits the
synthesis of maximum likelihood estimation and stochastic
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Figure 1: The target hardware platform for our inference
technique: a mobile robot is observed by one of the compo-
nent stationary cameras in a sensor network.

estimation of the probability distribution to attempt to cap-
ture some of the advantages of each approach.

Networks of sensors are rapidly becoming ubiquitous as
our society deploys emplaced motion sensors, emplaced
cameras, mobile robots, and even cell phones which can
sense their environment. This increasing prevalence has mo-
tivated researchers to consider the potential of a smart house
in which actuators and sensors respond to the behaviour of
the resident in order to help them with their daily activities.
While the physical deployment of such sensors is relatively
trivial, the configuration of such a system has remained a
challenge. Localization information for each device is re-
quired in order to carry out the assigned tasks, but obtaining
such information by manual intervention is time consuming
and error-prone. Obtaining this localization information di-
rectly from the sensor data, so that the configuration process
is accurate and automatic would help realize the practical
deployment of smart houses as a consumer technology.

A mobile robot’s motion within the network can facilitate
localization by explicitly transferring positional information
between disparate sensor locations. By maintaining an on-
going estimate of the robot’s location, the positions of any
sensor it interacts with can be estimated (and updated) as it
moves through the network. This is accomplished through
probabilistic modeling of the robot’s position and motion,
the ability of the network nodes to sense the robot when it
enters their neighborhood, and estimation of the displace-



ment between the robot and the nodes it encounters.
When designing our localization system, we seek not only

a maximum likelihood estimate (MLE) for the robot’s po-
sition, but also a probability density function (PDF). This
information enables later decisions to be made conditional
on the confidence of the estimates, and facilitates adaptive
exploration processes and higher level task planning. Ob-
taining a PDF may entail more computational cost than ob-
taining the MLE, and so has often been overlooked by pre-
vious authors. In our scenario, the localization problem can
be thought of as an initial map building phase, which will be
followed by a much longer period of deployed use of the net-
work. For this reason, the additional computation required
to obtain an accurate distribution is well justified.

The remainder of this paper will detail a method which
attempts to achieve the conflicting goals of near real-time
position estimation, and consistent, convergent inference of
the underlying distributions. To accomplish this, we will
propose a combination of techniques. The computation-
ally efficient, but error prone extended Kalman filter will
be used in an online fashion to process the incoming sen-
sory data. A more computationally expensive, but highly ac-
curate, inference technique based on Markov Chain Monte
Carlo will be used periodically to increase accuracy, pre-
vent divergence, and diagnose faults. The significant and
time consuming computation required by standard MCMC
inference to achieve convergence is addressed by our com-
bined method in two ways: 1) bootstrapping the chain with
a high likelihood state obtained from the EKF; and, 2) the
use of parallel, communicative chains of different tempera-
tures, commonly referred to as parallel tempering. Finally,
The combined method will be evaluated on simulated results
and a physical localization scenario.

Background
The sensor network localization problem has received con-
siderable attention recently. For our purposes, previous ap-
proaches can be grouped into those which operate on a
static network with some form of node to node commu-
nication, and those which operate in the context of hybrid
static and mobile nodes. When all nodes in the network are
static, information such as radio signals, or overlapping im-
ages of the environment can be employed to obtain inter-
node distances after careful inference. Recently, both (Ih-
ler et al. 2005) and (Marinakis & Dudek 2006) have ap-
plied sampling-based techniques to estimate the posterior
distribution of sensor nodes. In the case of a single mo-
bile robot within a static network, the robot’s motion can
facilitate localization. (Meger, Rekleitis, & Dudek 2006;
Rekleitis, Meger, & Dudek 2006) considered this scenario,
but employed a relatively simple online method for estimat-
ing sensor positions. We extend this work by combining
online and batch inference, in order to achieve higher accu-
racy.

In many ways, the issue we are considering is similar to
the simultaneous localization and mapping (SLAM) prob-
lem in traditional mobile robot research, and this research
area has inspired several solution techniques which we draw
upon. The extended Kalman filter, as was pioneered by

(Smith, Self, & Cheeseman 1990), is a common approach
to SLAM. EKF-based SLAM solutions share many of the
same limitations that will be discussed below, so a family of
hybrid sampling-based approaches referred to as FastSLAM
(Montemerlo & Thrun 2003) have been proposed. Further-
more, several authors have recently noted that the filtering
approach, which maintains only the most recent pose of the
mobile agent, is prone to errors, and have instead estimated
the entire set of previous poses. For example, (Dellaert &
Kaess 2006) apply many of the familiar Kalman filter as-
sumptions in the context of smoothing rather than filtering.
Several methods which employ hybrid online and offline,
global correction methods for the SLAM problem are per-
haps the most similar to our own. Scan-Matching for Align-
ment (Lu & Milios 1995) and its later practical implemen-
tation, known as Local Registration and Global Correlation
(Gutmann & Konolige 1999) are two examples of such ap-
proaches. These methods are similar in concept to our ap-
proach, but do not return a full representation of the underly-
ing distribution and furthermore are targeted at robotic map-
ping, whereas our work targets the more sparse observations
obtained when mapping a sensor network.

Although our network localization problem can be viewed
in the context of SLAM, there are some practical differ-
ences. First, our landmarks are actually network compo-
nents and can be considered uniquely identifiable, so there
is no correspondence issue. Second, we can assume that
in our system, the robot will operate for the most part within
the confines of sensor-network deployed region and will ulti-
mately visit the local area of each network component many
times. Given such behaviour, it will be desirable to know
not only the most likely location for each sensor, but with
what confidence or certainty such a location is known. Fi-
nally, in the scenario we consider, our mobile robot is only
able to detect or be detected by the deployed sensors and is
assumed not to have sensing capabilities that could be used
to identify additional landmarks in the environment and use
these for localization.

Problem Definition

Sensor network localization based on a moving agent in-
volves inferring the positions of each sensor node mi, which
is part of the map of the sensors mn = [m1m2...mn].
These postions can only be measured relative to the posi-
tion of the above mentioned mobile robot at a given time,
st = [s1s2...st], and so both quantities must be estimated si-
multaneously. The measurements available are the position
of a sensor relative to the robot at time t, denoted zt and the
position of the robot at time t relative to its postion at time
t − 1, denoted ut.

This problem can be modelled as probabilistic inference
of the map and the robot poses conditioned on the observa-
tions, as represented by the directed graphical model shown
in figure 2. The posterior distribution, p(mn, st|zt, ut), can
be factored into the product of many local conditional distri-
butions, by exploiting the conditional independencies in the
network as is common practice for probabilistic graphical
models.
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Figure 2: The quantities of interest in the Sensor Network lo-
calization problem can be modelled as a Bayesian Network
in order to exploit conditional independencies. The robot
poses and map (highlighted in grey) must be inferred, given
observed data.

For the sensor network localization problem, there are two
classes of local conditional likelihoods: p(zt|st,m), which
is referred to as the measurement model; and p(st|ut, st−1)
which is known as the motion, or odometry, model. These
distributions for a particular physical instantiation can be de-
termined empirically or determined by physical modeling;
however, there are several challenging properties common
to each. The local distributions for this problem are over the
continuous valued, potentially high dimensional variables
representing position and orientation. Exact inference in this
context remains an unsolved problem, so we must turn to
simplifying approximations or sophisticated computational
techniques to perform inference.

Extended Kalman Filter Localization

The dynamic structure of the problem and conditional in-
dependencies inherent in the graphical structure facilitate
the formulation commonly referred to as a Bayes Filter
(note that s in the following equation represents the previ-
ous state):

p(mn, st|zt, ut) ∝ (1)

p(zt|st,m)
∫

p(st|ut, s)p(st−1,mn|zt−1, ut−1)ds

The recursive formulation given in equation (1) provides
a formulation for accumulating information from one time-
step to the next. This process remains intractable for general
distributions due to the need to integrate over all possible
robot postions st. Kalman developed a computationally ef-
ficient, closed-form solution, suitable for online estimation
assuming a linear system with normally distributed poste-
rior and noise models, which is commonly referred to as
the Kalman filter. The Kalman filter is unique among lin-
ear filters in that it is proveably optimally efficient in a least-
squares sense under the assumptions given above. That is,
the estimates minimize the expected value of squared error
and the estimated covariance is the best possible measure
for the error in the estimate. Unfortunately, real physical
systems are rarely linear and Gaussian, so the assumptions
of the Kalman filter do not hold in practice. In this case,
the true physical models may be approximated as linear (for

example, using a truncated Taylor series expansion) and the
closest possible Gaussian can be fit to the true error model.
These steps produce a non-linear filter, known as the ex-
tended Kalman filter, which provides no guarantees of op-
timality, but often performs well in practice.

The implications of the approximations made by the EKF
are evident in its application to our sensor network local-
ization problem. The linearization of the motion and mea-
surement models is performed at the current mean estimate,
not at the unobservable, underlying states of the world. This
process introduces non-negligible errors, and significant loss
of accuracy. Also, the additional unmodeled errors from lin-
earization are not accounted for in the computation of es-
timated covariance, which bias the EKF towards overconfi-
dence. That is, the estimated covariance is an underestimate
of the true error, which can lead to hazardous situations in
a practical scenario. Finally, the approximation of the input
noise distributions as Gaussian may be inaccurate, and limits
the ability to model general posteriors.

While such limitations paint a bleak picture for the EKF
as an estimator, it is often able to perform well for short pe-
riods of time on realistic problems. The accumulation of
errors may only become a problem for quite long term oper-
ation. The following section will present the second, com-
plementary technique which comprises our hybrid approach.

MCMC Localization

In this section we will describe a technique that attempts to
directly sample the posterior distribution, p(mn, st|zt, ut),
for the pose of every node of our sensor network. Concep-
tually, we form a graph < V,E >, where V is the set of
vertices and E the set of connecting edges. The vertices of
this graph are the robot positions over time st, and the sen-
sor locations mn. The edges, or constraints, are the odome-
try measurements ut connecting consecutive robot positions
over time and the measured relative positions zt between the
robot poses and network components. Using a model char-
acterizing the error in the measurements, we can calculate
the density of any particular configuration x = (mn, st) of
the graph through the application of Bayes law and the as-
sumption of a uniform prior over all potential configurations:

p(x|zt, ut) =
p(zt, ut|x)p(x)

p(zt, ut)

p(x|zt, ut) ∝ p(zt, ut|x)

We then define our target distribution π to be the relative
likelihood of a given configuration x:

π(x) = p(zt, ut|x) (2)

Given this ability to calculate the density of our target dis-
tribution at a specific point, we can employ the well known
Metropolis-Hastings (M-H) algorithm to generate represen-
tative samples. In our application of the M-H algorithm
to sensor network localization, we use a proposal function
Q(x), which we will define below, that generates a new state
x′ given the current state x. The proposal x′ is then either ac-
cepted or rejected with probability α, where α is calculated
as:



α = min

(

1,
π(x′)Q(x)

π(x)Q(x′)

)

(3)

We selected the following proposal function, Q(x): given
the current state in the chain x, a symmetric transition is
proposed to a new state x′ by altering a feature (either the
orientation, θ or spatial position, (x, y)) of a single vertex in
the graph. The vertex and feature are selected at random and
some amount of normally distributed noise is added to the
original value. The new state x′ is then accepted or rejected
based on the relative density of x and x′ as calculated with
equations 2 and 3.

Additionally, to speed convergence and mixing of the
chain, we used the technique of parallel tempering. Parallel
tempering (Geyer 1991) is a MCMC variant in which multi-
ple replica-exchanging chains of different temperatures are
simulated in parallel. The temperature of a chain can be
thought of as specifying the relative ‘smoothness’ of its tar-
get distribution. Usually, a chain Ck of temperature t, will

use the density: πk = (π)
1

t . While the lowest temperature
chain attempts to sample from the target distribution, π, the
higher temperature chains sample potentially easier to char-
acterize versions of the original target distribution.

During a simulation, after a number of within chain pro-
posals, two consecutive chains Ci and Ci+1 are selected ran-
domly and their current configurations Xi and Xi+1 are ex-
changed (or not) according to the M-H acceptance ratio:

α = min

(

1,
πi(Xi+1)πi+1(Xi)

πi(Xi)πi+1(Xi+1)

)

(4)

In this work we employed 10 chains geometrically dis-
tributed in temperature between t = 1, the cold chain, and
t = 10, the hottest chain. We varied the standard devia-
tion of the normally distributed noise used for proposal gen-
erations from a factor of 1 cm for the coldest chain to 12
cm for the hottest chain. These values were determined
by cross-validation and found to provide satisfactory per-
formance for the experimental work presented below. After
an initial burn-in stage, samples are drawn periodically from
the cold chain and are used to form a particle representation
of the PDF for the pose of the network.

Parallel tempering achieves good performance by allow-
ing high temperature chains to make fast, less-restrained ex-
ploration of the underlying probability landscape. Promis-
ing realizations discovered by these hot chains are fed down
to colder chains, and ultimately to the principle chain. The
result is faster mixing than in the single chain variant, and
hence more complex target distributions require less com-
putational effort to characterize through sampling. The tech-
nique of parallel tempering has become wide spread in fields
such as physics and biology. Tempering has some concep-
tual similarities to existing techniques in the related field
of SLAM that exploit relaxed versions of the final problem
in the inference process; e.g. (Frese, Larsson, & Duckett
2005). Here we consider the application of tempering to
sensor network self-localization.

Hybrid Sensor Network Self-Localization

With the EKF, we have available a real time localization
technique that can be used when there has not been the op-
portunity to run the MCMC localization technique. This can
be useful for the initial exploration, and also when quick
adjustments are required such as when a new network com-
ponent is added, or an existing component fails. Addition-
ally, the filter can be employed for everyday navigation tasks
once the relative position of the network components has
been determined to satisfaction. In the self-localization task,
we envision the MCMC localization being run, periodically,
after some amount of exploration.

The two localization methods can complement each other.
The EKF can be used to bootstrap the MCMC process. Ini-
tializing the chain with a high likelihood sample reduces the
burn in time and speeds convergence, allowing the chain to
produce more accurate results more quickly. Additionally,
the results obtained by the MCMC could be used to adjust
both the means and confidences of the EKF. In the next sec-
tions we will examine some of these issues with experiments
conducted in simulations and with real hardware.

Results from Simulations

Both the EKF and our hybrid technique were performed on
data from a realistic simulator. Our results demonstrate that:
1) the hybrid method is capable of improving upon the pose
estimate provided by the EKF, when given sufficient data;
and 2) the method more faithfully represents the underly-
ing distribution. Figure 3 shows the typical error progres-
sion during the exploration process for a network of six sen-
sors when the MCMC was initialized with the EKF calcu-
lated values at various intervals. When there are few con-
straints, the MCMC approach is unable to greatly improve
upon the mean EKF estimate. However, when the robot has
visited enough network components, the MCMC technique
is capable of finding a higher likelihood global configuration
which is usually more accurate than the EKF mean. When
the mean squared error of sample sets drawn from the orig-
inal EKF are compared to the corrected MCMC samples, it
can be seen that the global inference technique considerably
tightens the distribution around high likelihood values.

A second observation verified through simulations is that
the MCMC technique generally recovers a considerably dif-
ferent distribution than the one suggested by the EKF. In
general the distributions diverge as more data is collected.
Figure 3(c) displays the generalized (95th quantile) Haus-
dorff distance was used with a L2-norm kernel. This metric
estimates the distance between distributions by drawing a
single test set of samples from the EKF, and using the mean
distance between this set and 10 additional sets of drawn
EKF samples to normalize comparisons with the EKF test
set to MCMC obtained samples. The Hausdorff distance
increases as the robot’s path length increases. This occurs
because the estimated distribution becomes more complex
as more constraints are added, and the single Gaussian used
by the EKF is an increasingly poorer approximation. This
demonstrates the danger of relying on linearized representa-
tions of distributions, even if the mean is accurately deter-
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Figure 3: Results obtained from a simulated, six sensor environment. The MCMC technique was run after every 6 sensor
visits (steps) of the mobile robot. Vertical axis reports the squared error in sensor and final robot locations from the ground
truth positions. (a) The average error of a sample drawn from the respective distributions. (b) The total squared error of the
respective ML estimated positions. (c) Normalize Hausdorff distance between the distributions suggested by the EKF and
MCMC.

mined. In the next section we will present results demon-
strating our hybrid localization technique on a real sensor
network.

Experimental Results

Our hybrid approach has been applied to mapping data gath-
ered using real robot and sensor network hardware. The tar-
get sensor network is located in an office environment, and
consists of seven networked cameras. The robot travelled
through a rectangular loop and a triangular loop connected
by a long straight hallway with length approximately 50 m
as shown in figure 4(a). A Nomadics Scout robot mounted
with a target with six recognizable patterns, such as the one
shown in figure 1 was used to perform a calibration pro-
cedure and obtain position measurements, using a method
previously described in (Rekleitis, Meger, & Dudek 2006).
Due to the size of the environment, and lack of line-of-sight
between camera positions, ground truth data could not be
collected for this experiment, but there are several measures
which can be used for qualitative assessment of estimation
accuracy on this data. First, care was taken to return the
robot to within a few centimetres of its initial position at
the end of the run, which implies the first and last robot po-
sitions should agree very closely in any accurate estimate.
Also, estimated camera location accuracy can be estimated
visually, by comparing to the camera locations recorded on
figure 4(a).

The odometry and camera position measurements gath-
ered during these experiments were used as input for our hy-
brid estimation procedure. Figure 4 demonstrates the perfor-
mance in terms of final camera position estimates as well as
the ability of the parallel tempering method to estimate the
distribution efficiently. The final particle clouds produced
by the hybrid method are shown in figure 4(b). The final
robot positions can be observed to lie within a meter from
the initial position, which is a strong indicator of map accu-
racy, as the path length is over 360 m in total. The inference
in this experiment took several hours on a 2.2GHz P4 with
1GB of RAM (implementation was in unoptimized matlab).

Figure 4(c) provides a comparison of the various estima-
tion techniques presented in this paper with respect to the

likelihood of the data given each final model. The EKF
mean produces a relatively poor estimate, with the MCMC-
based approach achieving a much higher likelihood. All of
the chains of different temperatures used in parallel temper-
ing are shown, with the lowest temperature chain achieving
the highest likelihood, as expected. The parallel tempering
approach was able to achieve a higher likelihood state af-
ter many fewer proposals than the standard M-H algorithm
which was implemented for comparison purposes.

Additionally, an informal variance analysis suggests that
the cold chain of the parallel tempering variant mixes much
faster than the standard single chain approach and exhibits
variance characteristics typical of a system at or near con-
vergence (figure 5).

Conclusion

This paper has examined a novel combination of online and
batch state estimation techniques for the sensor network lo-
calization problem. The extended Kalman filter has been
shown to provide fast, short-term results which facilitate
operation-time robot navigation. Parallel tempering MCMC
has been shown as an effective global optimization tech-
nique for this problem, providing highly accurate correction
over long periods. The combination of the two methods is
beneficial not only for practical reasons, but also due to the
fact that each method is able to aid the other in computa-
tion. The EKF estimate gives a reliable starting point for the
MCMC refinement, and speeds convergence significantly.
Once a reliable estimate has been obtained, the mean and
covariance EKF can be corrected, allowing it to remain con-
sisted over longer periods. This component of the system
has been valided informally, and we leave the formal valida-
tion of the long term behaviour for future work.

Several aspects of the sensor network localization prob-
lem remain challenging, and worthy of continued study. Dis-
tribution of computation is a central issue for many network
applications, and has not been considered in this work since
the presence of a central, high powered computational de-
vice in our hardware setup did not require this capability.
Also, we have not formally addressed steady state conver-
gence, or when enough samples have been drawn to accu-
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Figure 4: Results from the hybrid approach on estimating the map shown in (a). (b) The final distributions of camera and robot
positions estimated by parallel tempering. (c) The likelihoods of each of our approaches (not all of data shown for purposes of
clarity).
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Figure 5: Overlaid plots of samples drawn from two post burn-in proposal windows for the cold chain of the parallel tempering
MCMC variant (a) and for the single chain variant (b).

rately represent the target distribution. Finally, the frequency
at which MCMC inference is required to keep the EKF con-
sistent is an interesting question. Measures such as mag-
nitude of covariance and likelihood of each incoming mea-
surement under the estimated model are among promising
approaches which indicate the need for a correction to be
applied.

The added accuracy and robustness produced by our hy-
brid method makes this algorithm and excellent candidate
for application on the type of error-prone hardware that is so
common in real robot platforms. In fact, given the tendency
of common approaches for state estimation to diverge under
realistic error conditions, a method for diagnosis and correc-
tion of catastrophic errors, such as ours, is almost essential
in a real system.
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